

A	uthor Dashboard	
1	Submitted Manuscripts	>
1	Manuscripts with Decisions	>
	Start New Submission	>
	Legacy Instructions	>
	5 Most Recent E-mails	>
	English Language Editing Service	>

Manuscripts with Decisions

MANUSCRIPTS ACCEPTED FOR FIRST LOOK: If your paper is accepted but minor updates are required before the final files can be
sent to production you will be notified of this and will find the paper listed under "Manuscripts Accepted for First Look". Click the link and
then click "submit updated manuscript". Further instructions on how to upload your final files can be found on the screen that follows.

ACTION	STATUS	ID	TITLE	SUBMITTED	DECISIONED
a revision has been submitted (AEC-17-183- OA.R1)	ADM: Editor, AEC Major Revision (20-Dec-2017) a revision has been submitted view decision letter	AEC-17-183- OA	Effects of episodic bamboo mast seeding at top predator levels in the southern Andes View Submission	05-Oct-2017	20-Dec-2017

A	uthor Dashboard	
1	Submitted Manuscripts	>
1	Manuscripts with Decisions	>
	Start New Submission	>
	Legacy Instructions	>
	5 Most Recent E-mails	>
	English Language Editing Service	>

Submitted Manuscripts

STATUS	ID	ΠΤLΕ	CREATED	SUBMITTED
ADM: Editor, AEC	AEC-17-183- OA.R1	Effects of episodic bamboo mast seeding on top predators in the southern Andes	24-Jan-2018	24-Jan-2018
Under Review		View Submission		

Effects of episodic bamboo mast seeding on top predators in the southern Andes

Journal:	Austral Ecology
Manuscript ID	AEC-17-183-OA.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	24-Jan-2018
Complete List of Authors:	Ojeda, Valeria; Instituto de Investigaciones en Biodiversidad y Medioambiente, Zoology Chazarreta, Laura; Administración de Parques Nacionales
Keywords:	owl, predator-prey system, pulsed resource, rodent outbreak, strigiform

Effects of episodic bamboo mast seeding at on top predators levels-in the southern Andes Comment [L1]: Tele changed following 81
Valeria Ojeda^{4*}, Laura Chazarreta^b ^a INIBIOMA (UNComa-CONICET), Zoology Department-CRUB, Bariloche, Argentina
^b Administración de Parques Nacionales, Dirección Regional Patagonia Norte, Bariloche, Argentina
^{*} Corresponding author. Email: leriaojeda@email.com. Zoology Department-CRUB, Quintral 1250,
8400 Bariloche, Argentina *Acknowledgements*: We appreciate the data provided by M. Izquierdo and E. Comisso from Los
Alerces National Park. Different contributions by A. Ortiz, A. Trejo, R. Sage, and C. Núñez, are
acknowledged. We are grateful to two anonymous referees for their comments and suggestions,
Research was conducted under permit 996/09-11 (and renewals) from the APN-Argentina.

CONICET and APN, respectively.

was provided by PICT-O 2006-36901 (FONCyT-Argentina). VO and LC are members of

1		ABSTRACT. Woody bamboos that undergo masting on a cyclic basis constitute large-scale
2		endogenous disturbances in forests of America, Africa, and Asia, driving long and short-term
3		effects on community structure and dynamics. Among the transient effects of these
4		nonequilibrial phenomena are rodent outbreaks whose potential bottom-up consequences on
5		top predators have never been explored. We investigated the effects of unpredictable rodent
6		outbreaks on the assemblage of nocturnal raptors of the southern Andes after a large-scale
7		(>140.000 ha), spatially heterogeneous, Chusquea culeou masting event in north Argentine
8		Patagonia. We compared owl numbers and behaviours between pre-masting (2009) and post-
9		masting (2011) at subsidised (outbreaking rodents) and unsubsidised (normal rodents)
10		contiguous sites. Both generalist (opportunistic forest resident) and rodent-specialist (forest-
11		facultative) owls were monitored, with emphasis on the resident territorial Rufous-legged owl
12		(Strix rufipes). The resident owls behaved as predicted, perceiving the rodent increases soon
13		and gathering at subsidised sites, while apparently relaxing territoriality. Contrary to our
14		predictions, later at the rodent outbreak phase, resident territorial owls turned inconspicuous,
15		coinciding -causally or not- with an irruption of forest-facultative Barn owls (Tyto alba
16		tuidara), and influx of some open country Short-eared owls (Asio flammeus suinda, some of
17		which took a chance to breed in the woods). Considering the whole rodent outbreak period,
18		besides significant changes in owls' numbers, we recorded a notable adjustment in owls'
19		foraging modes in front of response to food surplus (consuming prey heads only), and null
20	I	interference behaviours among all observed species. This study provides a first quantitative
21		assessment of the effects of bamboo episodic masting on top carnivores globally, and
22		contributes novel data on the indirect effects of these events in forests of South America.
23		
24		Key words: owl, predator-prey system, pulsed resource, rodent outbreak, strigiform
25		

Comment [L1]: R1

26	Infrequent large-magnitude events such as climatic extremes (e.g., droughts) and pulses in	
27	resource availability (e.g., prey outbreak) are acknowledged as part of long-term ecosystem	
28	dynamics, and may sustain key ecological functions in nature (Curran & Leighton 2000; Lima	
29	2002; Ojeda et al. 2007). Yet because extreme events are generally short and rare, only	
30	occasionally ecological research captures them in action, and rather focuses on the actual	
31	consequence of past extreme events (Kitzberger 2013).	
32	Pulsed resources (brief and infrequent events of resource superabundance) have been	
33	described for a wide range of natural systems, and may entail tremendous bottom-up effects	
34	on consumer communities at multiple trophic levels (Anderson et al. 2008; Holt 2008; Yang	
35	et al. 2008, Holmgren et al. 2017). Woody bamboos (Poaceae: Bambusoideae) are	Co
36	semelparous plants that typically generate conspicuous resource pulses in several parts of the	
37	Neotropics, Africa and Asia (Janzen 1974). Their life cycles include a long vegetative phase	
38	on asexual reproduction, and a short period in sexual reproduction (seeding), followed by	
39	death. These phenomena are usually synchronised over hundreds of square kilometres (Janzen	
40	1974). Given the magnitude of these flowering episodes and long intervals between them,	
41	these nonequilibrial phenomena provide unique opportunities to observe community structure	
42	and dynamics both through transient and long-term consequences.	
43	Woody bamboos of the Chusquea genus dominate the understory in the northern	
44	(warmer) half of the cool temperate southern beech (Nothofagaceae) forests that stretch along	
45	the southern Andes, in Chile and Argentina. These plants undergo large-scale blooming and	
46	massive seeding events on a cyclic basis (every 10-75 yrs., depending on the species).	
47	Environmental triggers like droughts and floods concerning El Niño Southern Oscillation,	
48	natural fire cycle, and genetic factors, affect their cycles. Thus, although cyclic, these	
49	flowering episodes are unpredictable at any locality. More, not all individuals in a stand may	
50	flower at the same interval, which eventually generates patchy blooming (Veblen 1982).	

Comment [L2]: R1

C 1		
51	These large-scale endogenous disturbances have been shown to substantially affect these	Comment [L3]: R1
52	austral temperate forests in various ways, like influencing tree regeneration dynamics in gaps	
53	(Veblen 1982; Caccia et al. 2015), generating enormous loads of fuels that favour large fire	
54	events (Kitzberger 2013), and through more sophisticated (indirect) interactions (e.g.,	
55	Kitzberger et al. 2007).	
56	Among the most conspicuous short-term effects are the rodent outbreaks promoted by	
57	the enormous nutritional input of protein-rich bamboo seeds (Gallardo & Mercado 1999; Sage	
58	et al. 2007). These events, locally known as ratadas (Jaksic & Lima 2003), are of great public	
59	concern in southern Chile and Argentina (Appendix S1), mainly because some of the	
60	commonest rodent species in the outbreaks are the natural reservoirs of an Andes virus that	
61	causes hantavirus pulmonary syndrome in humans, an emerging infectious deadly disease.	
62	The temporal course of the ratadas is well known: an abrupt population build-up based on	
63	increased reproduction, followed by approximately half-year of rodent superabundance, and a	
64	breakdown phase due to food depletion, about one year after the bamboo blooming (González	
65	et al. 2000; Sage et al. 2007) (Appendix S2). The food depletion phase is usually	
66	accompanied by conspicuous rodent movements outside the forest areas (Jaksic & Lima	
67	2003). This way, ratadas differ greatly from the cyclic inter-annual or multiannual variations	
68	in rodent numbers due to population regulatory mechanisms typical of the local species (e.g.,	
69	Murúa & González 1986).	
70	In turn, cyclic prey outbreaks are substantial perturbations for consumers in a wide	
71	range of communities (Hanski et al. 2001; Korpimäki et al. 2004; Newton 2006; Yang et al.	
72	2008, Letnic <i>et al.</i> 2011). Despite an extensive accumulation of knowledge on predator-prey	Comment [L4]: R1
73	systems (South American communities included, as per Lima 2002; Meserve et al. 2003), the	
74	bottom-up consequences of bamboo masting at top predator levels remain unexplored, and	
75	only preliminary evidence is available: 1) a qualitative assessment of Barn owl (Tyto alba	

76	<i>tuidara</i> , <u>322-485 mm total length</u>) numerical increase paralleling a <i>C. culeou</i> -triggered ratada
77	in Argentina (Sage et al. 2007), and 2) a dietary shift of Rufous-legged owls (Strix rufipes,
78	<u>330-429 total length</u>) towards the most abundant rodent species during a <i>C. valdiviensis</i> – Comment [L6]: R2
79	triggered ratada in Chile (Figueroa et al. 2015: 241).
80	In recent years (2000 onwards), several ratadas were triggered by masting of C. culeou
81	(coligüe) on the eastern (Argentinean) slope of the Patagonian Andes; coligüe blooms every
82	ca. 60-75 yrs. in extended areas (Veblen 1982; Núñez et al. 2013). The preliminary
83	antecedent of Barn owl as -apparently- the only strigiform responding to one of these ratadas
84	in Lanín National Park (LNP, Sage et al. 2007) was intriguing, for these owls are not
85	abundant in the Austral temperate forests, as compared to the forest-dwelling Rufous-legged
86	owl, and the partially diurnal Austral pygmy-owl (Glaucidium nana, a forest facultative, 150-
87	220 total length), commonest Patagonian forest strigiforms (Trejo et al. 2006; Ibarra et al. Comment [L7]: R2
88	2014). But these species are cryptic in colouration and highly territorial, traits that may mask
89	their potential responses to ratadas unless specific survey methods (e.g., Trejo et al. 2011;
90	Ibarra et al. 2014) are used.
91	These antecedents stimulated us to investigate the bottom-up consequences of
92	bamboo-triggered ratadas on the assemblage of nocturnal raptors from the southern Andes,
93	with emphasis on Rufous-legged owls, the only endemic forest specialists (Trejo et al. 2006).
94	These owls have experienced range retraction and population decline due to habitat loss, and
95	are currently a conservation target in South American temperate forests. They are territorial
96	year round, and forage mostly on nocturnal small-mammals (Figueroa et al. 2015). Their
97	current status and life history profile, along with a paucity of antecedents on their ability to
98	respond to ratadas, turned Rufous-legged owls into interesting models to evaluate how a Comment [L8]: R1
99	highly-territorial predator may behave in front of response to unpredictable food
100	superabundance subsidising some owl territories, but not all (i.e., patchily distributed).

101

102 Events under scrutiny and hypotheses

103	In 2010, an extensive (>140.000 ha), spatially heterogeneous, blooming of C. culeou in south
104	Nahuel Huapi National Park (NHNP) created a natural experiment that allowed as to
105	undertake a direct assessment of numerical and behavioural responses of Rufous-legged owls
106	(and secondarily, other nocturnal raptors) to the rodent outbreaks. The patchiness of the
107	blooming (i.e., several ha in bloom, mixed with similar-sized non-flowered patches, Núñez et
108	al. 2013), and regional owl surveys conducted one year before (Trejo et al. 2011), permitted
109	us designing an experiment to compare owl responses at unsubsidised (no ratada) and
110	subsidised (ratada) forest sites, using our pre-blooming surveys as baseline reference for
111	contrasting owl numbers at different times after the initiation of the rodent outbreak.
112	In front of the upcoming 2011 ratada in NHNP, we hypothesised that Rufous-legged
113	owls (opportunistic resident consumers) would move from territories with no extra rodents to
114	nearby subsidised territories, gathering progressively as prey increased. Based on this
115	hypothesis, and on the temporal course of previous ratadas (Sage et al. 2007, Appendix S2),
116	some of our predictions for Rufous-legged owls were: (1) to detect moderate increases in their
117	numbers at subsidised patches during the autumn 2011, (2) along with decreases in their
118	numbers at unsubsidised sites, and (3) more individuals at subsidised patches during the
119	plague phase (late 2011), than at the population build-up phase (early 2011). Also based on
120	Sage et al. (2007), we expected increases in Barn owl numbers in subsidised sites, but specific
121	(scheduled) predictions were not risked due to the low abundance and uncertain status (i.e.,
122	degree of territorial residence) of Barn owls in South American temperate forests (see Table
123	14 in Figueroa et al. 2015:204).
124	Our structured research at NHNP was complemented with pertinent data from a

124 Our structured research at NHNP was complemented with pertinent data from a 125 second massive coligüe blooming/masting occurred in 2012, 100 km southwards, in Los 126

Austral Ecology

Comment [L10]: R1

127 numbers, were closely monitored by the national park staff, and semi-quantitative data on owl 128 numbers and behaviours were collected, which were granted to us. 129 130 **METHODS** 131 Study area 132 The study was conducted on the eastern slopes of the Patagonian Andes, in Argentina. The 133 NHNP, epicentre of our systematic owl surveys, extends about 700,000 ha (40°8'-41°35' S and 134 71°2-71°57' W); the LANP extends covers about 260,000 ha (42°33'-43°11' S and 71°34-135 72°10' W). 136 From west to east, north Patagonia includes the Andean cordillera (>2000 m elevation), the 137 lower foothills intersected by glacial lakes and valleys, and the Patagonian plains at ca. 700 138 masl. Because of the rain shadow effect of the Andes on the westerlies, mean annual 139 precipitation declines from ca. 3000 mm at the continental divide to less than 500 mm only 140 70-80 km to the east in the steppe. The strong west-to-east decline in precipitation is 141 paralleled by a vegetation gradient, with cool moist mountain forests composed by 142 Nothofagus spp. (and bamboo) at western sites, and the conifer Austrocedrus chilensis, with increasing aridity. The vegetation of both national parks is fairly similar, with evergreen 143 144 lowland coihue N. dombeyi, and deciduous alpine (on slopes over 900 masl) lenga N. pumilio, 145 dominating the forest landscape. Discrete stands of deciduous ñire (N. antarctica) are spread 146 through the landscape, and A. chilensis characterize the forest-steppe ecotone. 147 148 Forests surveyed and experiment rationale 149 The forests surveyed for owl activity in NHNP were tall (20-35 m high) stands of N. dombevi, 150 and low (5-20 m high) stands of N. antactica with continuous dense understories dominated

Alerces National Park (LANP, Argentina). The course of the bamboo cycle, as well as rodent

151	by C. culeou. Both forest types were identified as occupied habitat by Rufous-legged, Barn
152	and Austral pygmy-owls in our previous research (Trejo et al. 2011).
153	The NHNP blooming event covered almost 150,000 ha (Núñez et al. 2013), south and
154	west of Nahuel Huapi lake, affecting different forest communities. The area that underwent
155	blooming in 2010 overlapped with regional owl surveys that we had conducted the year
156	before; in 2009, Rufous-legged owls and other strigiforms were quantified in > 400 GPS-
157	georeferenced survey stations established every 1 km on existing roads, all-over north Andean
158	Patagonia (Trejo et al. 2011). About 180 of these stations were located in forest areas later
159	affected by the blooming (e.g., Pampa Linda valley, Circuito Chico scenery road).
160	The great spatial overlap between the 2010 blooming/masting event, and our 2009 owl
161	counts (hereafter, baseline surveys, BS09) allowed for pre- and post-masting (i.e., ratada)
162	comparisons of the owl assemblage and behaviours, by repeating the owl survey protocol at
163	different stages of the ratada evolution. For the purposes of this study, we set eight sampling
164	sites at the BS09-blooming overlap zone (Table 1, Appendix S3), where owl numbers and
165	behaviours were assessed twice on the course of 2011: in autumn (autumn surveys, AS11),
166	with moderate rodent increases, and in spring (spring surveys, SS11), at the peak of the rodent
167	outbreak.
168	Because the blooming was patchy (i.e., tenths to hundreds of ha in blooming mixed
169	with similarly large non-flowered patches, Núñez et al. 2013), first we assessed the condition
170	of potential survey sites within the BS09-blooming overlap zone. Taking advantage of the
171	conspicuousness of the bamboo dieback, during march 2011 (late summer) we checked the
172	condition of most 2009 owl survey stations located in south NHNP. These evaluations
173	allowed defining tracts of at least four adjacent survey stations that were homogeneous in
174	their treatment (i.e., masting or no masting), to be contrasted against nearby (2-5 km) survey
175	transects under the opposite treatment, while not differing in most other attributes, such as

176	forest type, bamboo cover (minimum threshold 60%, visual estimation), or altitude. We	
177	excluded areas where blooming patterns were not net at the stand level (i.e., only isolated	
178	thickets showing dieback, while others remained green).	
179	Along with the above considerations, we checked the results of the first (autumn 2011)	
180	rodent monitoring by public health institutions and by mammal specialists (see next section),	
181	before finally setting our sampling sites. The survey stations set this way totaled 48. These	
182	stations were grouped in eight survey transects (of at least four stations each), with four	
183	replicates for each treatment (ratada vs. no ratada) (Table 1, Appendix S3). These replicates	
184	were then used for comparisons of the owl numbers between ratada (2011) and baseline	
185	(2009) counts, and also between sites with and without ratada during 2011.	
186		
187	Rodent increments	
188	The ratadas here analysed (2011 in NHNP, and 2013 in LANP) were widespread (>100,000	
189	ha) and catastrophic, with invasion of the national parks' infrastructures and closure of	
190	recreational areas during months. Previous ratadas in these parks had taken place 60-70 yrs.	
191	before (1938-1939 in NHNP, and 1942 in LANP). Ratadas in south Argentina and Chile are	
192	characterized by invasion of human settlements by numerous rodents (Appendix S1). Because	
193	these outbreaks drastically increase the risk of emergence of the hantaviral disease for people	
194	living in or around the bamboo forest, sanitary authorities monitor the rodent populations	
195	during the outbreaks, in both countries. Besides, for their negative impacts on public health,	
196	tourism, and other important economic activities, these events are closely covered by the local	
197	media (Appendix S1).	
198	Due to sanitary risk, trapping of wild rodents in Andean Patagonia needs be conducted	
199	under specific equipment and safety techniques, by specialist (3rd. video, in Appendix S1).	

200 Hence, we used the results of systematic rodent monitorings conducted by sanitary agents and

201	mammal specialists in different masting areas of south NHNP, to refine our selection of the	
202	ratada and no-ratada sampling sites. Against normal rodent numbers (i.e., capture rates 5-	
203	20%) (Pearson 2002; Piudo et al. 2005; Sage et al. 2007), the capture rates obtained in 2011	
204	at any masting site monitored in NHNP were >50% (Sage 2011; Piudo et al. 2012). At an	
205	extreme, masting areas in LANP approached 100% capture rate (Piudo et al. 2014). Adding to	
206	the numbers provided by systematic trappings, 300-500 rodents were caught per night at the	
207	peak of rodent outbreaks in water ditches constructed in peridomestic settlements. In LANP,	Comment [L11]: R1
208	over 30,000 rodents were captured this way between April-November 2013 (Piudo et al.	
209	2014). Since these data are only available in Spanish, in institutional reports, the evolution of	
210	rodent populations at one of our sampling sites (Circuito Chico) was translated to English,	
211	and is shown as an example (Appendix S4).	
212	Direct evidence of the raises in rodent abundance during 2011 at out sampling sites in	Comment [L12]: R1
213	masting areas consisted of increased night and daytime rodent activity, and a growing number	
214	of dead mice on roads and trails. In our last surveys (late October), the rodents were so many,	
215	and so fearless, that we avoided leaving the main roads for the sanitary risk through bites or	
216	other direct contact with animals nervously moving among the vegetation, as described for	
217	ratadas elsewhere (Sage et al. 2007).	
218	In sum, masting areas of south NHNP (the epicentre of our systematic surveys)	
219	exhibited moderate increases in rodent populations during the first half of 2011; rodents	
220	reached plague numbers in the spring, and their populations crashed after a few weeks (Sage	
221	2011; Piudo et al. 2012), more or less following a classic ratada cycle (Sage et al. 2007).	
222	Instead, the ratada in LANP was much prolonged, with capture rates approaching 100% from	
223	March 2013 to February 2014 (Piudo et al. 2014).	
224		
225	Owl surveys	

226	Elicited responses are considered a good proxy for relative abundance in Strix owls. Further,	
227	from our baseline surveys (2009), we knew that few Rufous-legged owls would <u>not</u> be	
228	detected based solely on spontaneous calls (see conclusions by Trejo et al. 2011); on the	
229	contrary, when acoustic lure was used, these owls turned highly reactive, usually approaching	
230	the emission source while responding from nearby spots.	
231	The survey protocol is explained in great detail by Trejo et al. (2011): an acoustic lure	
232	(recordings of contact and territorial calls broadcast by using a car digital audio system) was	
233	used to attract Rufous-legged owls, always at night. We spent around 20 min at each survey	
234	station, with an initial 2 min silent period (scheduled for spontaneous calls recording), and	
235	three playback emissions. At each station, we recorded the exact number of individual owls in	
236	each species that were detected aurally and/or visually. In SS11, we had to add a "five or	- Comm think "a
237	more" category for owl counts, and adjustment that was improvised as owl numbers	either a time (or
238	overpassed our counting capacity beyond a handful of individuals of the same species.	
239	Although our protocol was designed to survey Rufous-legged owls, during the 2009	
240	surveys we also detected other owls that inhabit Andean Patagonia. Several Austral pygmy-	
241	owls, which are small-size spontaneous loud vocalizers (Jiménez & Jaksic 1989), were recorded	
242	aurally most of the times. Also Barn owls were recorded, either by their hissings or visually, as	
243	they are almost white (i.e. visually conspicuous). Based on these experiences, we were	
244	confident to detect individuals of these species in the 2011 surveys, wherever present with the	- Comm techniq
245	same potential bias than during our baseline surveys.	
246		
247	Owl pellets	
248	After finding several beheaded prey that were left unconsumed, wWe decided to collect and	

249 inspect owl pellets to look for potential relationships with such remains. We collected fresh

250 pellets (n=72) at our sampling sites (details in Table 1) early in the morning, to ensure

Comment [L13]: With regard to R1 comment ("I think "and" should be "an"): This is correct, meaning either aurally, visually, or both ways at the same time (or sequentially).

Comment [L14]: R2 (validity of the survey techniques as for non-Strix spp).

Comment [L15]: This was added after a commentary by R1.

251 nocturnal raptors had just produced them. Pellets were brought to the laboratory, and the 252 material was disassembled under light and magnifier for preliminary assessments of prey 253 remains. Our aim was to recognize main parts of skeletons that were present, so skulls were 254 not identified to species level. 255

256 Analytical procedures

257 We compared the relative abundance of each owl species between sites under different 258 treatments (unsubsidised vs. subsidised) across the three surveyed seasons: before (BS09) 259 and after (AS11, SS11) the masting event. We used generalised linear mixed effect models with a Poisson error structure (using the package 'Ime4' in the R statistical language, Bates et 260 261 al. 2008) to assess potential ratada effects on the relative abundance of owls and how these 262 effects might interact. Analyses were carried out separately for different owl species. The 263 ratada or no-ratada conditions constituted the states of the treatment. Owl abundance was used 264 as the dependent (outcome) variable in all models, with survey seasons and treatment being 265 incorporated as fixed factors, and survey sites as random effects, to control for potential bias 266 associated with each replicate. Because we included the same survey stations throughout the 267 years, the survey seasons (BS09, AS11, and SS11) were incorporated in the model as repeated 268 measurements. In all models, we assessed the interactions between combinations of treatment 269 and survey seasons. The interaction may arise because the response in owl abundance at 270 subsidised and unsubsidised patches depends on the ratada occurrence, but also on the time 271 after the initiation of the ratada. Then, we needed to assess how the specific interaction effect 272 conditions differ to one another, and thus we ran multiple comparisons for generalised linear 273 mixed effects models using the 'multcomp' package from R software.

Comment [L16]: R1

274	All subsets of models were compared and ranked according to the Akaike information	
275	criterion (Akaike 1973) corrected for small sample sizes (AICc) (Hurvich & Tsai 1989), and	
276	the model with the lowest AICc value was chosen.	
277		
278	RESULTS	
279	Forest owls	
280	As the rodent outbreak evolved, forest owls triplicated their numbers (all sampling sites	
281	combined). Analysed by stage (Fig. 1), forest owls in the sampled stations raised from 60 in	
282	BS09 (51 Rufous-legged, one Barn, and eight Austral pygmy owls), to 105 in AS11 (67	
283	Rufous-legged, 19 Barn, and 19 Austral pygmy), to >150 in SS11 (15 Rufous-legged, > 120	
284	Barn, and 18 Austral pygmy owls). These increments were mostly due to the late irruption of	
285	forest-facultative Barn owls; because exact counts of these owls were not feasible beyond five	
286	individuals (i.e., at the peak of the rodent outbreak), the threefold increase of total owl	
287	numbers is a minimum estimation.	
288	As derived from the best model (Appendix S5), Rufous-legged owls significantly	Comment [L17]: R 1 "informe on the model comparison"
289	increased in numbers at subsidised sites, and decreased at unsubsidised sites, early in the ratada	
290	cycle (AS11) (uns.AS11-sub.AS11-Z=-5.038, P<0.001; Fig. 1). These owls remained strictly	Comment [L18]: R1 "change format of the results"
291	nocturnal through the studied period, responding mostly (ca. 78% of all individuals) from just	
292	around the broadcast emission spot, and much rarely from the distance. On the contrary, these	
293	owls were hardly recorded at any survey station late in the ratada cycle (SS11), decreasing	
294	significantly (ubiquitously with respect to ratada distribution in the landscape) with respect to	
295	both their autumn (AS11; Z=-4.755, P<0.001) and baseline (BS09; Z=-3.608, P=0.003)	
296	numbers (sub.SS11 sub.AS11 Z= 4.755, P<0.001; sub.SS11 sub.BS09 Z= 3.608, P=0.003)	
297	(Fig. 1).	

298	During the rodent population build-up (AS11), Barn owl numbers increased only	
299	slightly (non-significantly with respect to baseline numbers) at both subsidised and	
300	unsubsidised sites (Z=-0.025, P=1.0 for the uns.BS09-sub.AS11 comparison). Barn owls	
301	increased exponentially during the rodent plague phase, appearing in supernumerary numbers in	
302	subsidised areas, as compared to their abundance in 2009 (Z=4.777; P<0.001; Fig. 1); their	
303	numbers were much higher at subsidized areas than at those with no rodent outbreak (Z=-6.037;	
304	<u>P<0.001; Fig. 1).</u> Several individuals (usually overpassing our counting capacity) were observed	Co
305	hunting together at the survey stations, flying and perching around, without noticeable mutual	
306	interference. Lots of these owls were also sighted within reach of the vehicle lights during our	
307	short trips between survey points. Supernumerary Barn owls were also recorded on route during	
308	the rodent irruptions in LANP, where over 120 individual owls were counted one night by park	
309	staff while driving ca. 30 km through continuous N. dombeyi forest. In both NHNP and LANP,	
310	the conspicuous increase of Barn owl numbers was followed by an also notable decline of	
311	sightings across the study areas, soon after the rodent population crash.	
312	Austral pygmy owls were recorded in small numbers, steadily through 2011, both	
313	during night surveys and daylight visits to our sampling sites. Responses to changes in rodent	
314	abundance by these small owls were similar than those of Rufous-legged owls (i.e.,	
315	apparently moving to subsidised sites, Fig. 1), but in non-significant magnitudes.	
316		
317	Open country owls	
318	Late in 2011 (SS11), we opportunistically recorded nine Short-eared owls (Asio flammeus	
319	suinda, 330-430 total length) in forests showing bamboo dieback around Bariloche, always	Co
320	during daylight hours; a few more of these owls were recorded by colleagues. Sightings of	
321	these open country owls also occurred at the peak of the ratada in LANP, with up to four	
322	individuals seen together at a forest spot exibiting ratada. Rarer still, ground nests of Short-	

Comment [L19]: R1 "...change format of these results..."

Comment [L20]: R2

323 eared owls were found within forest areas at both ratada episodes (at 41°2'40.36"S,

324 71°34'17.42"O in NHNP, and at 42°53'39.80"S, 71°36'42.40"O in LANP).

325

326 Behavioural observations

327 Aggressive interactions (including intensified callings, vocal duels, or other such territorial 328 vocalizations we usually record for the species involved), were never recorded during this 329 study, even at high owl densities. For Rufous-legged owls, unsolicited responses (i.e., 330 spontaneous calls during the first two minutes of the survey protocol) were almost absent 331 (with only one case), and only weak and short elicited responses were obtained during AS11, 332 when rarely the same bird vocalised more than once. With this, responses were notoriously 333 much less intense and persistent than we expected based on experience (BS09 own data, and 4.0 334 literature).

335

336 Carcasses and pellets

337 We found numerous dead rodents (ca. 0.30/m) on roads and trails in the ratada sampling sites 338 during SS11, of which about one quarter were headless. Rapid analyses of the carcasses in the 339 field revealed that dismemberment of the head had been apparently by tearing, not by cutting 340 (i.e., biting). Decapitated rodents also occurred in LANP during the weeks coinciding with the 341 rodent peak, being found on a regular basis across the ratada epicentre by the national park 342 staff and rural inhabitants. At both ratada events, most headless carcasses (>80%) belonged to 343 Oligorizomys longicaudatus, as recognised by its diagnostic long tail. 344 Laboratory analyses of the fresh pellets collected in proximity of the carcasses in

345 NHNP revealed that most (83%) contained only one, sometimes two, rodent heads, with no

346 other bones; accordingly, these pellets were rounded and small size, shorter than those usually

347	found for owls in these forests (Trejo & Ojeda 2004). Because of the rounded shape and small	
348	size of the pellets, the owl species that had produced them could not be identified.	Comment [L21]: Derived from comment by R1
349		
350	DISCUSSION	
351	This study provides a first quantitative assessment of the effects of bamboo episodic masting	
352	on top carnivores globally, and contributes novel data on the indirect effects of these events in	
353	forests of South America. The main short-term effects (although with potential multi-year	
354	consequences) on the strigiform assemblage were: (1) movements of the resident (territorial)	
355	Rufous-legged owl towards the pulsed resource, as derived from rapid (i.e., first autumn after	
356	the masting) rises in their numbers wherever rodents were increasing, and the opposite at	
357	nearby sites where rodents were not increasing, (2) Barn owls (facultative forest inhabitants)	
358	progressively dominating in numbers among the owl assemblage, (3) late influx of open	
359	country Short-eared owls into forest areas (with opportunistic forest breeding), (4) notable	
360	adaptations of owls 'foraging behaviour in front of food surplus (consuming prey heads only),	
361	and (5) weakened interference behaviour for all observed species, notably the resident, highly	
362	territorial, Rufous-legged owl.	
363	Both opportunistic resident and mobile specialist consumers represent two common	
364	strategies among animals that take profit of pulsed resources (e.g., Yang et al. 2008). Since	Comment [L22]: R1
365	the predator-prey system here analysed contains at least one of each, our results are discussed	
366	under the theory on how these two predator types respond to disproportionate spatio-temporal	
367	variations in resource availability, including the perception mechanisms likely involved.	
368		
369	Responses by forest owls	
370	While the three species that typically inhabit the bamboo-covered native forests of Patagonia,	
371	Rufous-legged, Barn and Austral pygmy owls (Trejo et al. 2006), contributed to the increase	

372	in total owl numbers, their response differed in magnitude and timing, according to their
373	distinctive life histories, especially their degree of forest attachment, territoriality, and
374	foraging behaviour (Figueroa et al. 2015).
375	As predicted by theory for opportunistic resident predators (Yang et al. 2008), Rufous-
376	legged owls soon perceived the rodent increases (or some proxy, like the bamboo dieback),
377	duplicating doubling their numbers at subsidised areas, while deserting sites not benefitted by
378	the rodent increments. Their response was rapid but not massive (i.e., low numbers clumped
379	at subsidised patches during the rodent population build-up), as compared to the invasion
380	numbers that were later observed for the less territorial, highly nomadic Barn owls.
381	Accounting for their moderate numerical response, most extra Rufous-legged owls that were
382	counted at the subsidised sites during AS11 seem to have travelled short-distances, possibly
383	from unsubsidised nearby forest areas (Appendix <u>\$5\$6</u>).
384	What was the triggering signal for the movements of these resident owls at the onset
385	of the ratadas here studied? Flexman & Lou (2009) named top predators that track the
386	gradient of the primary resource (from the prey's perspective) "resource trackers"; instead,
387	predators that track prey directly were named "prey trackers". For Rufous-legged (and
388	Austral pygmy) owls, the actual mechanism cannot be ascertained, for both the primary
389	resource (bamboo seeds, with dieback as a proxy), and increasing rodent prey, were at hand to
390	neighbouring resident owls. Whichever was the signal, their rapid response implies an ability
391	to relax interference competition while moving to subsidised sites already occupied by
392	congeners. In normal conditions (i.e., our baseline surveys), these owls would exhibit a
393	vigorous approach followed by persistent singing "against" playback emissions, and frequent
394	disputes between neighbouring pairs (Trejo et al. 2011). Instead, our broadcast emissions in
395	the present study produced only weak and short responses, and null aggressive interactions
396	were recorded during the surveys.

Comment [L23]: R1

397	Rufous-legged owls are highly attached to their home-range areas year-round, which
398	include valuable possessions such as roosting and nesting large cavities that may deserve
399	guarding (Beaudoin & Ojeda 2011). Hence, while flexible enough as to allow neighbours
400	coexistence, territorial behaviour in Rufous-legged owls may still limit their movements
401	towards locations with increasing prey, in both distance and duration (i.e., performed on a
402	daily basis), in virtue of the risks of unguarding territorial possessions in the mean time.
403	An almost absence of Rufous-legged owls at subsidised areas in the spring (at the peak
404	of the rodent outbreak) was unexpected, and may be explained by different, not mutually
405	exclusive factors. First, from previous work (Trejo et al. 2011; Beaudoin & Ojeda 2011), we
406	knew that pairs engaged in breeding were elusive and reacted weakly to playbacks of
407	conspecific calls, as compared to their own non-reproductive responses. Probably most Rufous-
408	legged owls in our study area were engaged in breeding activities in the spring of 2011, after the
409	bonanzas of the preceding autumn and winter, not reacting to our survey emissions. Second, the
410	irruption of similar-sized Barn owls in large numbers just before spring may have been
411	inhibitory for Rufous-legged owls. Although the co-occurrence interactions between these owls
412	have not been explored (less with supernumerary forest-facultative Barn owls), interspecific
413	interference among owls has been extensively documented (Mikkola 1983), specifically
414	between forest-specialist owls invaded by forest-facultative ones (Sovern et al. 2014). Either
415	concentration on reproduction with little vocal exposure, or avoiding encounters with invading
416	Barn owls, would suffice to explain the null response by the Rufous-legged owl.
417	Austral pygmy owls apparently behaved like Rufous-legged owls at the onset of the
418	rodent increases, but the lack of statistical significance of their numerical changes through
419	2011 limits discussion. It may, in deed, reflect a weaker response, for they are versatile owls,
420	showing much diurnal activity and large proportions of non-rodent food in their diet (Jiménez
421	& Jaksic 1989). Their actual response behaviours to ratadas should be tested in future ratada

422	events by means of specific survey methods (e.g., both diurnal and nocturnal surveys); dietary
423	shifts towards rodents, as well as increased nocturnal activity, are expectable predictions.
424	Also in line with theory (Yang et al. 2008), mobile specialist consumers in our system
425	(Barn owls) clumped in large numbers wherever rodents were plague (SS11). Barn owls are
426	cosmopolitan small-mammal predators with high versatility in habitat, movement, and
427	migratory behaviour (Newton 2006). In South America, although present in almost all habitats,
428	Barn owls have only been studied in open landscapes, mostly with regard to diet. There's
429	almost no information on their behaviour in the austral forests of America, where even their
430	degree of residence is uncertain (Figueroa et al. 2015); in fact, we are aware of only one
431	breeding record (unpublished data) pertaining to undisturbed forests of the southern Andes
432	(Appendix <u>8687</u>). Despite their unclear forest affininities in regular conditions (i.e., no ratada
433	interpulses), three different events (LNP, NHNP, and LANP) now confirm the irruptive nature
434	(sensu Newton 2006) of the southernmost Barn owl populations with regard to bamboo-
435	triggered rodent outbreaks. A Southern Hemisphere close relative, the Eastern Barn owl (T. a.
436	javanica), is also essentially irruptive in Australia, gathering where plagues of rodents occur,
437	breeding as long as conditions are good, and dispersing when the prey numbers collapse
438	(Pavey et al. 2008). In contrast, Northern Hemisphere Barn owls are much sedentary and
439	spatially less opportunistic; although not irruptive, some show nomadic wandering in certain
440	areas (Newton 2006).
441	As said, Barn owls are not normally abundant within the austral forests, and although
442	some pairs may be resident, their supernumerary numbers in the three events here analysed may
443	only be reached by the influx of individuals from distant places (i.e., ecotone or steppe owls

444 outside the masting area) (Appendix <u>\$5\$6</u>). How do long-distance mobile consumers become

445 aware of the rodent outbreaks within the forest? Since bamboo masting (the primary resource,

446 or its proxy, the dieback) occurs in discrete units within a finite area, not reaching distant

447	environments, owls at distant locations obviously require a prey (i.e., mobile organism)
448	gradient as a trigger for displacements. The rodent exodus characteristic of ratadas when
449	seeds are depleted (Gallardo & Mercado 1999; Sage et al. 2007) are likely the trigger for the
450	movements of distant prey-tracking consumers. Empirical data on such prey-gradients were
451	obtained in LANP: (1) a mouse marked in the ratada epicentre was recaptured 7 km east of
452	the sampling grid, in almost steppe habitat, and (2) unmarked O. longicaudatus were caught
453	12-16 km east of the species' border (the matorral-steppe edge) in regular (no ratada) periods.
454	The time needed for the rodents to outbreak and generate the prey-gradient would explain the
455	retarded (i.e., later stages of the outbreak) irruption of forest-facultative (and some open
456	country) owls at the ratada areas, in all three cases (NHNP, LNP and LANP).
457	

458 Open country visitors

459 Not only Short-eared owls came into the ratada epicentre in both NHNP and LANP events, 460 but some individuals took a chance to breed in association with southern beech forests, which 461 constitute a very unusual breeding habitat for this species. Short-eared owls are widely 462 distributed birds characteristic of treeless areas, where they are highly nomadic during food 463 searches and juvenile dispersal (Mikkola 2013). The subspecies here studied is recognised as spatially opportunistic, as birds from south-central Chile are nomadic and partially migratory 464 465 (Figueroa et al. 2015: 227), while the southernmost populations are fully migratory (e.g., 466 Jaramillo 2003). Besides, Housse (1945: 270) reported an irruption of these owls from 467 neighbouring areas in response to a ratada (triggering factor unknown) in the 1930'. Thus, 468 despite sightings of Short-eared owls in natural forests (and less, forest breeding) were 469 unprecedented, our records add to previous evidence on their ecological opportunism with 470 regard to food availability in the southern Andes.

471

472 Foraging in times of plenty

473	Although we didn't witness owls pulling rodents' heads apart, the presence of only heads in
474	much of the pellets analysed is a strong evidence of such behaviour among the local owls.
475	Most adult owls swallow small prey whole. In fact, pellets of Patagonian owls regularly
476	contain pieces of entire small-mammal skeletons (scapulas, etc.), along with skulls and jaw
477	bones (Trejo & Ojeda 2004). This way, the widespread consumption of only rodent heads
478	(discarding headless bodies) by local owls is a notable departure from their usual foraging
479	behaviour. Faced with prey superabundance, owls in NHNP and LANP were obviously only
480	interested in the brains, which concentrate protein and essential fats. Avoiding swallowing
481	whole prey also shortens the pellet formation time, which increases the prey consumption
482	rate.
483	On the other hand, prey were consumed according to their availability, as O.
484	longicaudatus was both the most abundant beheaded species, and the dominant rodent in the
485	systematic trappings at all surveyed sites (Sage 2011; Piudo et al. 2012; Piudo et al, 2014),
486	same as in previous bamboo-triggered ratadas (Gallardo & Mercado 1999; Sage et al. 2007). In
487	short, not only the best meals were consumed by the "beheaders", but these were ingested at
488	higher rates, with low costs (i.e., predators flooded with potential prey). This way, the head-
489	consuming behaviour here documented combines tactics of time minimisers and energy
490	maximisers (Schoener 1971).
491	Although we revealed an extraordinary adaptation of the predators' foraging
492	behaviour, future research is needed for a better understanding of this behaviour. For
493	example, is it widespread among the local raptors? As the dismemberments were not by
494	biting, mammalian carnivores are ruled out, but some diurnal raptors may have contributed to
495	produce such prey remnants, along with owls.

496

Comment [L24]: R1

497 *Conclusions and perspectives*

498	The negligible role of predation on in controlling outbreak rodent populations triggered by
499	bamboo masting is widely accepted, as confirmed by the typical rafts of dead mice in the
500	lakes and beaches during these ratadas (Pearson 2002). On the contrary, knowledge on the
501	bottom-up consequences of ratadas on mice predators is very poor, and there's still much to
502	learn. Because our surveys were limited to the first year after the bamboo masting, the
503	magnitude and temporal extent of the changes for nocturnal avian top predators cannot be
504	established beyond the immediate numerical and behavioural responses here described. But
505	further consequences can be expected, given a threefold increase in total owl numbers,
506	presumably followed by successful breeding of most predator species. More even so,
507	considering that ratada events usually occur sequentially over adjacent large geographic areas
508	(Veblen 1982).
509	For open country owls that regularly avoid forests, ratadas may allow increases in the
510	flow of individuals east and west of the Andes. This way, while the dense forests covering the
511	foothills of the southern Andes normally represent a barrier to the dispersion of open country
512	birds, the sporadic corridors created by the ratadas for rodent-tracking owls may play a role in
513	connecting disjunct populations. Consequences for forest owls are more difficult to project
514	beyond the studied period. The unpredictability of bamboo-triggered ratadas would not favour
515	the evolution of demographic adjustments on a cyclic basis, like those of raptors consuming
516	voles and lemmings in the Northern Hemisphere (e.g., Korpimäki et al. 2002), for example.
517	Never the less, the enhanced reproductive performance that may supervene bamboo-triggered
518	food surplus, may lead to demographic changes in the local populations that will, eventually,
519	impact the habitat quality through direct and indirect (via top-down) controls, for some years
520	after the ratadas. This way, although infrequent and unpredictable, bamboo-triggered ratadas

521	may likely cause minor demographic revolutions in the owl assemblage of the southern
522	Andes.
523	
524	
525	
526	REFERENCES
527	Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
528	Proceeding of the 2nd International Symposium on Information Theory (eds B.N. Petrov &
529	Csaki, F.). Budapest: Akademia Kiado, pp. 267–281.
530	Anderson, W. B., Wait, D. A. & Stapp, P. (2008) Resources from another place and time:
531	responses to pulses in a spatially subsidised system. Ecology 89, 660-70.
532	Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H. & Dai, B.
533	(2008) <i>lme4: Linear mixedeffects models using Eigen and S4. R package.</i> [online] Available at:
534	http://cran.r-project.org/web/packages/lme4/index.html [Accessed Dec. 2016].
535	Beaudoin, F. & Ojeda, V. (2011) Nesting of Rufous-legged owls in evergreen Nothofagus forests.
536	J. Raptor Res. 45, 272-274.
537	Caccia, F. D., Kitzberger, T. & Chaneton, E. J. (2015) Episodic bamboo die-off, neighbourhood
538	interactions, and tree seedling performance in a Patagonian mixed forest. J. Ecol. 103, 231-242.
539	Curran, M. & Leighton, M. (2000) Vertebrate responses to spatiotemporal variation in seed
540	production of mast-fruiting dipterocarpaceae. Ecol. Monog. 70, 101-128.
541	Figueroa, R., Alvarado, S., Corales, S., González-Acuña, D., Schlatter, R. & Martínez, D. (2015)
542	Los búhos de Chile. In: P. Enríquez-Rocha, ed., Los búhos neotropicales: diversidad y
543	conservación, 1st. ed. San Cristóbal de las Casas: Ecosur, pp. 173-273.
544	Flexman, S. & Lou, Y. (2009) Tracking prey or tracking the prey's resource? Mechanisms of
545	movement and optimal habitat selection by predators. J. Theoret. Biol. 256, 187-200.

- 546 Gallardo, M. & Mercado, C. (1999) Mast seeding of bamboo shrubs and mouse outbreaks in
- 547 southern Chile. *Mastozool. Neotrop.* **6**, 103-111.
- 548 González, L., Murúa, R. & Jofré, C. (2000) Habitat utilization of two muroid species in relation to
- 549 population outbreaks in southern temperate forest of Chile. *Rev. Chil. Hist. Nat.* **73**, 489-495.
- 550 Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. (2001) Small-rodent
- 551 dynamics and predation. *Ecology* **82**, 1505-1520.
- 552 Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. R., Hice, C.,
- 553 Jaksic, F., Kelt, D. A., Letnic, M., Lima, M., López, B. C., Meserve, P. L., Milstead, W. B.,
- 554 Polis, G. A., Previtali, M. A., Richter, M., Sabaté, S. & Squeo, F. A. (2006) Extreme climatic
- 555 events shape arid and semiarid ecosystems. *Frontiers in Ecol. and the Environ.* 4, 87–95.
- Holt, R. (2008) Theoretical perspectives on resource pulses. *Ecology* 89, 671-681.
- 557 Housse, R. (1945) *Las aves de Chile en su clasificación moderna*. Santiago de Chile: Ediciones de
- 558 la Universidad de Chile.
- 559 Hurvich, C. & Tsai, C. (1989) Regression and time series model selection in small samples.
- 560 Biometrika **76**, 297-307.
- 561 Ibarra T., Martin, K., Altamirano, T., Vargas, F. & Bonacic, C. (2014) Factors ssociated with the
- 562 detectability of owls in South American Temperate Forests: implications for nocturnal raptor
- 563 monitoring. J. Wildl. Manage. 78, 1078-1086.
- 564 Jaksic, F. & Lima, M. (2003) Myths and facts on ratadas: Bamboo blooms, rainfall peaks and
- rodent outbreaks in South America. *Austral Ecol.* **28**, 237-251.
- Janzen, D. (1974) Why bamboos wait so long to flower. Ann. Rev. Ecol. System. 7, 347-391.
- 567 Jaramillo, A. (2003) Birds of Chile. Prineton: Princeton University Press.
- 568 Jiménez, J. & Jaksic, F. (1989) Biology of the Austral Pygmy-Owl. Wilson Bull. 101, 377-389.

- 569 Kitzberger, T. (2013) Impact of Extreme and Infrequent Events on Terrestrial Ecosystems and
- 570 Biodiversity. In: S. Levin, ed., Encyclopedia of Biodiversity, Volume 4, 2nd ed. Waltham
- 571 (MA): Academic Press, pp. 209-223.
- 572 Kitzberger, T., Chaneton, E. & Caccia, F. (2007) Indirect effects of prey swamping: differential
- seed predation during a bamboo masting event. *Ecology* **88**, 2541-2554.
- 574 Korpimäki, E., Brown, P., Jacob, J. & Pech, R. (2004) The puzzles of population cycles and
- 575 outbreaks of small mammal solved? *BioSci.* 54,1071-1079.
- 576 Korpimäki, E., Norrdahl, K., Klemola, T., Pettersen, T. & Stenseth. C. (2002) Dynamic effects of
- 577 predators on cyclic voles: field experimentation and model extrapolation. *Proc. Royal Soc.*
- 578 London B 269, 991–997.
- 579 Letnic, M., Georgeanna Story, P., Field, J., Brown, O. & Dickman, C. (2011) Resource pulses,
 580 switching trophic control, and the dynamics of small mammal assemblages in arid Australia, *J.*581 *Mammalogy* 92, 1210–1222.
- 582 Lima, S. (2002) Putting predators back into behavioral predator–prey interactions. *Trends Ecol.*
- 583 Evol. 17, 70-75.
- 584 Meserve, P., Kelt, D., Milstead, W. & Gutiérrez, J. (2003) Thirteen Years of Shifting Top-Down
- and Bottom-Up Control. *BioSci.* **53**, 633-646.
- 586 Mikkola, H. (1983) Owls of Europe. Carlton (UK): TandAD. Poyser.
- 587 Mikkola, H. (2013) Owls of the world: a photographic guide. Buffalo (NY): Firefly Books.
- Murúa, R. & González, L. (1986) Regulation of numbers in two Neotropical rodent species in
 southern Chile. *Rev. Chil. Hist. Nat.* 59, 193-200.
- 590 Newton, I. (2006) Advances in the study of irruptive migration. Ardea 94, 433-460.
- 591 Núñez, C. I., Caracotche, S. & Pérez, A. (2013) Sucesos asociados a la floración de la caña
- 592 colihue 2010-2011. *Macroscopia* [online] **3**, 5-9. Available at:

593	https://www.nahuelhuapi.gov.ar/multimedios/macroscopia_03.pdf [Accessed 5 Oct.
594	2017].
595	Ojeda, V., Suarez, L. & Kitzberger, T. (2007) Crown dieback events as key processes creating
596	cavity habitat for Magellanic Woodpeckers. Austral Ecol. 32, 436-445.

- 597 Pavey, C, Gorman, J. & Heywood, M. (2008) Dietary overlap between the nocturnal letter-
- 598 winged kite *Elanus scriptus* and Barn owl *Tyto alba* during a rodent outbreak in arid Australia.
- 599 *J. Arid Environ.* **72**, 2282-2286.
- 600 Pearson, O. (2002) A Perplexing Outbreak of Mice in Patagonia, Argentina. *Stud. Neotrop. Fauna*
- 601 *Environ.* **37**, 187–200.
- 602 Piudo, L., Monteverde, M., Gonzalez Capria, S., Padula, P., et al. (2005) Distribution and
- abundance of sigmodontine rodents in relation to hantavirus in Neuquén, Argentina. J. Vector
- 604 *Ecol.* **30**,119–125
- 605 Piudo, L., Monteverde, M., Guichón, L. & Milesi, F. (2014) Monitoreo de roedores con relación a
- 606 la floración de la caña Colihue y la semillazón de Araucaria. Informe Final 2013-2014. [online]
- 607 Junín de los Andes: CEAN&APN-Neuquén-Argentina. Available at: http://www.cean.gob.ar/wp-
- 608 content/uploads/2016/09/Monitoreo-de-roedores-con-relaci%C3%B3n-a-la-floraci%C3%B3n-
- 609 <u>de-la-ca%C3%B1a-Colihue-y-la-semillaz%C3%B3n-de-Araucaria-2013-2014..pdf</u> [Accessed 5
- 610 Oct. 2017].
- 611 Piudo, L., Monteverde, M., Pailacura, O., et al. (2012) Monitoreo de roedores con relación a la
- 612 floración masiva de la caña colihue (Chusquea culeou) en la Pcia. de Río Negro. Informe Final.
- 613 [online] Junín de los Andes: CEAN-Ministerio de Salud (RN). Available at:
- 614 <u>http://www.cean.gob.ar/wp-content/uploads/2016/09/floracion-masiva-de-la-ca%C3%B1a-</u>
- 615 <u>colihue-y-dinamica-del-sistema-Roedor-hantavirus-en-Rio-negro.pdf</u> [Accessed 5 Oct. 2017]
- 616 Sage, R. (2011) *La ratada 2011*. [online] Floración caña colihue ratada. Available at:
- 617 <u>https://sites.google.com/site/floracioncania/ratada-2011</u> [Accessed 24 Sept. 2017].

- 618 Sage, R. D., Pearson, O. P., Sanguinetti, J. & Pearson, A. K. (2007) Ratada 2001: A Rodent
- 619 Outbreak Following the Flowering of Bamboo (*Chusquea culeou*) in Southwestern Argentina. In:
- 620 Kelt, D. A., Lessa, E. P., Salazar-Bravo, L. & Patton, J. L., eds., *The Quintessential Naturalist:*
- 621 Honoring the Life and Legacy of Oliver P. Pearson. Berkeley (CA): University of California, pp.
- 622 177-224.
- 623 Schoener, T. (1971) Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369-404.
- 624 Sovern, S., Forsman, E., Olson, G., Biswell, B., Taylor, M. & Anthony, R. (2014) Barred owls
- and landscape attributes influence territory occupancy of northern spotted owls. J. Wildl.
- 626 Manage. 78, 1436-1443.
- 627 Trejo, A., Beaudoin, F. & Ojeda, V. (2011) Response of Rufous-legged owls to broadcast of
- 628 conspecific calls in southern temperate forests of Argentina. J. Raptor Res. 45, 267-271.
- 629 Trejo, A., Figueroa, R. & Alvarado, S. (2006) Forest-specialist raptors of the temperate forests of
- 630 southern South America: a review. *Rev. Brasil. Ornitol.* 14, 317-330.
- 631 Trejo, A. & Ojeda, V. (2004) Diet of Barn Owls (*Tyto alba*) in forested habitats of northwestern
- 632 Argentine Patagonia. Ornitol. Neotrop. 15, 307-311.
- 633 Veblen, T. (1982) Growth patterns of Chusquea bamboos in the understory of Chilean
- *Nothofagus* forests and their influences in forest dynamics. *Bull. Torrey Botan. Club* 109, 474487.
- 636 Yang, L., Bastow, J, Spence, K. & Wright, A. (2008) What can we learn from resource pulses?
- 637 *Ecology* **89**, 621-634.

Table 1. Four replicates set for comparing owl numbers and behaviours between subsidised
 (outbreak rodents) and unsubsidised (no rodent outbreaks) forests in south Nahuel Huapi
 National Park, Argentine Patagonia. The number of survey stations within each replicate,
 their central coordinates (in WGS84 projection), and the dominant *Nothofagus* forest species
 (in parenthesis), are given. The number of pellets collected at the subsidised sites is also
 provided. These sites are geographically depicted in Appendix S3.

Replicate (site)	Circuito chico	Ruta 40 sur	Pampa Linda	Los Alerces		
Treatment						
	7	6	7	6	26	
Outbreak	41°03'34.96'' S	41°25'03.43" S	41°14'57.84" S	41°21'57.75" S		
rodents	71°33'56.29" W	71°29'35.22" W	71°44'9.24" W	71°44'1.34" W		
	(N. dombeyi)	(N. dombeyi)	(N. antarctica)	(N. dombeyi)		
Pellets collected	22	12	17	21		
	5	6	7	4	22	
No outbreaks	41°06'45.49'' S	41°28'45.67" S	41°18'12.96" S	41°20'59.45" S		
	71°28'24.53"W	71°28'14.13" W	71°35'30.12" W	71°40'2.32" W		
	(N. antactica)	(N. antarctica)	(N. dombeyi)	(N. antarctica)		
Totals	12	12	14	10	48	

7

8

2

1 FIGURE LEGENDS

2	
3	Fig. 1. Responses of Rufous-legged (S.r), Barn (T.a) and Austral pygmy (G.n) owls to
4	outbreaking rodents after a massive bamboo blooming in Argentine Patagonia. Mean
5	numbers of recorded owls at survey stations are shown for basal (pre-blooming)
6	surveys in 2009 (BS09), the rodent population build-up phase (autumn 2011, AS11),
7	and the peak of the prey outbreak (spring 2011, SS11). Descriptive statistics (SD), and
8	a measure of the precision of the sample mean (SE). are provided in the chart.
9	Subsidised (oubreaking rodents) and unsubsidised (normal rodents) sampling sites are
10	detailed in Table 1.
11	

- 1 ABBREVIATED HEADINGS OF SUPPORTING INFORMATION.
- 2 S1. Free online videos showing bamboo-triggered rodent outbreaks in southern Argentina and
- 3 Chile.
- S2. Chart explaining the temporal course of a typical bamboo-triggered rodent outbreak. 4
- S3. Map with the sample sites in forests of south Nahuel Huapi National Park (Argentina). 5
- 6 S4. Outbreak rodent populations at our Circuito Chico sampling site (translated from
- 7 Spanish).
- 8 S5. Subsets of models that were compared and ranked according to the Akaike information 9 criterion corrected for small sample sizes (AICc).
- 10 <u>S6.</u> Likely responses of south Andean strigiforms to bamboo-triggered rodent outbreaks.
- 11 <u>\$6\$7</u>. Barn owl (Tyto alba tuidara) breeding record in pristine old-growth forest of the
- 12 southern Andes.

Figure 1.

Owl									
species	Survey	Subsidized				Unsubsidized			
		Ν	Mean	SE	SD	Ν	Mean	SE	SD
	BS09	4.33	1.08	0.28	0.58	4.03	1.01	0.26	0.53
S. r	AS11	9.21	2.30	0.29	0.89	0.96	0.24	0.19	0.19
	SS11	0.29	0.07	0.15	0.08	2.29	0.57	0.14	0.22
	BS09	0.14	0.04	0.19	0.07	0.00	0.00	-	0.00
Т. а	AS11	1.81	0.45	0.17	0.23	1.54	0.39	0.36	0.44
	SS11	18.52	4.63	0.24	1.02	0.65	0.16	0.24	0.20
	BS09	0.14	0.04	0.19	0.07	1.32	0.33	0.34	0.39
G. n	AS11	2.86	0.71	0.18	0.30	0.00	0.00	-	0.00
	SS11	2.31	0.58	0.05	0.07	0.64	0.16	0.29	0.24

southern Andes. Austral Ecology XX, xxxx-xxxx.

Appendix S1

Videos showing the social, health, and economic impacts in rural settlements of recent (2011)

bamboo-triggered rodent outbreaks occurred in southern Chile and Argentina.

ARGENTINA

Nahuel Huapi National Park, El Manso

Valley (Río Negro Province)

Coordinates: 41°35'58.91"S, 71°43'39.01"O,

450 m.a.s.l.

VIDEO

1) https://www.youtube.com/watch?v=wKq0-

Is4NG4

El Turbio Valley (Chubut Province)

Coordinates: 42°15'8.39"S, 71°41'52.34"O, 246

m.a.s.l.

VIDEO 2) <u>https://www.youtube.com/watch?v=_YA89kOEg8c</u>

CHILE

Aysen Region (various sites) Central coordinates: 45°34'12.24"S, 72° 4'5.28"O, 280 m.a.s.l.

VIDEO 3) https://www.youtube.com/watch?v=ZHQ-9e4ILC4

VIDEO 4) https://www.youtube.com/watch?v=M1J17vrZVX8

VIDEO 5) <u>https://www.youtube.com/watch?v=PUnxPaCaolE</u>

VIDEO 6) <u>https://www.youtube.com/watch?v=0M_V-Airmpk</u>

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the

southern Andes. Austral Ecology XX, xxxx-xxxx.

Appendix S1

VIDEO 7) https://www.youtube.com/watch?v=eTl_xKPE0sI

to Reien ont

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S2

Temporal course of bamboo-triggered rodent outbreaks in forests of South America, based on Sage *et al.* (2001): "The chart shows major events in the phenology of the flowering bamboo and rodent populations with respect to the 5 collecting periods, the passage of the annual seasons, and the calendar dates. The graph of the intensity of reproduction in *Oligoryzomys longicaudatus* (the most abundant rodent species) shows the percentage of females that were reproductively active in a sampling period, with N indicating the number of animals autopsied".

Source: Sage, R. D., Pearson, O. P., Sanguinetti, J. & Pearson, A. K. (2007) Ratada 2001: A Rodent Outbreak Following the Flowering of Bamboo (*Chusquea culeou*) in Southwestern Argentina. In: Kelt, D. A., Lessa, E. P., Salazar-Bravo, L. & Patton, J. L., eds., *The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson.* Berkeley (CA): University of California, pp. 177-224.

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S3

Sample sites superimposed on a map showing the 2010-2011 blooming/masting of *Chusquea culeou* in forests of south Nahuel Huapi National Park (Argentina). Owl survey sites in subsidised (outbreak rodents) bamboo areas are indicated by black rectangles (red letters), and those in unsubsidised (normal rodents) bamboo areas are represented by white rectangles (black letters). Names of the sites are: Circuito Chico scenery road (CC), Pampa Linda valley (PL), Los Alerces waterfall access (LA), and Ruta 40 sur (R 40). The base map was obtained from Núñez *et al.*

(2013). Geographic references are in UTM (Universal Transverse Mercator) system.

Source: Núñez, C. I., Caracotche, S. & Pérez, A. (2013) Sucesos asociados a la floración de la caña colihue 2010-2011. *Macroscopia* [online] 3, 5-9. Available at: <u>https://www.nahuelhuapi.gov.ar/multimedios/macroscopia_03.pdf</u> [Accessed 5 Oct. 2017].

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S4

Rodent increases during 2011 at two natural forest sites west of Bariloche city (coinciding with our Circuito Chico –CC—sampling site), where systematic rodent trappings were conducted by Piudo *et al.* (2012). *Oligoryzomys longicaudatus* (OLY) is shown separately, as it was especially monitored for the prevalence of the Andes hantavirus antibody.

Source: Piudo, L., Monteverde, M., Pailacura, O., et al. (2012) Monitoreo de roedores con relación a la floración masiva de la caña colihue (Chusquea culeou) en la Pcia. de Río Negro. Informe Final. [online] Junín de los Andes: CEAN-Ministerio de Salud (RN). Available at: <u>http://www.cean.gob.ar/wp-content/uploads/2016/09/floracion-masiva-de-la-ca%C3%B1a-</u> colihue-y-dinamica-del-sistema-Roedor-hantavirus-en-Rio-negro.pdf [Accessed 5 Oct. 2017]

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S5

Generalized linear mixed-effects models (family: Poisson) used to examine effects of changes in rodent abundance caused by episodic bamboo mast seeding on owl numbers in *Nothofagus* forests of Argentine Patagonia. Best model (lowest AICc value) for each owl species is shown in bold. Asteriscs represent interaction between variables; in parenthesis, the variable "season" (BS09/AS11/SS11) was considered as repeated measurements, and the variable "site", as random effect, as detailed in the Methods section.

Species	Candidate Model	AICc					
	1. strix ~ effect + (season site)	360.00					
Starin mulin og	2. strix ~ effect + season + (season site)	353.51					
Strix rujipes	3. strix ~ effect * season + (season site)	315.87					
	4. strix ~ effect + season + site + (season site)						
	1. tyto ~ effect + season + site + (season site)	251.16					
Tuto allea	2. tyto ~ effect + season + (season site)	250.27					
1 yio aiba	3. tyto ~ effect * season + (season site)	235.41					
	4. tyto ~ effect + (season site)	263.72					
	1. glaucidium ~ effect + (season site)	212.95					
Glaucidium nana	2. glaucidium ~ effect + season + (season site)	214.11					
	3. glaucidium ~ effect * season + (season site)	161.39					
	4. glaucidium ~ effect + season + site + (season site)						

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S5

to Review Only

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S6

Schematic representation of the likely movements of four nocturnal raptors on the course of a typical bamboo-triggered rodent outbreak in the southern Andes, based on data from Nahuel Huapi National Park, and partially from Los Alerces and Lanín National Parks, in Argentina. The rectangle represents a portion of a hypothetical area affected by a spatially heterogeneous "ratada" (rodent outbreak) event, where some owl territories (the hexagons) are subsidised, while others are not. Subsidised areas consist of hundreds of ha where bamboos underwent blooming and masting, mixed with similarly large non-flowered (unsubsidised) patches. The owl species that shown each type of response are indicated in the legends below.

•Short-distance (daily?), rapid response of opportunistic resident (territorial) consumers (Rufous-legged owl, Austral pygmy owl).

•Long-distance, retarded response of mobile (nomadic) rodent specialists (Barn owl, Short-eared owl)

•Subsidised (outbreak rodents) forest areas

•Unsubsidised (normal rodents) areas

Ojeda, V. & Chazarreta, L. (2018) Effects of episodic bamboo mast seeding on top predators in the southern Andes. *Austral Ecology* **XX**, xxxx-xxxx.

Appendix S7

Barn owl (*Tyto alba tuidara*) nest located by one of the authors in continuous old-growth monospecific *Nothofagus pumilio* forest in Nahuel Huapi National Park, Argentina. A) A hollow stump containing a single nestling. B) A closer look of the middle-aged nestling. C) Nesting site; note the old-growth tree structure and very open understory.

