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particularly those concerning the choice of an energy value acting as a boundary between free and bound electron
states are discussed. As a test case, the ionization degree, electron density, and contributions to the potential V (r)
are computed for Ar at temperatures ranging from a few eV to some keV, and ionic densities between 1×1019 cm−3
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and by other analytical approaches.
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1. Introduction

The interest in the study of warm and dense mat-
ter (WDM) properties is related to advanced energy
technologies, the study of astrophysical objects, laser-
produced plasma in inertial confinement fusion and X-
ray lasers [1, 2]. For the study of WDM, the distribution
of ionic species and excited state populations need to be
calculated. In cases where the number of configurations
to be considered is large (for instance, for high Z plas-
mas), it turns difficult to accurately solve the relevant
equations [3, 4]. In these cases, an alternative approach
is the average atom model (AAM). Instead of dealing
with multiple different configurations, the AAM treats a
single, average ion, with non integer populations, given
by the Fermi–Dirac statistics. The AAM is widely em-
ployed for the calculation, for instance, of equations-of-
state (EOS) and opacity properties [5].

Different variants of the AAM exist, and most of them
are based on the ion-sphere (IS) model [6]. In this ap-
proach, the space occupied by a plasma with ionic den-
sity ni is subdivided into spherical cells (also called the
Wigner–Seitz cells) of radius R0 = (3/4πni)

1/3. Within
the sphere there is a nucleus of charge Z together with
Z surrounding electrons, in such a way that the ion cell
as a whole is neutral. The nucleus is supposed to be
fixed at the center of the ion-sphere, and the electrons
are distributed according to an electron density ρ(r).
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Since ρ(r) determine the potential V (r) in which the
electrons move, the problem is self-consistent. Different
approaches to the AAM differ, among other details, in
the way in which they obtain the electron density. For
instance, the generalization of the Thomas–Fermi (TF)
model [7, 8] to non-zero temperatures [9] is a particular
case of IS-AAM in which no distinction is made between
bound and free electrons, giving to all of them a semi-
classical treatment [10]. Refinements of this model can
be obtained by treating separately bound and free elec-
trons, including exchange terms in the potential, etc.

In this work, we present an implementation of the
AAM based on the relativistic Hartree–Fock–Slater
(RHFS) model as described by Nikiforov and coworkers
in [11, 12]. In this implementation, the bound electrons
are treated quantum mechanically, and the free electrons
in a semiclassical way. The value of the energy ε0 sep-
arating the bound and the free electrons (the effective
boundary of the continuum) is determined by the ther-
modynamic consistency condition proposed in [11]. The
effect of the choice of ε0 on the obtained degree of ion-
ization is analyzed.

The rest of the paper is organized as follows. In Sect. 2
we briefly present the theoretical background; since the
simple TF model is used throughout the paper for com-
parison with our AAM, this is introduced first (Sect. 2.1),
whereas details of the RHFS implementation are pre-
sented in Sect. 2.2. Section 2.3 is devoted to discussion
of the thermodynamic consistency condition. In Sect. 3
we present results of the model for Ar in a wide range
of temperatures and densities. Conclusions are outlined
in Sect. 4.
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2. Theory

2.1. The generalized Thomas–Fermi model

The generalized Thomas-Fermi (TF) model [9, 11]
treats the problem of a nucleus of charge Z positioned at
r = 0, and Z electrons confined to the ion sphere, which
results electrically neutral. The total nuclear+electronic
potential is zero on and beyond the boundaries of the ion
sphere. The model has, basically, two ingredients. The
potential V (r) due to the nucleus and the electrons is
assumed spherically symmetric, and satisfies the Poisson
equation [10]:
∇2V (r) = −4π

(
Zδ(r)− ρ(r)

)
, (1)

where δ(r) is the Dirac delta function, and ρ(r) is the
electron density †.

The second ingredient is that the number of electrons
occupying a volume element d3rd3p in phase space is
given by the Fermi–Dirac distribution

n(r,p) =
1

1 + exp
(
E−µ
T

) =
1

1 + exp
(
p2/2−V (r)−µ

T

) (2)

and then the electron density is given by

ρ(r) =

∫
n(r,p)d3p = 4π

∫
n(r, p)p2dp =

(2T )
3/2

2π2
I1/2

(
V (r) + µ

T

)
, (3)

where

Ik(x) =

∞∫
0

yk dy

1 + exp(y − x)
(4)

are the Fermi–Dirac integrals. In the previous expres-
sions, T is temperature, measured in energy units, and
µ is the chemical potential, obtained from the condition
of charge neutrality within the ionic sphere

4π

R0∫
0

ρ(r)r2dr = Z

Combining Eqs. (1) and (3) results

∇2V (r) = −4πZδ(r) + 2

π
(2T )

3/2
I1/2

(
V (r) + µ

T

)
. (5)

This equation is solved with the boundary conditions
V (R0) = 0, (dV/dr)r=R0

= 0, and rV (r)|r=0 = Z, where
R0 is the radius of the spherical cell.

2.2. Average atom model

One of the greatest limitations of the generalized TF
model is that it cannot account for the detailed shell
structure of the bound electrons. For instance, for spec-

†Here and in the following we employ atomic units, so e = 1,
m = 1, ~ = 1

troscopic purposes, a quantum mechanical description of
this shell structure is required. In order to overcome
this problem, more detailed models treat separately the
bound and the free electron densities

ρ(r) = ρb(r) + ρf (r). (6)
In these models, the free electrons are generally treated
statistically by means of the Fermi–Dirac distribution, in
a similar fashion in which all the electrons are treated
by the generalized TF model. The bound electron
states are treated quantum mechanically by solving the
Schrödinger or Dirac equations. In the AAM (see
Refs. [11–13]), the occupation of the discrete ionic states
are obtained as a by-product of the calculation from a
statistical Fermi distribution, resulting in fractional, av-
erage, occupancies. In the following, we briefly present
the treatment of the relativistic AAM due to Nikiforov
and coworkers [11, 12].

In the relativistic approach we have, for the bound
states

ρb(r) =
1

4πr2

∑
n,l,j

(εnlj<ε0)

Nnlj
[
F 2
nlj(r) +G2

nlj(r)
]
. (7)

Here,

Nnlj =
2j + 1

1 + exp
(
εnlj−µ
T

) (8)

represents the occupation of the electronic level accord-
ing to the Fermi statistics. The numbers n, l, j, char-
acterizing each single-electron level are the principal,
the angular-momentum, and total-momentum quantum
numbers, and εnlj is the corresponding eigenvalue; as
above, µ is the chemical potential and T — the tem-
perature. The summation is performed over the n, l, j
levels whose eigenvalues εnlj are below a cut-off energy
ε0, which plays the role of an effective boundary of the
continuum [11]. The functions Fnlj(r) and Gnlj(r) are
the large and small radial components of the wave func-
tion multiplied by r. The radial wave functions and
eigenenergies are determined by solving the radial Dirac
equations [14, 15]. This can be done numerically, for
instance, using the Numerov method [16]. In this work,
however, the solution to the radial wave functions are ap-
proximated by means of hydrogenic solutions FHnlj(r) and
GHnlj(r). These are the well-known analytical solutions
to the Dirac equations for hydrogenic atoms, express-
ible in terms of Laguerre polynomials [14]. The only ad-
justable parameter in FHnlj(r) and G

H
nlj(r) is the effective

(screened) charge Znlj ; in order to determine its value,
a minimization procedure is employed. In the method of
the trial potential, the effective charge Znlj of each or-
bital n, l, j is found from the condition of minimum of
the integral [12]:

J(Znlj) =

R0∫
0

[
rV (r)− rV H(r)

]2 [(
FHnlj

)2
+
(
GHnlj

)2]
dr, (9)
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where

V H(r) =
Znlj
r
−Anlj

and

Anlj =

R0∫
0

[
Znlj
r
− V (r)

] [(
FHnlj

)2
+
(
GHnlj

)2]
dr.

Minimization of Eq. (9) was made, in the present imple-
mentation, by the method of golden section search.

The energy levels are given by

εHnlj = −
Z2
nlj/ñ

2

1 + ζ2ñ2 +
√
1 + ζ2/ñ2

+Anlj , (10)

where

ñ = n− ζ2

(j + 1/2) +
√
(j + 1/2)2 − ζ2

The second term in (6) is given by

ρf (r) =
(2T )3/2

2π2

∞∫
y0

y1/2dy

1 + exp
(
y − V (r)+µ

T

) = (11)

ρf (r) =
(2T )3/2

2π2

[
I1/2

(
V (r) + µ

T

)

−
y0∫
0

y1/2dy

1 + exp
(
y − V (r)+µ

T

)], (12)

where y0(r) = max
(
0; V (r)+ε0

T

)
; I1/2(x) is the Fermi–

Dirac integral of Eq. (4). There are several different ana-
lytical approximations for I1/2(x), some of them defined
only on reduced ranges of the argument values (see for
instance [17]). In this work, the analytical approximation
proposed in [18] is employed; this is valid in the whole
range −∞ < x < ∞ with an error below 0.53%. Ex-
pression (12) is analogous to the expression for the full
electron density obtained in the generalized TF approach
(Eq. (3)), but now the bound states (those whose energy
is below the threshold ε0) are excluded from ρf . At this
point, the present implementation differs from the one
recently proposed by Kouser et al. [19], which employ a
constant free electron density, equal to the electron den-
sity at the atomic shell boundary.

It should be noted that the model described so far
constitutes a hybrid model, in the sense that the bound
electrons are treated quantum mechanically and the free
electrons by means of the non relativistic generalized TF
approach. This is the case for most self-consistent meth-
ods [20]. A possible improvement can be obtained by
employing, instead, the recently developed relativistic fi-
nite temperature Thomas–Fermi formalism [21, 22].

Expressions (7) and (11) depend both on the chemical
potential µ and on the total potential V (r). As in the
TF model, the chemical potential is determined by the
condition of charge neutrality inside the atomic sphere

4π

R0∫
0

(ρb(r) + ρf (r))r
2dr = Z (13)

On the other hand, the Coulomb potential VC(r) de-
pends on the electronic density itself, through a Poisson
equation

1

r

d2

dr2
(rVC) = 4π [ρb(r) + ρf (r)] (14)

with the boundary conditions |rVC(r)|r=0 = Z and
VC(R0) = 0. Equivalently,

VC(r) =
Z

r
− 4π

1
r

r∫
0

r′2ρ(r′)dr′ +

R0∫
r

r′ρ(r′)dr′

 (15)

Besides, in order to take into account the exchange ef-
fects, an exchange correction term Vex(r) is added to the
potential [11]:

Vex(r) =
πρ(r)

T

[
1 + 5.7

ρ(r)

T 3/2
+
π4

3

ρ2(r)

T 3

]−1/3
(16)

and the total potential is the sum of both terms
V (r) = VC(r) + Vex(r). (17)

The above system of Eqs. (6)–(17) constitutes a compli-
cated system of coupled equations. Since ρb(r) and ρf (r)
depend on the potential V (r) and this, in turns, depends
on the density, the problem should be solved iteratively.
As starting point for the iterative process, the values for
V (0)(r) and µ(0), as obtained within the generalized TF
model, are used. After convergency is achieved, the val-
ues of the density ρ(r), potential V (r), chemical potential
µ, radial wave functions Fnlj(r) and Gnlj(r), eigenener-
gies εnlj , and occupancies Nnlj of the bound states are
obtained.

2.3. Thermodynamic consistency condition

The AAM described by Eqs. (6)–(17) rests in con-
sidering separately the free and bound electrons. The
energy ε0 appearing in Eqs. (7) and (12) acts as an
effective boundary of the continuum separating those
electrons considered as bounded, and treated quantum-
mechanically, and those considered as free and treated
with a semiclassical approach. The validity of different
criteria for choosing the value of ε0 is discussed, for in-
stance, in Refs. [11, 23]. It is shown that an incorrect
criterium leads to the appearance of unphysical discon-
tinuities in the thermodynamic functions when they are
evaluated in a range of temperatures and/or densities.
This happens when discrete energetic levels of the bound
states εnlj pass across ε0 as T or ρ are varied.

A method to overcome this drawback is proposed
in [11, 24]. The value of ε0 is selected by a thermody-
namic consistency condition (TCC), which is obtained
after a variational procedure requiring that the bound
states do not cross the value ε0 for small variations of
the occupation numbers and wave functions. The cri-
terium can be summarized as
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f1(ε0)− f2(ε0) = 0, (18)
where

f1(ε0) =
∑
n,l,j

εnlj<ε0

(2j + 1)

is the number of available bound states with eigenvalues
below ε0 and f2 has the same meaning that f1 in the
semiclassical approximation

f2(ε0) =
8
√
2

3π

R0∫
0

[max (0, ε0 + V (r))]
3/2

r2dr.

Whereas the funcion f2 varies smoothly with ε0, the func-
tion f1 has a stepped behaviour. Consequently, Eq. (18)
has, in general, several solutions. For studies of matter in
wide ranges of temperatures and densities, condition (18)
avoids sharp and unphysical changes on the derivatives
of the free energy.

The introduction of the continuum threshold ε0 was
originally proposed for the AAM [11, 24], and later ex-
tended to a model based on the superconfiguration ap-
proximation by Pain [20].

It is important to note that the TCC described here
corresponds to the case where the free electrons are

treated non relativistically (Eq. (11)). If a relativistic
approach is used instead, the condition for the determi-
nation of ε0 may be different, since function f2(ε0) will
change.

3. Results and discussion

3.1. Effective boundary of the continuum

We first present results regarding the selection of the
energy ε0 by the application of the thermodynamic con-
sistency condition, Eq. (18). In Fig. 1, the variation of
f1(ε0) and f2(ε0) for Ar with density ni = 2.2×1022 cm−3
and different temperatures is shown. It can be seen that
the TCC f1(ε0) = f2(ε0) is satisfied not at a single point,
but at different values of ε0. In the figure, the corre-
sponding values of f1 and f2 are indicated at the inter-
section points. These points correspond to integer val-
ues of f1 = f2 which are the number of available bound
states with energies εnlj < ε0. For instance, the solu-
tion f1 = f2 = 10 corresponds to a situation where the
effective boundary of the continuum ε0 is placed above
the 1s, 2s, 2p1/2 and 2p3/2 levels (a total of 10 discrete
available states), but below the eigenvalue of the 3s sub-
shell. In the right axis of Fig. 1 the ionization degree
Zfree obtained for the different values of ε0 is also plotted.

Fig. 1. Functions f1 and f2, and ionization degree Zf against the cut-off energy ε0 for Ar, with ionic density ni =
2.2× 1022 cm−3 and different temperatures: (a) T = 25 eV, (b) T = 50 eV, (c) T = 200 eV, (d) T = 1000 eV.
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As pointed out in [11], at high temperatures the
choice of ε0 does not significantly alter the obtained
electron density ρ(r) nor the potential V (r). This
is reflected, for instance, in Fig. 1d: at T =
1000 eV three roots of Eq. (18) can be observed,
namely ε

(1)
0 ≈ −19.4Ht (f1(ε

(1)
0 ) = f2(ε

(1)
0 ) = 10);

ε
(2)
0 ≈ −10.95Ht (f1(ε

(2)
0 ) = f2(ε

(2)
0 ) = 18) and

ε
(3)
0 ≈ −6.6Ht (f1(ε

(3)
0 ) = f2(ε

(3)
0 ) = 28). Despite the

relative spread in the values of ε0, the ionization de-
gree takes almost the same value: Zf (ε

(1)
0 ) = 17.72;

Zf (ε
(2)
0 ) = 17.70 and Zf (ε

(3)
0 ) = 17.67. This is due to

the fact that levels with high quantum number (in this
case, n ≥ 3) are predicted to be practically unnocupied
(Nnlj � 1). At lower temperatures, however, different
choices of ε0 lead to significantly different predictions for
the ionization degree; in the extreme case of Fig. 1a, for
T = 25 eV, the two roots of Eq. (18), which correspond
to f1 = f2 = 10 and f1 = f2 = 18, imply Zf = 8.00
and Zf = 5.65, respectively. This difference arose be-
cause subshells with n = 3 have, at this temperature,
non-negligible occupancies.

The above discussion shows the subtleties involved in
the application of the thermodynamic consistency con-
dition. It seems to be clear that, when studying the
properties of matter in a range of temperatures and/or
densities, the value of f1(ε0) = f2(ε0) should remain the
same; on the contrary, a number of discrete states will
cross through ε0 at some stage of the calculations. Sec-
ondly, the occupation Nnlj of bound states with εnlj > ε0
should be small in all the range of interest. According
to [11], the value of ε0 should be selected in a way that,
under normal conditions (T = 0, ρ = ρ0, where ρ0 is the
normal density of matter) lies in the region of the up-
per level of electron energies (or in the conduction band
for metals) (cf. [11], pages 308 and 319). Following this
additional criterion, all the calculations presented below
were performed at a value of ε0 such that the condition
f1(ε0) = f2(ε0) = 18 is satisfied.

3.2. Free charges

The effective boundary of the continuum discussed
above is used as an input parameter in the RHFS
calculations. Once the value of ε0 has been established
by using the TCC criterion, the self-consistent cycle is
initiated. The ionization state is obtained after con-
vergence of the self-consistent system of Eqs. (6)–(17).
The number of free electrons Zf can be obtained by
integration of the free electron density, (11):

ZAAM
f = 4π

R0∫
0

ρf (r)r
2dr =

4π

R0∫
0

 (2T )3/2
2π2

∞∫
y0

y1/2dy

1 + exp
(
y − V (r)+µ

T

)
 r2dr(19)

or, alternatively, because of the charge neutrality condi-
tion, Eq. (13),

ZAAM
f = Z − ZAAM

b = Z −
∑
n,l,j

εnlj<ε0

Nnlj =

Z −
∑
n,l,j

εnlj<ε0

2j + 1

1 + exp
(
εnlj−µ
T

) . (20)

Figure 2a–c shows the resulting degree of ionization
of Ar as function of temperature and for three different
ionic densities. We compare the results obtained within
the AAM formalism with those obtained by the general-
ized TF approach

ZTFf = Z
(1)
f − Z

(2)
f

with (we skip the details of the calculations, see [11]):

Z
(1)
f =

8
√
2

π

R0∫
0

r2 [V (r)]
3/2

×

 ∞∫
1

t2dt

1 + exp
(
(t2 − 1)V (r)

T − µ
T

)
 dr, (21)

Z
(2)
f =

8
√
2

π

R0∫
0

r2 [V (r)]
3/2

(R0/r)
2 − 1

×

 1∫
0

t2dt

1 + exp
(

1−t2
(R0/r)

2−1
V (r)
T − µ

T

)
 dr (22)

and also with the approximative analytical formula de-
veloped by More [23] to fit the Thomas–Fermi result

ZMore
f =

Zx

1 + x+
√
1 + 2x

(23)

where

x = 14.3139
(
RC +QC1

)0.6624/C
; R =

ρ
[
g/cm

3
]

ZA
;

Q1 =
(
0.003323T 0.9718

0 + 9.26148× 10−5T 3.10165
0

)
×R− exp(−1.763+1.43175TF+0.31546T 7

F );

T0 =
T [eV]

Z4/3
T ; TF =

T0
1 + T0

and C = −0.366667TF + 0.983333

It can be seen that the three methods follow the same
general trend, being the values predicted by AAM some-
what higher than those obtained by the other two meth-
ods. Due to its quantum-mechanical treatment of the
bound states, the AAM ionization curves capture the
shell structure of the atom. This is particularly notice-
able in Fig. 2a, where two plateaus, one at Zf ≈ 16, and
other at Zf ≈ 8 can be seen. This means that He-like
and Ne-like ions are more stable, due to their closed shell
structure. The shell effect seems to be less appreciable
as the ionic density increases.

In Fig. 3 the results of our implementation for a ionic
density ni = 2.2×1022 cm−3 (solid density) are compared
with recent calculations by Neumayer et al. [25] using the
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Fig. 2. Free charge Zf for Ar at densities: (a) ni =
1 × 1019 cm−3, (b) ni = 1 × 1021 cm−3, (c) ni = 1 ×
1023 cm−3.

collision-radiative code FLYCHK [26], and those by Sen-
gebusch and coworkers [27]. The AAM implemented in
this work predicts, in general, a higher ionization degree
than the other two models. The difference can be at-
tributed to the different types of treatments: the models
in [25, 27] use a (more or less) detailed account of the ion
distribution, whereas in the AAM a single, fictional av-
erage ion is considered. Our model predicts, for this den-
sity, a regular increment of Zfree with the temperature,
in accordance with the FLYCHK results but contrasting
with the results of [27], where a more stepped behaviour
is observed.

Fig. 3. Free charge Zf for Ar with density ni = 2.2×
1022 cm−3 as obtained with the present implementation
of the AAM, and comparison with the calculations of
Refs. [25] and [27].

3.3. Electron density

Other output of the calculations is the electron den-
sity. In Fig. 4 we compare the radial distribution func-
tion D(r) = 4πr2ρ(r) for T = 10, 50, and 200 eV and a
ionic density ni = 1× 1019 cm−3.

Fig. 4. Radial distribution density close to the nucleus
for a ionic density ni = 1×1019 cm−3 and three different
temperatures: 10, 50, 200 eV.

As can be seen, the AAM correctly captures the shell
structure of the atom; this is not feasible by the TF the-
ory. Figure 4 shows the advance of ionization as the
temperature increases: At T = 10 eV, the three lobes in
D(r) correspond, loosely speaking, to the 1s, 2s+2p, and
3s shells; at this temperature there are about 15 bound
electrons (Fig. 2a); at T = 50 eV the 3s electrons have
moved to the continuum, the corresponding lobe has dis-
appeared; the number of bound electrons is around 8.
Finally, at T = 200 eV, where Zf = 16, only the 1s
electrons remain bound.
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Both in the TF model and in the AAM, the free elec-
trons manifest as a long tail in the radial distribution
function D(r), extended to r = R0. This is illustrated in
Fig. 5 for ni = 1.0× 1019 cm−3 and T = 200 eV.

Fig. 5. Radial distribution function for T = 200 eV
and ni = 1× 1019 cm−3.

3.4. Contributions to the potential

By construction of the AAM, the potential V (r) can
be decomposed into several parts. First, the Coulombic
potential VC(r) and the exchange correction term Vex(r)
can be considered separately, Eq. (17); for Vex we use
the analytic approximation of Eq. (16). The Coulombic
term can be, in turn, split into the nuclear attraction
VN (r) = Z/r and the repulsive term due to all the
other electrons Vel(r) and which is given by the second,
integral, term in Eq. (15). Besides, since in AAM the
electron density is naturally separated in bound and
free contributions, Eq. (6), the electronic part of the
potential can be considered as consistent of two parts,
Vel(r) = Vel,b(r) + Vel,f (r), with

Vel,i(r) = −4π

1
r

r∫
0

r′2ρi(r
′)dr′ +

R0∫
r

r′ρi(r
′)dr′

 ,
where i = b, f stands for bound and free, respectively.
The different contributions to the potential are plotted
in Fig. 6a–c for ni = 1×1019 cm−3, and T = 10, 50, and
100 eV. It can be seen that the free electron contribution
to the potential becomes more important as the tem-
perature (and, correspondingly, the ionization degree)
increases, whereas the bound electron contribution show
the opposite behaviour. It should be noted that, as
expected, at this low density the free electron part of the
potential Vel,f (r) can be well fitted by the expression for
a uniform free-electron density [10]:

Vel,f (r) ≈
3

2

Zf
R0

[
1− 1

3

(
r

R0

)2
]
.

Fig. 6. Different contributions to the AAM potential
for Ar with ni = 1 × 1019 cm−3 and temperature (a)
10 eV, (b) 50 eV, (c) 200 eV.

4. Conclusions

We present an application of the average atom model
for the calculation of properties of matter at high tem-
peratures and densities. Some considerations regarding
the computational implementation, particularly details
about the choice of the effective boundary of the con-
tinuum are made. Satisfaction of the thermodynamic
consistency condition is important to avoid discontinu-
ities of the physical observables as they are analyzed as
functions of temperature and/or density. We use Ar as
a test case and analyze properties such as ionization de-
gree, electron density, and contributions to the potential
in a range of temperatures and densities.
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