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(Argentina) under the influence of different anthropogenic activities:
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Abstract
Mercury (Hg) is a global pollutant that bioaccumulates and biomagnifies in food chains and is associated with adverse effects in
both humans and wildlife. We used feather samples from bird scavengers to evaluate Hg concentrations in two different areas of
Northern Patagonia. Hg concentrations were analyzed in feathers obtained from turkey vultures (Cathartes aura), Black Vultures
(Coragyps atratus), and southern crested caracaras (Caracara plancus) from the two areas of Northern Patagonia (Argentina):
Bariloche and El Valle. Hg was detected in all the samples analyzed, but the concentrations can be considered low for the three
species in both sampling areas. The mean concentration of Hg in Bariloche was 0.22 ± 0.16 mg/kg dry weight (d.w.) in black
vulture, 0.13 ± 0.06 mg/kg d.w. in turkey vulture, and 0.13 ± 0.09 mg/kg d.w. in southern crested caracara; in El Valle, the mean
concentration of Hgwas 1.02 ± 0.89mg/kg d.w. in black vulture, 0.53 ± 0.82mg/kg d.w. in turkey vulture, and 0.54 ± 0.74mg/kg
d.w. in southern crested caracara. Hg concentrations in feathers were explained by the sampling area but not by the species. The
concentrations of Hg contamination were comparable to those obtained in other studies of terrestrial raptors and aquatic
bioindicator raptors. The species of the present study occur throughout much of North and South America. Thus, they may be
appropriate bioindicators across the species’ range, which is particularly useful as a surrogate, especially in distribution areas
shared with endangered scavengers such as the California condor (Gymnopsys californianus) and the Andean Condor (Vultur
gryphus).
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Introduction

Mercury (Hg) is a persistent, toxic heavymetal, with a tendency
of bioaccumulation and biomagnification across food chains

(Eisler 1985). Primary sources of anthropogenic Hg emissions
include the combustion of fossil fuels, mining and reprocessing
of ores (gold, copper, lead, and zinc), iron, and steel, and ce-
ment production, operation of chlor-alkali plants, and waste
incineration and disposal (Pacyna et al. 2006; Driscoll et al.
2007). Hg poisoning can result in reproductive, neurological,
hematologic, and cellular disorders (Solonen and Lodenius
1984; Wolfe et al. 1998; Nichols et al. 1999; Espín et al.
2014a, b). Several studies indicate that Hg has immunotoxic
effects (dose-dependent stimulation/suppression of lymphocyte
response) (Ortega et al. 1997; Fallacara et al. 2011). Inorganic
Hg is biotransformed by methylation processes (biotic and abi-
otic) to organomercury (i.e., methylmercury), becoming more
toxic than inorganic Hg (Morel et al. 1998). Both paths have not
been fully investigated, but the existing evidence indicates that
the biotic pathway is the most common, as it is related to
sulfate-reducing bacteria present in aquatic environments,
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which are responsible for 95% of the biomethylation (Broo and
Odsjo 1981; Eisler 1985; Burger and Gochfeld 1997; PNUMA
2002; Rigét et al. 2007).

Birds have been widely used for assessing the levels of cer-
tain contaminants, especially metals (Furness and Greenwood
1993; García-Fernández et al. 2008; Lodenius and Solonen
2013; García-Fernández 2014). Due to their feeding habits,
waterbirds present higher Hg concentrations compared to other
birds as shown in many waterfowl contamination studies
(Cahill et al. 1998; Monteiro and Furness 2001; Champoux
et al. 2006; Sanpera et al. 2007; Rattner et al. 2008; Ribeiro
et al. 2009; Espín et al. 2012). Therefore, aquatic ecosystems
have been most frequently studied. However, there is evidence
that the methylation process applies to terrestrial ecosystems as
well, and some studies have found significant concentrations of
this metal in terrestrial birds of prey (Broo and Odsjo 1981;
Palma et al. 2005; Zolfaghari et al. 2007; Espín et al. 2014a,
b). In this sense, several authors have reported significantly
higher metal concentrations in birds inhabiting mining areas
than in those from unpolluted or reference sites (Henny et al.
1994; García-Fernández et al. 2005; Gómez-Ramírez et al.
2011). Besides the pollution frommining areas, one of the main
sources of anthropogenic Hg in the environment is chlor-alkali
plants, and the effects can be observed long after the plants have
ceased operation (Parks et al. 1984).

The analyses of Hg in feathers have been widely used,
demonstrating that they are very useful as a non-invasive
and non-lethal alternative to internal tissues (Martínez-López
et al. 2004, 2005; Garitano-Zavala et al. 2010; Espín et al.
2012, 2014a, 2014b). Their collection and storage are fast
and low-cost. In addition, Hg can also be analyzed in feathers
from museums, which may offer valuable information about
the temporal trends of contamination (Furness and
Greenwood 1993; Ansara-Ross et al. 2013; García-
Fernández et al. 2013). Hg is accumulated in the feathers
during their growth by binding to disulphide bonds (Leonzio
et al. 2009; Zolfaghari et al. 2009; García-Fernández et al.
2013), and Hg concentration in the feathers is correlated to
its concentration in the blood (Solonen and Lodenius 1990;
Monteiro and Furness 2001; Ansara-Ross et al. 2013;
Lodenius and Solonen 2013). Once the growth process is
completed and vascular connections that feed the feather at-
rophy, Hg concentrations do not vary significantly over time
(García-Fernández et al. 2013).

Between 2005 and 2010, global industrial use of Hg cell
chlorine has decreased by 30%. Although in Argentina, and
other South American countries, regulations on the use of
products, substances, and residues that contain Hg have been
established in order to protect health and biodiversity, there is
no regulation regarding the treatment of Hg waste (CRBAS
2012). Moreover, studies evaluating Hg in sediments and bi-
ota of the upper Negro River basin (Northern Patagonia,
Argentina; Arribére et al. 2003) showed the probable

influence of a chlor-alkali plant long after its closure in
1999. In this study, we use feather samples of scavenger birds
in two contrasting areas of Northern Patagonia—one with a
history of Hg contamination due to the presence of a chlor-
alkali plant and the other with no history of contamination. We
then compare our results with several other species of birds of
prey with different feeding habits (including scavengers,
hunters, and fishers) and discuss their implications for highly
threatened scavenger species, which share the same areas with
our focal species.

Materials and methods

Study area

The sampling was conducted during the austral spring of 2011
(October to December), as part of a preliminary study to de-
termine the distribution of nests and roosts of the three species
of this study in two previously not studied areas of Patagonia
(Argentina) (Fig. 1), carried out by an interdisciplinary team
formed by researchers from the University of Murcia (Spain)
and CONICET-Universidad Nacional del Comahue de
Bariloche (Argentina). The first study area (El Valle) includes
the Rio Negro Valley (Cipolletti and Allen cities) (Fig. 1), an
area of 100,000 ha (over 40,000 ha are used for agriculture)
(Pozo 2013; Romero Gámez 2013). The average elevation of
the area is 270 m above mean sea level (amsl); the climate is
dry and cold desert (climatic classification of Köppen), with
an average annual temperature of 14.5 °C and annual rainfall
of 186.9 mm (Bustos and Rocchi 2008). The ecotone repre-
sented is the steppe. As already mentioned above, there was a
chlor-alkali plant, active from 1950 to 1995 (Arribére et al.
2003) in the city of Neuquén (Fig. 1), and contamination by
Hg in rivers has been detected more than 100 km downstream
from the point of emission (Jackson et al. 2011). Thus, the
presence of a gold and silver mining area of Andacollo in
the area of Huaracu stream, Neuquén River tributary, between
the towns of Andacollo and Huinganco should be taken into
account. This area has a long mining tradition, which has been
used by the Chilean-Canadian mining company BAndacollo
Gold^ since 2001. This company has received complaints
from the inhabitants of Andacollo who accuse it of polluting
the Huaraco stream (Ortiz 2008; Bellotti 2011). The second
study area (Bariloche) was nearby San Carlos de Bariloche
city, between the provinces of Neuquén and Rio Negro
(Fig. 1), a rural area with low human population density
(Rizzo et al. 2011). The average elevation of the area is
893 amsl; the climate is humid continental (climatic classifi-
cation of Köppen), with an average annual temperature of
8.1 °C and total rainfall of 782.6 mm. The ecotone represented
is the subantarctic forest (Bustos and Rocchi 2008). The area
includes the Nahuel Huapi National Park with its main lake
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Nahuel Huapi and several other lakes. The main economic
activity of the area is represented by nature tourism.

Species

The species studied were the turkey vulture (Cathartes
aura) and black vulture (Coragys atratus), both species
belonging to the family Cathartidae, plus another species
of facultative scavenger bird of the American continent,
the southern crested varacara (Caracara plancus). This
species, unlike the previous two, belongs to the family
Falconidae (Ferguson-Lees and Christie 2001). Turkey
vulture is the most widely distributed New World vulture
species. Its distribution area ranges from South Canada to
Tierra del Fuego (Argentina/Chile) (Ferguson-Lees and
Christie 2001). The distribution area of black vulture
covers the majority of Central and South America, includ-
ing the Atlantic states of USA (Ferguson-Lees and Christie
2001). The distribution of this species has been expanding,
following the expansion of human settlements (Evans
2013, Novaes and Cintra 2013; Barbar et al. 2015;
Ballejo et al. 2017). The distribution area of southern crest-
ed caracara includes South America (except Amazonia,
Colombia, Peru, and high Andes), several Caribbean
islands, Mexico, and is rarely encountered in the southern
USA. (Ferguson-Lees and Christie 2001).

Black vulture and turkey vulture are scavenger birds, while
southern crested caracara is an opportunistic scavenger
(Ferguson-Lees and Christie 2001). The diet of black vulture
and turkey vulture consists of carcasses of mammals, dead or
stranded fish, insects, scraps from waste dumps and seabird
colonies, occasionally reptiles, and eggs, and nestlings of
herons (Ardeidae) and seabirds (Ferguson-Lees and Christie
2001; Haskins et al. 2013). A recent study conducted in
Mexico shows the reliance of turkey vulture on the remains
of fish (Blázquez et al. 2016). The diet of southern crested
caracara is primarily carcasses, juveniles, injured, slow-
moving birds, little rodents, reptiles, amphibians, fish, and
arthropods (Ferguson-Lees and Christie 2001). Although we
have no complete information on the feeding patterns of the
three species in our study area, it has been found that the main
food source of black vultures in BBariloche^ are the remains
of slaughterhouse and exotic wildlife hunting, followed by
arthropods (Ballejo and De Santis 2013). Both species of vul-
tures are scavengers, but while black vultures mainly feed on
remains of domestic animals, the diet of turkey vulture in-
cludes reptiles, fishes, and small rodents (Ballejo et al.
2017). As the three species also consume aquatic animals,
they can be exposed to Hg from the aquatic environment in
addition to Hg from terrestrial ecosystems. Another possible
way to accumulate Hg from the aquatic environment can be
the consumption of arthropods (Cristol et al. 2008). In this part

Fig. 1 Geographical
representation of the study area. a
Sampling areas (* represent the
location of Andacollo mining
ares, Huarachu stream, and
Andacollo village). b Sampling
area BEl Valle.^ c Sampling area
BBariloche^
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of Patagonia, the black vulture is the most abundant species in
urbanized areas, feeding from landfills and fishing areas
(Bellati 2000; Ferguson-Lees and Christie 2001; Ballejo and
De Santis 2013), while the southern crested caracara and es-
pecially the turkey vulture are species that prefer countryside
(Bellati 2000; Ferguson-Lees and Christie 2001).

The black vulture and the southern crested caracara are
resident birds, while the turkey vulture is migratory
(Bildstein 2004). The northwestern Patagonian population of
turkey vulture migrates to northern South America in winter
(Graña Grilli et al. 2017). Black vulture can be considered site
faithful. Several studies show that the home range of this spe-
cies is approximately 30–40 km. In the case of turkey vulture,
this range can reach 60–70 km (Coleman and Fraser 1989; De
Vault et al. 2004; Holland et al. 2017). Site faithfulness can
also be justified by the strong social bond and the aggressive-
ness of black vulture community that reduce the number of
non-local vultures in the communal roosts (Buckley 1999).

There is scarce information on the molting patterns of the
species under study. Southern crested caracara, as other
medium-small-sized Falconidae, undergoes a complete molt
each year (Ferguson-Lees and Christie 2001). As phylogenet-
ic relationships of Cathartidae to other avian groups remain
unresolved, it is difficult to compare with other species, and
direct studies are insufficient (Chandler et al. 2010). Thus, the
interpretation of molt patterns of Cathartidae is more complex.
It is known that the molt of turkey vulture is serial. It starts by
molting of the primary feathers (P1–P10). The molt of P1–P4
is completed before the reproductive period, followed by a
suspension during the reproductive period, a resumption be-
fore the winter migration and suspended again during winter
(Chandler et al. 2010). This strategy is similar to the California
condor (Gymnopsys californianus), which lasts 2 years
(Snyder et al. 1987).

Due to the limited number of Hg studies in scavenger birds,
a bibliographic search including other birds of prey was done.
Thus, both aquatic- and terrestrial-based raptor species were
chosen, in order to compare Hg concentrations in birds living
in the same area, but foraging in different ecosystems. To
check whether our Hg contamination results from both sam-
pling areas could be considered contaminated, they were com-
pared with other studies in the same species from other areas
(Fig. 2).

Sample collection

Only fresh-molted primary flight feathers (P1–P10) of adult
individuals collected from the roosting areas were used in this
study. The sampling was conducted during the austral spring
of 2011 (October to December); this time of year covers the
courtship, mating, and breeding periods of the species studied
in the sampling region. Due to the type of sample and the
sampling methodology, age or sex of the individuals is

unknown. To reduce the possibility of pseudoreplication, only
one feather per sampling point (or more than one if it was the
same primary feather from the same wing) was collected.
Each sample was kept in an individual plastic bag, labeled
(study area, day, and species), and stored at room temperature
in a dry place until analysis. A total of 90 primary feathers
were collected: 44 in BBariloche^ from black vultures (n =
20), turkey vultures (n = 14), and southern crested caracaras
(n = 10) and 46 in BEl Valle^ from black vultures (n = 5),
turkey vultures (n = 30), and southern crested caracaras (n =
11) (see more details in Martínez-López et al. 2015).

Hg analysis

In order to remove external contamination from the surface of
the feathers, a washing process was performed prior to analyt-
ical determination sequentially using tap water, distilled water,
and Milli-Q® water (ISO 3696). The feathers were subse-
quently dried at room temperature overnight (Espín et al.
2012). Total Hg was analyzed in a Milestone DMA-8 Direct
Hg Analyzer by atomic absorption spectrophotometry, with a
detection limit of 0.005 ng. The whole feathers were individ-
ually cut, mixed shaft and vane, and stored in sterile bottles.
Then the subsamples (0.5 g dry weight for vane and shaft)
were loaded in nickel boats and analyzed, following USEPA
Method 7473 (sediments, soils, and sludges). The applicabil-
ity of this method to the analysis of biotic samples has been
previously demonstrated (Haynes et al. 2006). The calibration
curve was calculated with 11 points (in duplicate) from 0 to
1004 ng of Hg. The precision and accuracy of the method
were tested using certified reference material (CRM) (n = 11;
Hg standard for AAS, Fluka, 1000 mg/L Hg in 12% nitric
acid). Recovery of total Hg from seven replicates of CRM
diluted to 1 ppm was 98.14 ± 3.52% (mean ± standard devia-
tion). The coefficient of variation for repeatability was 3.58%.

Statistical analysis

All analyses were carried out using the SPSS v.15.0 statistical
package. Reported Hg concentrations represent median,
mean ± standard deviation, and range. We used the Mann-
Whitney test for the comparison between species. We used
generalized linear models (GLM, normal distribution) to ana-
lyze the concentrations of Hg in each sample, using Hg con-
centration in each sample as the response variable. The ex-
planatory variables considered were the study area and spe-
cies. Four models were compared: (a) the null model, (b) the
model with the variable Bstudy area,^ (c) the model with the
variable Bspecies,^ (d) the model with two variables (study
area + species), and finally, (e) the model with the interaction
of both variables (study area × species). The level of signifi-
cance for these tests was set at α = 0.05. Furthermore, the
quality of each model relative to each of the other models
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was estimated by applying the Akaike information criterion
(AIC) on the collection of model data (Burnham and
Anderson 2002).

Results and discussion

Hg concentrations in feathers

Hg concentrations were detected in all feather samples. In
BBariloche^ area, Hg concentrations were similar between
species; but in BEl Valle^, the highest mean and median con-
centrations (1.02 mg/kg and 0.86 mg/kg, respectively) were
found in the black vulture. The two highest concentrations of
Hg feather concentrations were found in a turkey vulture
(4.20 mg/kg) and in a southern crested caracara (2.61 mg/
kg) (Table 1). However, no significant differences among spe-
cies were found. In fact, the application of GLM to study the
effect of the sampling area and species on concentrations of
Hg in feathers shows that the model including only the vari-
able Bstudy area^ was significant (D2 = 72.89, p = 0.005) and
with the best Akaike index (AIC = 1225.12). The value was
significantly higher in BEl Valle^ than BBariloche^ for the
three species (Table 1). As mentioned above, BEl Valle^ is
considered contaminated by Hg as a result of the activity of
a chlor-alkali plant (Arribére et al. 2003). These results are
consistent with the data from several Hg and heavy metal
contamination studies, carried out using samples of sludge
and biota from rivers and lakes from the same area (Guevara
et al. 2002; Arribére et al. 2003; Rizzo et al. 2011).

We compared our results with other studies in feathers of
different bird species, including scavengers, from different
areas around the world (Fig. 2). The study of black vulture
and southern crested caracara (Hylander et al. 1994) in Alto
Pantanal (Brazil) was used to represent a contaminated area.
Alto Pantanal has a large history of Hg pollution due to the
gold mining activities (Alho et al. 1988). There seem to be
certain parallels between the environmental history of Alto
Pantanal and BEl Valle,^ as reflected in Hg concentrations
detected in fish tissues (mean 0.2 mg/kg wet weight BEl
Valle^; 0.29 mg/kg wet weight BAlto Pantanal^; Hylander
et al. 1994; Arribére et al. 2003). The mean concentration of
Hg in feathers of black vulture and southern crested caracara
from Alto Pantanal was 0.62 mg/kg and 0.67 mg/kg, respec-
tively (Hylander et al. 1994). Those concentrations are similar
to the mean concentrations of turkey vulture (0.53 mg/kg; n =
30) and southern crested caracara (0.54 mg/kg; n = 11) detect-
ed in BEl Valle.^ The distance between both areas is more than
3000 km, and they represent two different ecoregions
(Patagonian steppe vs. Tropical wetland) (Olson et al. 2001).
However, the similarities between the results obtained in the
analysis of Hg in feathers show that these results may reflect
the level of contamination of the area.

Some considerations need to be made regarding the inter-
pretation of the black vulture results. Due to the lack of pre-
vious information regarding the area and species, only five
samples of black vulture feathers were obtained for our study.
In addition, one of these five samples showed a high Hg con-
centration (2.44 mg/kg). If this outlier was not considered, the
mean Hg concentration of this species (0.66 mg/kg of Hg)

Fig. 2 Summary of Hg studies in feathers from different species, including scavengers around the world
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remained similar to the values of turkey vultures and southern
crested caracaras from BEl Valle^ and black vultures from
Alto Pantanal. Nevertheless, due to a scarce number of sam-
ples of black vulture in BEl Valle,^ these data must be consid-
ered relative.

Our results could not be compared with those found by
Haskins et al. (2013), as primary and secondary flight, and
tail feathers from a single specimen of turkey vulture were
analyzed, with the aim to determine the element composition
of vane and rachis structures. On the other hand, Cahill et al.
(1998) found an average of 1.26 mg/kg Hg (n = 36) in turkey
vulture feathers, higher than in the same species from BEl
Valle^ (0.53 mg/kg Hg, n = 30), found in our study. In this
case, the difference could be due to the different degree of
contamination of the two areas. Clear Lake (California) has
a history of contamination due to the activities of now aban-
doned Sulphur Bank HgMine that poured 100 tons of Hg into
the lake between 1872 and 1957 (Suchanek et al. 1993, 1998).
The contamination of BEl Valle^ is mainly due to the activity
of an alkali chlorine plant. The plant, built on an island within
the Neuquén River, poured its wastewaters into a series of
drainage pools from 1951 to 1979 (Arribére et al. 2003).
After 1979, until its closure in 1995, water was stored in set-
tling and drying pools (Arribére et al. 2003). The estimated
annual discharge value of the plant is approximately 500 kg/
Hg/year (CRBAS 2012). This difference is reflected by the Hg
concentrations detected in the sediment samples (18.3 mg/kg
in Clear Lake; 1.3 mg/kg in the nearest sampling point to the
area of higher contamination BEl Valle^) (Suchanek et al.
1998; Arribére et al. 2003).

In the case of BBariloche,^ we can assume that this is a less
polluted area than BEl Valle,^ with mean concentrations and

range of Hg lower than those detected in BEl Valle^ (mean Hg
concentration BBariloche^ 0.6 mg/kg, range 0.49–0.6 mg/kg;
mean Hg concentration BEl Valle^ 1.2 mg/kg, range 0.75–
5.1 mg/kg) (Arriberé et al. 2003; Guevara et al. 2002). The
levels found in BBariloche^ are similar to those found in areas
considered to have received low levels of pollution and are
similar to the study of turkey vulture in California, USA, by
Wiemeyer et al. (1986), with mean concentrations of 0.11 mg/
kg (n = 5, female breeding), 0.12 mg/kg (n = 5, male non-
breeding), and 0.098 mg/kg (n = 5, female non-breeding).
Due to the scarcity of research on these species, no further
studies have been found to contrast our results in an area of
low contamination.

Risk assessment

The scarce number of studies relating Hg concentrations in
feathers and their corresponding effects (e.g., toxic effects
levels) makes further interpretation difficult. According to a
study on black-headed gull chicks (Chroicocephalus
ridibundus), concentrations of Hg from 5 to 40 mg/kg in
feathers were associated with reproductive disorders (Lewis
and Furness 1991). Studies with several bird species indicate
that 40 mg/kg of Hg in feathers is associated with fertility
problems, reproductive disorders, low hatching rate, and sur-
vival of chicks (Finley and Stendell 1978; Solonen and
Lodenius 1984; Eisler 1985). Eisler (1985) indicates that Hg
concentrations of 9–11 mg/kg in feathers cause reproductive
and behavioral deficits in domestic mallards (Anas
platyrhynchos). However, Bowerman et al. (1994) detected
Hg concentration between 13 and 20 mg/kg in bald eagles
(Haliaeetus leucocephalus) without associated signs of

Table 1 Concentrations of
mercury for the three species of
the study in the two sampling
areas (median (in bold), mean ±
standard deviation (SD), between
parenthesis range (minimum/
maximum) (n = number of
samples)

Hg (mg/kg) Bariloche El Valle All areas

Black vulture
(Coragyps atratus)

0.17 0.86 0.18

0.22 ± 0.16 (SD) 1.02 ± 0.89 (SD) 0.38 ± 0.51 (SD)

(R 0.09–0.65) (R 0.23–2.44) (R 0.09–2.44)

(n = 20) (n = 5) (n = 25)

Turkey vulture
(Cathartes aura)

0.13 0.29 0.17

0.13 ± 0.06 (SD) 0.53 ± 0.82 (SD) 0.4 ± 0.7 (SD)

(R 0.06–0.25) (R 0.04–4.2) (R 0.04–4.2)

(n = 14) (n = 30) (n = 44)

Southern crested caracara
(Caracara plancus)

0.12 0.34 0.15

0.13 ± 0.09 (SD) 0.54 ± 0.74 (SD) 0.35 ± 0.56 (SD)

(R 0.03–0.36) (R 0.09–2.61) (R 0.03–2.61)

(n = 10) (n = 11) (n = 21)

All species 0.14 0.33 0.17

0.17 ± 0.12 (SD) 0.59 ± 0.81 (SD) 0.39 ± 0.62 (SD)

(R 0.03–0.65) (R 0.04–4.2) (R 0.03–4.2)

(n = 44) (n = 46) (n = 90)
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reproductive problems or decreasing population size.
Scheuhammer (1991) hypothesizes that Hg concentrations
above 20 mg/kg (dry weight) in feathers of growing piscivo-
rous birds can result from diets containing Hg concentrations
greater than 1 mg/kg (dry weight) and that these concentra-
tions should be considered as indicative of a wetland habitat
that may pose a significant threat to the reproductive success
of piscivorous wildlife breeding there. In any case,
Scheuhammer (1991) considered Hg concentrations of 1–
5 mg/kg (dry weight) in feathers of raptor birds as Bnormal.^
Other authors consider Hg concentrations greater than 5 mg/
kg in feathers as Bdangerous to birds^ (Burger and Gochfeld
1997; Palma et al. 2005; Eisler 2006; Albuja et al. 2012). No
concentrations higher than 5 mg/kg were detected in this
study. If we take the concentration of 5 mg/kg in this study
as a reference, only one sample of turkey vulture from the El
Valle area is close to this concentration (4.2 mg/kg).

On the other hand, it should be pointed out that any of these
studies quantify the possible sub-lethal effects at these con-
centrations, which might be relevant for long-living species,
such as the scavenger birds in our study. In addition, as men-
tioned above, feathers trap Hg during their growth phase and
are molted every year. Therefore, the results obtained from the
analysis of the feathers must take this aspect into account.

Conclusions

This study brings together the concentrations of Hg in feathers
of 69 samples of family Cathartidae and 21Caracara plancus,
and this is the first study of this magnitude of birds from
Patagonia. The results of this study regarding the contamina-
tion of Hg coincide with the results of different studies in the
same areas, suggesting higher concentrations of Hg contami-
nation in BEl Valle^ than in BBariloche.^ The three species are
common throughout the American continent (North, Central,
and South), have a high position in the trophic chain and the
few studies where they have been used to determine Hg con-
tamination in different environments of the American conti-
nent have some consistency of results. Therefore, we can con-
sider valid the hypothesis that black vulture, turkey vulture,
and southern crested caracara are good candidates for future
biomonitoring studies. However, more studies are needed to
assess more relationships between the values obtained.
Another relevant aspect is that the three species share habitats
with two endangered scavenger birds, the Californian condor
and the Andean condor. Therefore, the results obtained with
the species of this study might be relevant to evaluate risk to
these endangered condors. This study is an important step in
the collection of data on North Patagonia, the phenomena of
Hg contamination in terrestrial ecosystems and the New
World scavenger species, all of which have been little studied.
Our results can be used as a comparison with future studies

and geographic areas. This and other research on ethology and
phenology, developed from the joint sampling of 2011, have
provided us with new information, which has been used for
new sampling that will try to shed light on some of the ques-
tions arisen from this preliminary study.
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