
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 10, OCTOBER 2014 2657

Economic MPC for a Changing Economic Criterion
for Linear Systems
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Abstract—Economic Model Predictive Controllers, consisting of
an economic criterion as stage cost for the dynamic regulation
problem, have shown to improve the economic performance of
the controlled plant, as well as to ensure stability of the eco-
nomic setpoint. However, throughout the operation of the plant,
economic criteria are usually subject to frequent changes, due
to variations of prices, costs, production demand, market fluctu-
ations, reconciled data, disturbances, etc. A different economic
criterion determines a change of the optimal operation point and
this may cause a loss of feasibility and/or stability. In this paper
a stabilizing economic MPC for changing economic criterion for
linear prediction models is presented. The proposed controller
always ensures feasibility for any given economic criterion, thanks
to the particular choice of the terminal ingredients. Asymptotic
stability is also proved, providing a Lyapunov function.

Index Terms—Asymptotic stability, changing economic crite-
rion, economic cost function, model predictive control (MPC), real
time optimizer (RTO).

I. INTRODUCTION

THE main goal of advanced control strategies is to operate
the plants as close as possible to the economically op-

timal operation point, while ensuring stability. In the process
industries, this objective is achieved by means of a hierarchi-
cal control structure [11], [23], [26], [32]: at the top of this
structure, an economic scheduler and planner decides what,
when and how much the plant has to produce, taking into
account information from the market and from the plant. The
output of this layer are production goals, prices, economic
cost functions and constraints which are sent to a real time
optimizer (RTO). The RTO is a model-based system, operated
in closed loop. It implements the economic decision in real
time, performing a static optimization, and providing setpoints
to the advanced control level. It employs a stationary complex
model of the plant and for this reason it works on a time-
scale of hours or day. The setpoints calculated by the RTO are
sent to the advanced control level, where an advanced control
strategy—usually model predictive control (MPC) [9], [22],
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[31]—calculates the optimal control action to be sent to the
plant, in order to regulate it as close as possible to the setpoint,
taking into account a dynamic model of the plant, constraints,
and stability requirements.

The hierarchical control structure supposes a time-scale sep-
aration between the RTO and MPC layers. This separation has
two main consequences on the economic performance of the
plant.

The first one is that, the economic setpoint calculated by
RTO may be inconsistent or unreachable with respect to the
dynamic layer [18]. A way to avoid this problem is to add a new
optimization level in between of RTO and MPC, referred as the
steady state target optimizer (SSTO). The SSTO calculates the
steady state to which the system has to be stabilized, solving
a linear or quadratic programming and taking into account
information from the RTO [21], [24], [28], [36].

In [12], [13], [19] an MPC that integrates the SSTO into
the same MPC layer, is presented. This controller ensures that
under any change of the economic setpoint, the closed-loop
system maintains the feasibility of the controller and ensures
local optimality. Similar strategies are also presented in [15].

The second consequence of the above mentioned time-scale
separation, is that the MPC control law is designed to ensure
asymptotic tracking of the setpoint, without taking into account
the issue of transient costs [6]. This way to operate is practi-
cally optimal when the setpoint does not change with respect
to the dynamic of the system. However, in some industrial
applications, the cost in the transient is more significant than
the cost at the steady state. This happens when the economic
criterion is subject to frequent changes. Hence, it becomes very
important to optimize the cost of the entire trajectory, not only
at the steady state. All the above motivated in the last years the
interest in Economic MPC [29].

A first approach in this direction is represented by the Dy-
namic Real Time Optimizer (D-RTO) [7], [18], [35], which
solves a dynamic economic optimization and delivers target
trajectories (instead of target steady state) to the MPC layer. A
second approach is represented by the one-layer MPC, which
integrates the RTO economic cost function as part of the
MPC cost function [1], [2], [37]. This converts the economic
objective into a process control objective. Another method is
to provide to a setpoint-tracking MPC, an unreachable but
economically optimal setpoint [30].

An improved approach is represented by the Economic MPC,
which considers the nonlinear economic cost of the RTO, as
the stage cost for the dynamic regulation problem. This method
has been widely studied in the last few years, and Lyapunov
stability has been proved in [7] for cyclic process, in [17] by
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means of a dual-mode MPC, and in [10], under the assumption
of strong duality. This strong duality assumption was then re-
laxed to a dissipativity assumption for the cases of both terminal
equality constraint [6] and terminal cost [3], [16]. Stability
results, resorting to suboptimal MPC [25], are provided in [5].
A drawback of these formulations might be represented by
feedback delays and consequent loss of performance due to
on-line optimization of a (strongly) nonlinear cost. However,
thanks to novel techniques, like fast-MPC [34], Advanced-Step
MPC [38] or simultaneous approach [4], [8], the computational
burden seems not to be an issue anymore.

None of the above mentioned strategies takes in account
the issue of possible changes in the economic criterion, that
is the economic cost to be optimized. This economic crite-
rion might vary during the operation of a plant, due to both:
i) market fluctuations, which causes changes in the cost func-
tion and in the prices that parameterized this function [27];
ii) variations in disturbances estimation or constraints, due
to data reconciliation algorithms. If the economic criterion
changes, the economically optimal setpoint, to which the sys-
tem has to be driven by the controller, may be different. Hence,
due to the stability requirements, the feasibility of the controller
may be lost.

The main objective of this paper is to present a novel eco-
nomic MPC formulation, suitable for changing economic crite-
ria. This controller extends the economic MPC [10], following
ideas of MPC for tracking [13], [19], by means of a slightly
modified cost function and a relaxed terminal constraint, which
requieres the terminal state to be any admissible equilibrium
point. The resulting controller ensures the following properties,
interesting from both a theoretical and a practical point of view:
i) it guarantees feasibility under any change of the economic
criterion; ii) it ensures economic optimality; iii) it provides a
larger domain of attraction than [10]. Moreover, asymptotic
stability to the economically optimal steady state is proved
resorting to a Lyapunov function.

The paper is organized as follows. Section II presents some
preliminary notation. In Section III the problem is stated and
in Section IV the economic MPC is briefly introduced. In
Section V the new economic MPC for a changing economic
criterion is proposed. In Section VI the local economic opti-
mality property is described. Finally, illustrative examples and
conclusions of this study are provided in Sections VII and VIII.

II. NOTATION

The symbols I and R denote the sets of integers and real
numbers, respectively. I≥0 and R≥0 denote the sets of non-
negative integers and reals, respectively, while I0:N denotes
the set {0, 1, . . . , N}. Given a vector x ∈ R

n, x′ denotes the
transpose vector, and |x| denotes the Euclidean norm. Given
a sequence u, u(j), j ∈ I≥0, denotes the j-th element of the
sequence. Given two sets, X1 ⊆ R

n and X2 ⊆ R
n containing

the origin, define X1 \ X2 = {x | x ∈ X1 and x �∈ X2}, and
δX1 = {δx | x ∈ X1}, with δ ∈ (0, 1). A function α : R≥0 →
R≥0 is a K-function if it is continuous, strictly increasing
and α(0) = 0. A function ϑ : R≥0 × I≥0 → R≥0 is a KL-
function if it is continuous, and if, for each k ≥ 0, ϑ(·, k) is

a K-function and for each r ≥ 0, ϑ(r, ·) is nonincreasing and
satisfies limk→∞ ϑ(r, k) = 0. Given an optimization problem
minx V (x), the optimal value of the cost function is noted as
V 0(x), and the minimizer of V (x) as x0.

III. PROBLEM STATEMENT

Consider a system described by a discrete-time linear time-
invariant model

x+ = Ax+Bu (1)

where x ∈ R
n is the system state, u ∈ R

m is the current control
vector and x+ is the successor state. The solution of this system
for a given sequence of control inputs u and initial state x is
denoted as x(j) = φ(j;x,u), j ∈ I≥0, where x = φ(0;x,u).
The state of the system and the control input applied at sampling
time k are denoted as x(k) and u(k) respectively.

The system is subject to hard constraints on state and input

x(k) ∈ X, u(k) ∈ U (2)

for all k ≥ 0, where X ⊂ R
n and U ⊂ R

m are compact sets.
It is assumed that the following assumption holds.
Assumption 1: The pair (A,B) is controllable and the state is

measured at each sampling time. �
The steady state and input of the plant (xs, us) are such that

(1) is fulfilled, i.e., xs = Axs +Bus.
We define the set of admissible equilibrium states as

Zs = {(x, u) ∈ δ(X × U) | x = Ax+Bu} (3)

Xs = {x ∈ X | ∃ u ∈ U such that (x, u) ∈ Zs} (4)

where δ ∈ (0, 1) is a constant arbitrarily close to 1. Notice that
Xs is the projection of Zs onto X .

Definition 1: The economic performance measure is given
by the function

�eco(x, u, p) (5)

where x and u are the state and the input of the system, and
p is a vector of parameters which takes into account prices,
costs, production goals, etc. The set of parameters may change
throughout the evolution of the plant. �

Function (5) represents the economic criterion to be opti-
mized, and it may change according to the market, the plant
scheduling, or the data reconciliation tasks.

The optimal operation point that stabilizes the plant, is the
steady state provided by the RTO, which satisfies the following
definition:

Definition 2: The optimal steady state and input, (xs, us),
satisfy

(xs, us) = argmin
x,u

�eco(x, u, p)

s.t. x = Ax+Bu

x ∈ X, u ∈ U (6)

and is assumed to be unique. �
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Remark 1: Notice that the optimal steady state and input
depends on the value of p, that is (xs(p), us(p)). However,
for the sake of clarity, in the rest of the paper we will use the
notation (xs, us). �

Assumption 2: The cost �eco(x, u, p) is locally Lipschitz
continuous in (xs, us); that is there exists a constant L > 0 such
that

|�eco(x, u, p)− �eco(xs, us, p)| ≤ L |(x, u)− (xs, us)|

for all p and all (x, u) ∈ X × U such that |x− xs| ≤ ε and
|u− us| ≤ ε, ε > 0. �

The controller design problem consists in deriving a control
law that minimizes the given economic performance cost index

N−1∑
j=0

�eco (x(j), u(j), p) (7)

taking into account that the economic function may change.
A change of the economic function causes also a change of

the steady state, defined in Definition 2, to which the system has
to be stabilized. The challenge of the proposed control problem
is then to design an economic MPC that ensures feasibility,
convergence to the optimal steady state and asymptotic stability,
under any change of the economic cost function.

IV. ECONOMIC MPC

The economic MPC cost function [3], [6], [10] is given by

V e
N (x, p;u) =

N−1∑
j=0

�eco (x(j), u(j), p) . (8)

The economic MPC control law is derived from the solution of
the optimization problem P e

N (x, p)

min
u

V e
N (x, p;u)

s.t.

x(0) = x,

x(j + 1) = Ax(j) +Bu(j),

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

x(N) = xs (9)

and it is given by the receding horizon application of the
optimal solution, κe

N (x, p) = u0(0;x). The optimal value of the
cost function is noted as V e0

N (x, p).
Define the following set:

ZN (w) =
{
(x,u) ∈ X × UN | x(j) ∈ X, u(j) ∈ U,

j ∈ I0:N−1, x(N) = w}

for any w ∈ Xs, where x(j) = φ(j;x,u). Then, the feasible
region of the optimization problem is given by

X e
N = {x ∈ X | ∃(x,u) ∈ ZN (w), for w = xs} .

The standard Lyapunov arguments to prove asymptotic sta-
bility of MPC cannot be directly used in this case because the

optimal cost is not necessarily decreasing along the closed-loop
trajectory. In [10], in order to find a suitable Lyapunov function,
the following assumption is made:

Assumption 3 (Strong Duality of the Steady-State Problem):
Let Lr(x, u, p) be the rotated stage cost function given by

Lr(x, u, p)=�eco(x, u, p)+λ′(x−(Ax+Bu))−�eco(xs, us, p)
(10)

where λ is a multiplier that ensures that the rotated cost exhibits
a unique minimum at (xs, us) for all x ∈ X , u ∈ U . Then
there exist two K-functions ρ1 and ρ2 such that Lr(x, u, p) ≥
ρ1(|x− xs|) + ρ2(|u− us|). �

If we define the following cost function:

Ṽ e
N (x, p;u) =

N−1∑
j=0

Lr (x(j), u(j), p) (11)

then the optimization problem consisting of minimizing (11)
subject to the same constraints as in (9), delivers the same
optimal sequence as (9), and also the optimal cost function is
a Lyapunov function [10].

Remark 2 (Convex Problems): As remarked in [10],
Assumption 3 is always satisfied in case of linear control
systems, if �eco(x, u, p) is strictly convex in (x, u), and the
steady-state problem (6) is feasible and satisfies a Slater con-
dition (if the constraints are linear, then a Slater condition is
not necessary). In general, this assumption is not easy to be
satisfied. In [6], strong duality is significantly relaxed by means
of a dissipativity assumption. �

V. ECONOMIC MPC FOR A CHANGING ECONOMIC

CRITERION

When the parameter p in (5) changes, the economic objective
of the controller also changes as well as the optimal admissible
steady state (xs, us) (to which the system should be steered by
the controller). This change may cause a loss of feasibility of
the controller.

The loss of feasibility is due to the terminal equality con-
straint x(N) = xs imposed to problem (9). Following the same
idea as in [13], [19], in this paper we propose a new formulation
in which this terminal constraint is relaxed in such a way that
x(N) = x(N − 1), that is the pair (x(N − 1), u(N − 1)) ∈
Zs. This implies that the terminal constraint can be any equi-
librium point.

First, a modified cost function is proposed

�eco (x(j)−x(N−1)+xs, u(j)−u(N−1)+us, p) . (12)

Moreover, in order to ensure that x(N − 1) converges to xs, the
so-called offset cost function is added to this problem and it is
defined as follows:

Definition 3: Let VO(x, u) be a positive definite convex
function such that the unique minimizer of

min
(x,u)∈Zs

VO(x, u) (13)

is (xs, us). �
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Assumption 4: There exist a positive constant γ such that

VO(x, u)− VO(xs, us) ≥ γ|x− xs|. (14)

�
The economic MPC for a changing economic criterion that

we propose in this paper has then the following cost function:

VN (x, p;u) =

N−1∑
j=0

�eco (x(j)− x(N − 1) + xs,

u(j)−u(N−1)+us, p)+VO (x(N−1), u(N−1)) . (15)

For any current state x, the optimization problem PN (x, p)
to be solved is given by

min
u

VN (x, p;u)

s.t.

x(0) = x,

x(j + 1) = Ax(j) +Bu(j),

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

(x(N − 1), u(N − 1)) ∈ Zs. (16)

The control law, in the receding horizon fashion, is given by
κN (x, p) = u0(0;x).

Remark 3: Notice that the pair (x(N − 1), u(N − 1)) de-
fines an admissible equilibrium point, such that x(N) =
x(N − 1) = Ax(N − 1) +Bu(N − 1) ∈ Xs. �

Remark 4: The constraint (x(N − 1), u(N − 1)) ∈ Zs is
equivalent to imposing x(N) = x(N − 1) and is actually re-
moving a degree of freedom to the controller. If we add the
constraint x(N) = xs to (16), the optimization problem is the
same as (9). Also notice that, since the cost function (15)
depends on the optimal steady state (xs, us), we need to solve
first the steady state optimization problem given in Definition 2
whenever p changes, and then the economic MPC for a chang-
ing economic criterion problem, (16). �

The feasible region of problem (16) is a compact set given by

XN = {x ∈ X | ∃(x,u) ∈ ZN (w), for w ∈ Xs} .

As we remarked before, since by imposing x(N) = x(N − 1)
we lose a degree of freedom, the set XN is given by N − 1
admissible inputs. So it can be compared with X e

N−1.
Since {xs} ⊂ Xs, we have that X e

N−1 ⊂ XN .
The set XN is a feasible set of initial x such that one can

reach any feasible steady state with N − 1 admissible inputs.
The set X e

N−1 is a feasible set of initial x such that one can
reach the optimal steady state with N − 1 admissible inputs.

Then, the set XN is larger, and, in some applications much
larger, than X e

N−1.
Remark 5: The result presented in [3], that is the use of

a terminal cost function and a terminal inequality constraint,
provides a larger feasible set than X e

N−1. However, the set XN

may still be larger, since the proposed terminal constraint spans
the entire steady state manifold. Moreover, this set may be
enlarged by extending the proposed formulation, considering
a terminal cost as in [3] and a terminal inequality constraint as
in [19]. �

A) Asymptotic Stability of the Proposed Controller: Let
us rewrite (12) in this way

�t(z, v) = �eco(z + xs, v + us, p). (17)

In order to prove stability of the proposed controller, fol-
lowing [10] we introduce a rotated cost function Lt(z, v, p) =
Lr(z + xs, v + us, p), where Lr(x, u, p) is defined in (10).
This function satisfies the following properties:

Property 1:
1) Lt(x− xs, u− us, p) = Lr(x, u, p)
2) Lt(0, 0, p) = Lr(xs, us, p) = 0
3) Lt(z, v, p) ≥ α1(|z|) + α2(|v|) for certain K-functions

α1 and α2. �
Define also, the rotated offset cost function ṼO(x, u) as

follows:
Definition 4: The rotated offset cost function is given by

ṼO(x, u) = VO(x, u) + λ′(x− xs)− VO(xs, us) (18)

where λ is the same multiplier as in (10). �
Notice that, since VO(x, u) and λ′(x− xs) are convex, then

ṼO(x, u) is also convex.
Hence, we can define an auxiliary optimization problem

given the auxiliary cost function

ṼN (x, p;u)=
N−1∑
j=0

Lt (x(j)− x(N − 1), u(j)− u(N − 1), p)

+ ṼO (x(N − 1), u(N − 1)) . (19)

Lemma 1: The auxiliary optimization problem P̃N (x, p)
given by

min
u

ṼN (x, p;u)

s.t.

x(0) = x,

x(j + 1) = Ax(j) +Bu(j),

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

(x(N − 1), u(N − 1)) ∈ Zs. (20)

delivers the same optimal control sequence as problem (16).
The proof of this lemma is given in the Appendix A.
Assumption 5: The prediction horizon N is such that

rank(CoN ) ≥ n

where CoN = [AN−1B . . . AB B] is the N -controllability ma-
trix of system (A,B). Moreover, there exists a control gain
Kdb, such that AK = A+BKdb has null eigenvalues. �

Let us define the following constant:

γ0 = L (1 + |Kdb|)
1− |AK |N
1− |AK | . (21)

The following theorem is the main result of this paper.
It establishes asymptotic stability of the closed-loop system
under the proposed economic MPC for a changing economic
criterion.
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Theorem 1: Consider system (1) subject to (2). Consider
that Assumptions 1–5 hold. Assume that (xs, us) lies in the
interior of Zs and XN is compact. Then, for all γ > γ0, xs is
an asymptotically stable equilibrium point for the closed-loop
system x+ = Ax+BκN (x, p) and its domain of attraction
is XN .

Proof: Consider x ∈ XN at time k, then the optimal
cost function is given by Ṽ 0

N (x, p) = ṼN (x, p;u0(x)), where
u0(x) = {u0(0), u0(1), . . . , u0(N − 1)} defines the optimal
solution to problem (20), and κN (x, p) = u0(0).

Define the function J(x, p) = Ṽ 0
N (x, p)− ṼO(x

0(N − 1),
u0(N − 1)). Define also e(x) = x− x0(N − 1). Notice that
J(x, p) is defined on XN , and moreover: due to Property 1,
J(x, p) ≥ α1(|e(x)|), for all x ∈ XN ; due to Lemma 2
(Appendix B), given the successor state x+ = φ(k + 1;x,
u0(x)) = Ax+BκN (x, p), we have that J(x+, p)−J(x, p) ≤
−α1(|e(x)|), for all x ∈ XN .

From Lemma 6 (Appendix B), it follows that:

α1 (|e(x)|) ≥ α1 (αe (|x− xs|)) = αJ (|x− xs|)

where a αJ is K-function. Then, we can conclude that:

i) J(x, p) ≥ αJ(|x− xs|), for all x ∈ XN .
ii) J(x+, p)− J(x, p) ≤ −αJ (|x− xs|), for all x ∈ XN .

iii) Since XN is compact, J(xs, p) = 0, and J(x, p) is con-
tinuous in x = xs, then there exists a K-function βJ such
that J(x, p) ≤ βJ(|x− xs|), for all x ∈ XN , [31].

Hence J(x, p) is a Lyapunov function and xs is an asymp-
totically stable equilibrium point for the closed-loop system
x+ = Ax+BκN (x, p), that is, there exists a KL-function ϑ
such that

|x(k)− xs| ≤ ϑ (|x(0)− xs| , k)

for all x(0) ∈ XN . �
Remark 6: Notice that the stability of the closed-loop system

is uniform with respect to p. In fact, the existence of functions
αJ and βJ can be ensured for any value of p. �

Property 2 (Changing Economic Criterion): Since the set of
constraints of PN (x, p) does not depend on (xs, us) or p, the
proposed controller is able to guarantee recursive feasibility and
constraints satisfaction for any p(k), k > 0. Moreover, if p(k)
converges to a constant value, the controller ensures asymptotic
stability of (xs, us). In fact, since the domain of attraction XN

does not depend on the optimal steady state, for all x ∈ XN

every admissible steady state is reachable. Moreover, since the
trajectory remains in XN , if the economic criterion (and hence
the optimal steady state) changes, problem PN (x, p) does not
lose feasibility and the system is driven to the new optimal
steady state in an admissible way.

Corollary 1: If the gradient of �eco(x, u, p) in (xs, us) is
null, that is if constraints are not active at (xs, us), then con-
vergence is ensured for any VO(x, u), even if it does not fulfill
Assumption 4 nor the condition γ > γ0.

Proof: The proof of this corollary follows same argu-
ments as the proof of Theorem 1, but considering Lemma 7
(Appendix C), instead of Lemma 5 (Appendix B). �

VI. LOCAL ECONOMIC OPTIMALITY

Property 2 is the main advantage of the proposed controller.
Indeed, one of the consequence of the effort to maintain fea-
sibility is that, during the transient phase, that is while x(N −
1) �≈ xs, the economic MPC for a changing economic criterion
may be suboptimal, in the sense that its performance may differ
from the economic MPC controller [10]. This suboptimality
is due to the particular cost to minimize and to the terminal
constraint imposed to the control problem.

However, in the following it is proved that under mild condi-
tions on the offset cost function, the proposed controller ensures
the economic optimality property as in [10].

Since the economic optimality is provided by the stage cost,
there is no restriction on the form of the offset cost function
VO(·, ·). Hence, this function can be chosen in any form that
fulfills Definition 3 and Assumption 4.

Property 3 (Local Optimality): Consider that Assumptions
1–5 hold. Then there exists a α0 > 0 such that for all γ ≥
α0 and for all x ∈ X e

N the proposed economic MPC for a
changing economic criterion is equal to the economic MPC,
i.e. κN (x, p) = κe

N (x, p).
Proof: First, define problem P̂ e

N−1(x, p), which is equiv-
alent to problem (9), but rewritten as follows:

min
u

N−1∑
j=0

�t (x(j)− x(N − 1), u(j)− u(N − 1), p)

+ VO (x(N − 1), u(N − 1))

s.t.

x(0) = x,

x(j + 1) = Ax(j) +Bu(j)

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

(x(N − 1), u(N − 1)) ∈ Zs

|x(N − 1)− xs|q = 0. (22)

Let ν(x) be the Lagrange multiplier of the equality con-
straint |x(N − 1)− xs|q = 0 of the optimization problem

P̂ e
N−1(x, p). We define the following constant α0:

α0 = max
x∈X e

N−1

|ν(x)| .

Define the optimization problem PN,γ(x, p) as a particular

case of (16) with VO(x, u)
Δ
= γ|x− xs|p, where |.|p is the dual

norm of |.|q .1 This optimization problem results from (22) with
the last constraint posed as an exact penalty function. Therefore,
in virtue of the well-known result on the exact penalty functions
[20], taking any γ ≥ α0 we have that VN,γ(x, p) = V e0

N−1(x, p),
and hence κN (x, p) = κe

N (x, p), for all x ∈ X e
N−1. �

Remark 7: As it has been mentioned before, for all x(0) ∈
XN , while x(k) ∈ XN \ X e

N−1, the controller provides a sub-
optimal solution. But once x(k) ∈ X e

N−1, Property 3 ensures
that the solution provided by the controller is the economically
optimal one.

1The dual |.|p of a given norm |.|q is defined as |u|p
Δ
= max

|v|q≤1
u′v. For

instance, p = 1 if q = ∞ and vice versa, or p = 2 if q = 2 [20].
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The suboptimality in XN \ X e
N−1 is the price one has to pay

for always ensuring feasibility under any change of p. �

VII. ILLUSTRATIVE EXAMPLE

Consider an isothermal stirred-tank reactor, in which reagent
A form product B. The linearized dynamics of the system are
given by

A =

[−Qo

VR
− kr − 2krcAo 0

kr −Qo

VR

]
, B =

[ cAf−cAo

VR
cBf−cBo

VR

]

where x = (cA, cB) are the molar concentrations of A and B,
cAf = 1 mol/L and cBf = 0 mol/L are the feed concentra-
tions of A and B, and u = Q is the flow through the reactor.
(cAo, cBo, Qo) = (0.4142, 0.4142, 12) defines the point around
which the system has been linearized. kr = 1.2 L/(mol min)
is the rate constant. The volume of the reactor is fixed to
VR = 10 L. The constraint on the state is taken as 0 ≤ x ≤
1 mol/L, while an upper-bound of 20 L/min is imposed to the
flow rate. The system has been discretized with a sample time
Ts = 0.5 sec.

The economic cost function is based on the price of product
B and a separation cost (assumed to be directly proportional to
the flow rate [10]) plus a regularization cost

�eco(x,u,p)= −(p(1)ux(2)−p(2)u)+|x−xs|2Q̄+|u−us|2R̄
(23)

where p = (p(1), p(2)) are prices, Q̄ = diag(0.5, 0.5), R̄ =
0.5, and (xs, us) is the economically optimal steady state
corresponding to the prices p.

In this example, the performance of the following three con-
trollers are assessed: economic MPC for a changing economic
criterion (E-MPCT) proposed in this paper, economic MPC
(E-MPC, [10]), MPC for tracking (MPCT, [13], [19]).

The cost functions have been taken as:
Economic MPC (E-MPC):

V e
N (x, p;u) =

N−1∑
j=0

�eco (x(j), u(j), p) . (24)

MPC for tracking (MPCT):

V t
N (x;u) =

N−1∑
j=0

|x(j)− x(N − 1)|2Q̄ + |u(j)− u(N − 1)|2R̄

+VO (x(N − 1), u(N − 1)) (25)

where VO(x(N − 1), u(N − 1)) = α|x(N − 1)− xs|1 is
the offset cost function.

Economic MPC for a changing economic criterion (E-MPCT):

VN (x,p;u)=
N−1∑
j=0

�eco(x(j)−x(N−1)+xs,u(j)−u(N−1)+us)

+VO (x(N − 1), u(N − 1)) (26)

where VO(x(N), u(N − 1)) = α|x(N − 1)− xs|1 is the
offset cost function.

Remark 8: As we already mentioned in Section VI, there are
no restrictions on the form of the offset cost function, since the

Fig. 1. E-MPCT versus MPCT. Time evolution of states and input: E-MPCT
in solid line, MPCT in dashed line, economically optimal steady state in
dashed-dotted line.

TABLE I
ECONOMIC PERFORMANCE: E-MPCT VS MPCT

economic optimality depends on the stage cost. In this example,
we chose VO(., .) as a 1-norm of the distance to the optimal
steady state. It is clear that this function can assume different
forms—like distances in the state space, distance in both state
and input space, distance to a set (see [14])—with the only
requirement that Definition 3 and Assumption 4 are fulfilled.�

A) Feasibility Guarantee When the Economic Criterion
Changes: First of all, the economic MPC for a changing
economic criterion (E-MPCT) has been compared to the MPC
for tracking (MPCT). For this test, three cost changes have been
considered given, respectively by p1 = (10, 0.1), p2 = (1, 0.6),
and p1 = (2, 0.5). The economically optimal steady conditions
obtained from these prices are, respectively, (xs,1, us,1) =
(0.5128, 0.3156, 17.7111), (xs,2, us,2) = (0.2177, 0.6106,
0.6168), and (xs,3, us,3) = (0.3928, 0.4356, 10.7574). The
prediction horizon has been taken as N = 4, while α = 200.
The initial condition is x0 = (0.95, 0.05).

Fig. 1 shows the time evolution of the states and the input.
Thanks to the relaxed terminal constraint, the E-MPCT is
capable to guarantee feasibility for all three economic criteria,
as the MPCT does. Notice how the two controllers approaches
the economic setpoint in different ways.

The controllers performances have been assessed using the
following closed-loop control performance measure:

Φ(p) =
T∑

k=0

�eco (x(k), u(k), p)− �eco(xs, us, p) (27)

where T is the simulation time. The results are shown in Ta-
ble I. As it was expected, the E-MPCT shows better economic
performance than the MPCT.

B) Domain of Attraction: The aim of this test is to compare
the domain of attraction provided by the E-MPCT (XN ) to
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Fig. 2. Comparison of the domains of attraction of the E-MPC and the E-
MPCT: X6 in solid line, X4 in dashed line, X e

5 in dashed-dotted line, and X e
3

in dotted line. The economic optimal point xs is plotted as a star.

the one provided by the E-MPC proposed in [10] (X e
N−1).

Recall that, due to the terminal constraint x(N) = x(N − 1),
the E-MPCT domain of attraction is actually given by N − 1
admissible inputs, so it has to be compared to X e

N−1 (see
Section V for more details).

Fig. 2 shows the domains of attraction of the E-MPCT, for
N = 4 and N = 6 (X4 in dashed line and X6 in solid line),
compared to the corresponding domains of attraction of the
E-MCP (X e

3 in dotted line and X e
5 in dashed-dotted line),

calculated with respect to the economic steady state xs provided
by the price p1. This point is plotted in Fig. 2 as a star.

It is clear how the proposed controller provides a larger
domain of attraction than the E-MPC.

C) Local Economic Optimality: The local optimality prop-
erty has been checked in the following test. The difference of
the optimal costs of the E-MPC and E-MPCT, V e0

N and V 0
N ,

respectively, has been compared while the weighting of the off-
set cost function—α—has been varied. Theses costs have been
calculated starting from the initial condition x0 = (0.05, 0.05)
and considering price p1. The prediction horizon considered is
N = 5 for the E-MPC and N = 6 for the E-MPCT.

The result of this test is presented in Fig. 3. It is clear how
the optimal costs of this two controllers become practically the
same when α starts to be greater than a certain value, which is
the value of the Lagrange multiplier of the equality constraint of
the E-MPC problem, α∗ = 152.4546. See Section VI for more
details.

Moreover, in Table II, the closed-loop performance of these
two controllers are compared to the one of the MPCT, by means
of the performance index (27).

The economic MPC and the economic MPC for a changing
economic criterion have a better performance than the MPC
for tracking. Moreover, the proposed controller shows the same
performance index as the economic MPC, which means that the
economic optimality is guaranteed.

The state space evolutions for this simulation are also drawn
in Fig. 2. The E-MPC evolution is plotted in dotted line, the

Fig. 3. Local optimality: the optimal costs of the two controllers become the
same when the weighting of the offset cost function α starts to be greater than
α∗ = 152.4546.

TABLE II
COMPARISON OF CONTROLLER PERFORMANCE

E-MPCT in solid line and the MPCT in dashed line. The initial
condition x0 is plotted as a dot. Notice how the evolutions of
E-MPC and E-MPCT coincide.

VIII. CONCLUSION

In this paper, an economic MPC that handles a changing
economic criterion has been presented. Following the main idea
of the MPC for tracking, the proposed controller considers
a slightly modified economic cost function, and a terminal
constraint that accounts for any admissible steady state.

This paper proves that this formulation ensures: i) feasibility
under any change of the economic criterion; ii) optimality with
respect to the economic setpoint; iii) larger domain of attraction
than standard economic MPC.

Asymptotic stability of the controller has been established,
by means of a Lyapunov function.

APPENDIX

A. Proof of Lemma 1

Proof: From the definition of the rotated cost

Lt (x− x(N − 1), u− u(N − 1), p)

= �t (x− x(N − 1), u− u(N − 1), p)

+ λ′ (x−x(N−1)−(Ax+Bu−Ax(N−1)−Bu(N−1)))

− �eco(xs, us, p)

= �t (x− x(N − 1), u− u(N − 1), p)

+ λ′ (x− (Ax+Bu))− �eco(xs, us, p)

where the last equality comes from the fact that x(N − 1) is an
equilibrium point, such that x(N)=Ax(N−1)+Bu(N−1).
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Therefore, operating with the cost function we have that

ṼN (x,p;u)=

N−1∑
j=0

Lt (x(j)− x(N − 1), u(j)− u(N − 1), p)

+ ṼO (x(N − 1), u(N − 1))

=

N−1∑
j=0

(�t (x(j)−x(N−1), u(j)−u(N−1), p)

+λ′(x(j)−x(j+1))−�eco(xs,us,p))−VO(xs,us)

+ VO (x(N−1), u(N−1))+λ′ (x(N−1)−xs) .

Notice that

N−1∑
j=0

λ′ (x(j)−x(j+1))=λ′ (x(0)−x(1)+x(1)−x(2)+. . .

+x(N − 1)− x(N))

=λ′ (x(0)−x(N))=λ′(x−x(N−1))

where the last equality comes from the constraints of (20).
Hence

ṼN (x,p;u)=

N−1∑
j=0

�t (x(j)− x(N − 1), u(j)− u(N − 1), p)

+ λ′(x−x(N−1))−N�eco(xs,us,p)−VO(xs,us)

+ VO (x(N−1), u(N−1))+λ′ (x(N−1)−xs)

=
N−1∑
j=0

�t (x(j)− x(N − 1), u(j)− u(N − 1), p)

+ λ′(x− xs)−N�eco(xs, us, p)

+ VO (x(N − 1), u(N − 1))− VO(xs, us).

This is equivalent to optimize, at any instant, the cost function

VN (x, p;u) =

N−1∑
j=0

�t (x(j)− x(N − 1), u(j)− u(N − 1), p)

+VO (x(N − 1), u(N − 1))

which is the cost function of problem (16). �

B. Stability Proof: Technical Lemmas

Lemma 2 (Decrease of the Cost Function): Consider system
(1) subject to constraints (2). Let Assumptions 1–5 hold. Con-
sider an initial condition x ∈ XN . Consider the successor state
x+ = Ax+Bκ(x, p). Then x+ ∈ XN . Moreover, there exists
a K-function α1 such that

Ṽ 0
N (x+, p)− Ṽ 0

N (x, p) ≤ −α1

(∣∣x− x0(N − 1)
∣∣) . (28)

Proof: Consider that x ∈ XN at time k, then the op-
timal cost function is given by Ṽ 0

N (x, p) = ṼN (x, p;u0(x)),
where u0(x) = {u0(0), u0(1), . . . , u0(N − 1)} defines the
optimal solution to (20). The resultant state sequence
is given by x0(x) = {x0(0), x0(1), . . . , x0(N − 1), x0(N)},
where x0(0) = x, x0(1) = x+ and x0(N) = x0(N − 1) ∈ Xs.

Define κ(x, p) = u0(0) and let the successor state at time
k + 1 be x+ = Ax+Bκ(x, p). Since u0(x) is the optimal
solution to (20), then x+ is feasible, and moreover x+ ∈ XN .

As standard in MPC ([22], [31]), choose a sequence of fu-
ture control inputs ũ = {u0(1), . . . , u0(N − 1), u0(N − 1)},
feasible solution to problem (20). The state sequence due to
ũ is x̃ = {x0(1), x0(2), . . . , x0(N), x0(N)}, which is clearly
feasible. Compare now the optimal cost Ṽ 0

N (x, p), with the cost
given by ũ, ṼN (x+, p; ũ). We have that

ṼN (x+, p; ũ)

= Ṽ 0
N (x, p)−Lt

(
x− x0(N − 1), u0(0)− u0(N − 1), p

)
− ṼO

(
x0(N − 1), u0(N − 1)

)
+ Lt

(
x0(N−1)−x0(N−1), u0(N−1)−u0(N−1), p

)
+ ṼO

(
x0(N − 1), u0(N − 1)

)
= Ṽ 0

N (x, p)−Lt

(
x− x0(N − 1), u0(0)− u0(N − 1), p

)
.

Since, by optimality, Ṽ 0
N (x+, p) ≤ ṼN (x+, p; ũ), then

Ṽ 0
N (x+, p)− Ṽ 0

N (x, p)

≤ −Lt

(
x− x0(N − 1), u0(0)− u0(N − 1), p

)

∀x ∈ XN .
Taking into account that Lt(·, ·, p) is positive definite (Prop-

erty 1), then there exists a K-function α1 such that

Ṽ 0
N (x+, p)− Ṽ 0

N (x, p) ≤ −α1

(∣∣x− x0(N − 1)
∣∣) (29)

∀x ∈ XN . �
Lemma 3: Consider system (1) subject to constraints (2).

Let Assumptions 1–5 hold. Let the system be controlled by
the control law u(k) = Kdb(x(k)− xs) + us. Assume that
|x(0)− xs| ≤ ω(ε), ω > 0, in such a way that |x(j)− xs| ≤ ε,
for j ∈ I0:N−1. Then

N−1∑
j=0

(�eco (x(j), u(j), p)− �eco(xs, us, p)) ≤ γ0 |x(0)− xs|

where γ0 is defined in (21).
Proof: We have that

N−1∑
k=0

(�eco (x(j), u(j), p)− �eco(xs, us, p))

≤
N−1∑
j=0

|�eco (x(j), u(j), p)− �eco(xs, us, p)|

≤ L
N−1∑
j=0

(|x(j)− xs|+ |Kdb (x(j)− xs)|)

≤ L

N−1∑
j=0

((1 + |Kdb|) |x(j)− xs|)
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≤ L (1 + |Kdb|)
N−1∑
j=0

(∣∣∣Aj
K

∣∣∣ |x(0)− xs|
)

≤ L (1 + |Kdb|) |x(0)− xs|
N−1∑
j=0

|AK |j

= L (1 + |Kdb|)
1− |AK |N
1− |AK | |x(0)− xs|

= γ0 |x(0)− xs| .

�
Lemma 4: Consider system (1) subject to constraints (2). Let

Assumptions 1–5 hold. Let (x̂s, ûs) ∈ Zs. Assume that |x(0)−
x̂s| ≤ ω(ε), ω > 0, in such a way that |x(j)− xs| ≤ ε, for j ∈
I0:N−1. Let û be a sequence of control actions such that û(j) =
Kdb(x(j)− x̂s) + ûs, with x(j + 1) = Ax(j) +Bû(j). Then
û is feasible and

ṼN (x(0), p; û) ≤ γ0 |x(0)− x̂s|+ VO(x̂s, ûs) + d

where d = λ′(x(0)− xs) + VO(xs, us) and γ0 is given in (21).
Proof: From (19) we have that

ṼN (x(0), p; û)=

N−1∑
j=0

Lt (x(j)−x̂s, û(j)−ûs) + ṼO(x̂s, ûs)

=
N−1∑
j=0

(�eco (x(j)−x̂s+xs, û(j)−ûs+us, p)

− �eco(xs, us, p)) + λ′ (x(0)− x̂s)

+ VO(x̂s, ûs) + λ′(x̂s − xs) + VO(xs, us)

=

N−1∑
j=0

(�eco(x(j)−x̂s+xs, û(j)−ûs + us, p)

− �eco(xs, us, p))

+ VO(x̂s, ûs)+λ′ (x(0)− xs) + VO(xs, us)

≤γ0 |(x(0)−x̂s+xs)−xs|+VO(x̂s, ûs) + d

=γ0 |x(0)− x̂s|+ VO(x̂s, ûs) + d

where d = λ′(x(0)− xs) + VO(xs, us) and the last inequality
comes from Lemma 3. �

Lemma 5: Consider system (1) subject to constraints (2). Let
Assumptions 1–5 hold. Consider the constant γ > γ0, where
γ0 is defined in (21). Assume that for an initial state x the
optimal solution to problem (20) is such that x0(N − 1) = x
and u0(N − 1) = κN (x, p). Then

x0(N − 1) = xs, u0(N − 1) = us. (30)

Proof: Consider that the optimal solution to (20) is
(x0(N − 1), u0(N − 1)) and consider that x = x0(N − 1) and
u = u0(N − 1). Then, (x, u) ∈ Zs and the optimal cost func-
tion is Ṽ 0

N (x, p) = ṼO(x
0(N − 1), u0(N − 1)).

The lemma will be proved by contradiction. Assume that
(x0(N − 1), u0(N − 1)) �= (xs, us). Hence there exists a β̂ ∈
(0, 1) such that for any β ∈ [β̂, 1)

1) (x̂s, ûs) = β(x0(N − 1), u0(N − 1)) + (1− β)(xs, us)
2) (x̂s, ûs) ∈ Zs

3) the dead-beat control law u = Kdb(x− x̂s) + ûs drives
the system from x0(N − 1) to x̂s in an admissible way.

Therefore, defining as û the sequence of control actions de-
rived from the control law u = Kdb(x− x̂s) + ûs, it is inferred
that û is a feasible solution to problem (20). Then considering
Lemma 3 and Lemma 4, we have that

Ṽ 0
N

(
x0(N−1), p

)
=ṼO

(
x0(N − 1), u0(N − 1)

)
≤ṼN

(
x0(N − 1), p; û

)

=
N−1∑
j=0

Lt ((x(j)− x̂s) , (û(j)− ûs) , p)

+ ṼO(x̂s, ûs)

≤γ0
∣∣x0(N − 1)− x̂s

∣∣+ VO(x̂s, ûs) + d

=γ0(1−β)
∣∣x0(N−1)−xs

∣∣+VO(x̂s,ûs)+d

where d = λ′(x0(N − 1)− xs) + VO(xs, us).

Define W (x0(N − 1), β)
Δ
=γ0(1− β)|x0(N − 1)− xs|+

VO(x̂s, ûs) + d and notice that

W
(
x0(N − 1), 1

)
=VO

(
x0(N − 1), u0(N − 1)

)
+ d

=VO

(
x0(N − 1), u0(N − 1)

)
+ λ′ (x0(N − 1)− xs

)
+ VO(xs, us)

= ṼO

(
x0(N − 1), u0(N − 1)

)
= Ṽ 0

N

(
x0(N − 1), p

)
.

Taking the partial of W about β we have that

∂W

∂β
=−γ0

∣∣x0(N−1)−xs

∣∣+ g′
(
x0(N−1)−xs,u

0(N−1)−us

)

where g′ ∈ ∂VO(x̂s, ûs), defining ∂VO(x̂s, ûs) as the subdiffer-
ential of VO(x̂s, ûs). Evaluating this partial for β = 1 we obtain

∂W

∂β

∣∣∣∣
β=1

= −γ0
∣∣x0(N − 1)− xs

∣∣
+ḡ′

(
x0(N − 1)− xs, u

0(N − 1)− us

)
where ḡ′ ∈∂VO(x

0(N−1), u0(N−1)), defining ∂VO(x
0(N−

1), u0(N−1)) as the subdifferential of VO(x
0(N−1),

u0(N − 1)).
Then, from convexity, we can state that, for every x0(N − 1)

and xs

ḡ′
(
x0(N−1)−xs,u

0(N−1)−us

)
≥VO

(
x0(N−1),u0(N−1)

)
− VO(xs, us)

≥γ
∣∣x0(N − 1)− xs

∣∣
where the last inequality comes from Assumption 4. Therefore

∂W

∂β

∣∣∣∣
β=1

≥ − γ0
∣∣x0(N − 1)− xs

∣∣+ γ
∣∣x0(N − 1)− xs

∣∣
=(γ − γ0)

∣∣x0(N − 1)− xs

∣∣ .
Since γ>γ0 and |x0(N−1)−xs|>0, hence ∂W/∂β|β=1>0.
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This means that there exists a β ∈ [β̂, 1) such that the
cost to move the system from x0(N − 1) to x̂s, W (x0(N −
1), β), is smaller than the cost to remain in x0(N −
1), that is W (x0(N − 1), 1) = ṼO(x

0(N − 1), u0(N − 1)) =
Ṽ 0
N (x0(N − 1), p).
This contradicts the optimality of the solution to problem

(20) and hence x0(N − 1) = xs, which proves the Lemma. �
Remark 9: Lemma 5 plays an important role in the proof

of Theorem 1. It proves that, if the system converges to an
equilibrium point x0(N − 1), then this point can be only the
economically optimal steady state, xs. �

Lemma 6 (Positive Definiteness of the Error Function):
Consider system (1) subject to constraints (2). Consider that
Assumptions 1–5 hold. For all x ∈ XN and x0(N − 1) ∈ Xs,
define the function e(x) = x− x0(N − 1). Then, there exists a
K-function αe such that

|e(x)| ≥ αe (|x− xs|) . (31)

Proof: Notice that, due to convexity, e(x) is a continuous
function [31]. Moreover, let us consider these two cases.

1) |e(x)| = 0 iff x = xs. In fact, (i) if e(x) = 0, then x =
x0(N − 1), and from Lemma 5, this implies that x0(N −
1) = xs; (ii) if x = xs, then by optimality x0(N − 1) =
xs, and then x = x0(N − 1).

2) |e(x)| > 0 for all |x− xs| > 0. In fact, for any x �= xs,
|e(x)| �= 0 and moreover |x− xs| > 0. Then, |e(x)| > 0.

Then, since XN is compact, in virtue of [33, Ch. 5, Lemma 6,
pag. 148], there exists a K-function αe such that |e(x)| ≥
αe(|x− xs|). �

C. Proof of Corollary 1: Technical Lemma

Lemma 7: Consider system (1) subject to constraints (2).
Let Assumptions 1–3 and 5 hold. Assume that the gradient of
�eco(x, u, p) in (xs, us) is null. Assume that for an initial state x
the optimal solution to problem (20) is such that x0(N − 1) =
x and u0(N − 1) = κN (x, p). Then

x0(N − 1) = xs, u0(N − 1) = us. (32)

Proof: The proof of this Lemma follows similar argu-
ments as Lemma 5. In this case

Ṽ 0
N

(
x0(N−1), p

)
≤
∣∣x0(N − 1)− x̂s

∣∣2
P
+ VO(x̂s, ûs) + d

=(1−β)2
∣∣x0(N−1)−xs

∣∣2
P
+VO(x̂s,ûs)+d.

where d = λ′(x0(N − 1)− xs) + VO(xs, us), and the in-
equality comes from [3, Equation (22)], taking into account that
the gradient of �eco(x, u, p) in (xs, us) is null.

Define W (x0(N − 1), β)
Δ
=(1− β)2|x0(N − 1)− xs|2P +

VO(x̂s, ûs) + d and take the partial of W about β
∂W

∂β
= −2(1− β)

∣∣x0(N − 1)− xs

∣∣2
P

+ g′
(
x0(N − 1)− xs, u

0(N − 1)− us

)
.

where g′ ∈ ∂VO(x̂s, ûs), defining ∂VO(x̂s, ûs) as the subdiffer-
ential of VO(x̂s, ûs). This partial for β = 1, is strictly positive.

This contradicts the optimality of the solution and hence the
result is proved. �
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