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ABSTRACT: 

Most digital holographic microscopy architectures introduce a microscope objective in the object arm 
of the micro-interferometer in order to increase lateral resolution but, as a consequence, a spherical 
phase aberration arises. The phase distortion must be corrected to achieve reliable phase information 
linked to the microscopic object under study. In this work, we present a fast and simple numerical 
method for automatically compensate the phase curvature from the wrapped phase gradient of the 
reconstructed hologram. Since non-unwrapping methods are required, computational cost is 
significantly reduced. Furthermore, no additional holograms recording is needed and it does not 
require prior knowledge of the object or the setup. The method is experimentally demonstrated by a 
phase contrast imaging of a Pediastrum cell. 

Key words: phase curvature, digital holographic microscopy, Optical phase aberration, wrapped 
phase 

RESUMEN: 

La mayoría de los montajes experimentales utilizados en microscopía holográfica digital introducen 
un objetivo de microscopio en el brazo objeto del miro-interferómetro con el objetivo de aumentar la 
resolución lateral; sin embargo, como consecuencia, aparece una aberración de fase esférica que debe 
corregirse para acceder al retardo de fase que experimenta es espécimen microscópico bajo estudio. 
En este trabajo se presenta un método rápido y simple para corregir numéricamente la curvatura de 
fase a partir del gradiente del mapa de fase envuelto del holograma reconstruido. Dado que no se 
requiere el empleo de métodos de desenvolvimiento de fase, los costos computacionales son 
notablemente reducidos. Adicionalmente, no se precisa del registro de hologramas adicionales, ni del 
conocimiento previo del objeto bajo estudio o del arreglo experimental. El método se demuestra 
experimentalmente a partir del holograma de una microalga del género Pediastrum.    

Palabras clave: curvatura de fase, microscopía holográfica digital, aberración óptica de fase, fase 
envuelta 
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1. Introduction 

In the last decades, digital holographic microscopy (DHM) has emerged as a powerful tool for studying 
microscopic samples due to its ability to record and retrieve complete information of the wave transmitted 
or reflected by a sample from a single hologram. Complex amplitude emerging from the specimen is 
recorded, via an interferometry setup, by a CCD or CMOS sensor. Then, quantitative phase and amplitude 
retrieval is performed numerically using scalar diffraction theory foundations. Usually, the light transmitted 
or reflected by the specimen is collected by a microscope objective (MO) aiming to improve lateral 
resolution but inducing a phase curvature which needs to be corrected for accurate object phase shift 
recovery. Several physical and numerical methods have been proposed to compensate this curvature. A 
simple physical method is achieved by introducing the same curvature in the reference wave using an 
identical MO at equal distance from the exit of the interferometer [1], but, besides alignment complexity, in 
off-axis architectures wavefronts perfect matching is not possible, especially when low-power objective 
lenses are used. Moreover, precise adjustment of the distances to the exit of the interferometer in the 
measurement process is not easy to achieve in practice. More recently, the use of programmable liquid lens 
was proposed as a physical alternative to compensate aberration, but prior knowledge of the setup is 
essential to achieve the correction [2]. Numerical methods accomplish phase compensation during or after 
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numerical reconstruction, either in the hologram plane or in the reconstruction plane. Cuche et al [3], for 
example, used a digital quadratic phase map in the reconstructed plane which needs the manual adjustment 
of a single parameter that is guessed by trial and error. Every guess involves the reconstruction of the 
hologram and must be recomputed every time experimental configuration is modified. A double exposure 
method proposed by Ferraro et al [4] compensates phase curvature completely but requires an additional 
hologram recording without the samples and a meticulous control of experimental conditions. Similarly, in 
[5] the correction is done in the hologram plane by using a reference conjugate hologram without the 
sample or, for setups with reduced aberrations, by the use of the specimen’s hologram itself (Self_Reference 
Conjugated hologram) by low-pass filtering in the frequency domain. However, for this case it is not possible 
to distinguish between the object and aberration frequency bands. Colomb et al [6,7] proposed to compute 
phase polynomial masks, called numerical parametric lenses, whose parameters are automatically adjusted 
by fitting standard polynomials or Zernike polynomials to manual selected 1D profiles or 2D areas extracted 
from the unwrapped phase where a constant phase is assumed. Others methods correct the curvature 
automatically by two dimensional fitting of the unwrapped phase signal to a parabolic surface [8,9] or 
Zernike polynomials [10]. In the Ref. 8, a submatrix is extracted from the unwrapped phase map and then 
the fitting procedure is performed, but results vary according to the number of sample points, and the 
criteria to decide a proper value is not automatic. These methods execute least squares fitting without 
discarding the phase values shifts introduced by the specimen, which generates estimation errors due to 
the sample itself. More recently, Zuo et al. and Sun et al. proposed a method based on principal component 
analysis, extracting the aberration term from the first principal component of the phase map, and separating 
it from the object phase shifts successfully [11,12].   

Nevertheless, all mentioned methods exhibit some drawbacks, such as prior knowledge of the setup, manual 
operation, iterative adjustment, double numerical reconstruction or being computationally expensive and 
time consuming. Moreover, all of them require unwrapping procedures and, in some cases, phase must be 
unwrapped at least twice. As a disadvantage, most unwrapping algorithms are very noise sensitive, demand 
high computational cost or produce errors which are not related with the object or the aberration, and 
hence they will be propagated to the curvature correction affecting its performance. 

In this work, a simple fast and fully automatic method for correcting phase curvature is presented. The 
compensation is carried out from the wrapped phase gradient map of the reconstructed hologram, which 
avoids unwrapping procedures and reduces computation time. No prior knowledge of the setup or the 
object is required. 

 

2. Principle 
2.a. Experimental setup  

In this study, a transmission DHM system is used, but the principles described are also applicable for 
reflection mode systems. Details of the experimental setup can be found in Ref. [3]. Briefly, it consists of 
recording a hologram by means of an interferometric setup, onto a CCD or CMOS sensor, and numerically 
reconstructing the amplitude and phase of the object wave by means of a computer. In this application, a 
Mach–Zehnder interferometer is used, whose object arm is fitted with a small microscope built by inserting 
an X–Y microscope stage to locate the sample and a MO which acts as a magnifying lens and forms a real 
image of the object of interest. The polarized collimated light beam originated at a He-Ne laser of wavelength 
 = 632.8 nm is divided by a beam splitter BS1 in order to obtain the object and the reference beams. The 
plane wave that travels through the object arm, after being reflected by the mirror M1, illuminates the 
sample to be analyzed. The wave diffracted by the specimen, is collected and magnified by an objective lens, 
MO1. At the same time, the plane wave that travels through the reference arm is reflected by the mirror M2; 
as mentioned in the previous section, a MO2, with the same characteristics of MO1, can be inserted in the 
reference arm to partially compensate phase curvature. The object beam and reference beam are 
recombined in the second beam splitter, BS2, and interfere at the output of the interferometer. A TV camera, 
with a CMOS Bayer Array 2592 X 1944 pix2, 1.75 μm square pixels, 8 bit deep and a frame rate up to 25 Hz 
is used to record digital off-axis holograms. A layout of the microscope is depicted in Fig. 1. 

If R is the complex amplitude of the reference beam and O the complex amplitude of the object beam, then 
the corresponding intensity distribution at the CMOS sensor can be expressed by the equation: 

 𝐼𝐻 = |𝑅|2 + |𝑂|2 + 𝑅∗𝑂 + 𝑂∗𝑅; (1) 
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where the symbol * denotes complex conjugate. The first two terms are the zero order, while the third and 
fourth are the virtual and real images, respectively. 

 

Fig.1. Experimental configuration; BS, beam splitters; M, mirrors; MO, microscope objectives. Inset: R, reference beam; O, object 

beam. 

 

Off-axis holography is used to allow the separation of the different diffraction orders from a single hologram, 
but as a consequence, a tilt phase distortion in the reconstructed plane is also introduced. Removing the off-
axis tilt can be accomplished by shifting the filtered hologram spectrum (𝑅∗𝑂) to the center of the frequency 
domain, by locating exactly the position of the carrier frequency of the virtual image [13]. However, the 
phase curvature is difficult to be completely eliminated, which makes the spectrum centering difficult, 
mainly due to a fluctuating boundary of the carrier frequency. 

2.b. Proposed methodology for Curvature Aberration correction  

If we assume that the MO  behaves as a thin lens, delaying the incident wavefront by an amount proportional 
to the thickness of the lens at each point, then the relationship between the sample (located at the object 
plane  𝑥0𝑦0), and its magnified image (at the image plane  𝜉𝜂) is depicted in Fig. 2: 

 

Fig.2. Object and magnified image by an MO in holographic process. 

 

Assuming paraxial approximation, the effects of a thin lens on an incident disturbance is given by the phase 
transformation [14]: 

 exp [−
𝑖𝑘

2𝑓
(𝑥𝑖

2 + 𝑦𝑖
2)]. (2) 

where f is the focal length and k=2 is the wave number, with   the wavelength. This expression may be 
interpreted as a quadratic approximation to a spherical wave.  Thus, a lens composed of spherical surfaces 
maps an incident plane wave into a spherical wave. 

In DHM context, the introduction of a MO in the experimental setup results in an object phase image 
"mounted" on a parabolic surface which arises from the spherical aberration. In particular, in biological 
imaging, phase aberration can be significant, but it varies slowly. On the other hand, the phase distribution 

Object MO Image 

http://www.sedoptica.es/


ÓPTICA PURA Y APLICADA 

www.sedoptica.es 

Opt. Pura Apl. 51(3) 49032:1-8 (2018)  © Sociedad Española de Óptica  

 

5 

of the specimen is small, but varies fast; thus, it can be regarded as a weak perturbation of the aberration. 
Hence, the phase of the object wave can be written as:  

 Φ(𝜉, 𝜂) = Φspecimen(𝜉, 𝜂) + Φerror(𝜉, 𝜂); (3) 

where Φ(𝜉, 𝜂) is the unwrapped phase retrieved from the holographic reconstruction. It consists of two 
contributions: Φspecimen(𝜉, 𝜂), the ideal phase of the specimen under study, and a weak perturbation of  
Φerror(𝜉, 𝜂), the phase error map encompassing the spherical aberration. 

Under this assumption, aberration can be estimated by fitting the reconstructed unwrapped phase to a 
paraboloid surface, such as: 

 Φerror(𝜉, 𝜂)~𝑓(𝜉, 𝜂) = 𝑎𝜉(𝜉 − 𝑏𝜉)
2

+ 𝑎𝜂(𝜂 − 𝑏𝜂)
2

+ 𝑐; (4) 

where 𝑎𝜉 , 𝑏𝜉, 𝑎𝜂 , 𝑏𝜂  and 𝑐 are parameters. Since there are no crossed terms, the coefficients can be identified 
independently in the 𝜉 and 𝜂 directions; c represents a constant phase over which parabolic surface is 
mounted. Then, by subtracting the fitted spherical surface from the image wavefront, the corrected image 
wavefront can be reconstructed including phase information of the specimen under study only. 

The main issue of this method is the requirement of performing unwrapping procedures. Besides high 
computational costs, it is well-known that unwrapped phase may not contain reliable information of the 
actual phase, and results strongly depend on the algorithm used. Any error in the estimation of the 
unwrapped phase will be propagated to the fitting algorithm, and thus, to the correction of the aberration.  

To overcome this problem, in this work, we propose a method for aberration compensation in which 
unwrapping procedures are avoided. This is accomplished by accessing to the aberration information from 
the wrapped phase map itself. From a theoretical point of view, the gradient of the unwrapped phase should 
be equal to the gradient of the wrapped phase everywhere except in the abrupt discontinuities present in 
the wrapped phase.  

Having into account these ideas, let 𝜙𝑤  represents the wrapped phase map and ∇𝜙𝑤  its gradient. If Φspecimen 
is considered as a weak perturbation, gradient of unwrapped phase map ∇Φ can be approximated by the 
gradient of Eq. 4: 

 ∇Φerror~∇𝑓 = (𝑑𝑓/𝑑𝜉, 𝑑𝑓/𝑑𝜂) = (𝐷𝜉 , 𝐷𝜂) = (2𝑎𝜉[𝜉 − 𝑏𝜉], 2𝑎𝜂[𝜂 − 𝑏𝜂] ) (5) 

Accordingly, given the wrapped phase values of  𝜙𝑤 , we wish to estimate the aberration 𝜙𝑒𝑟𝑟𝑜𝑟  (Eq. 4) 
assuming that the gradient of 𝜙𝑤  agrees with the gradient of 𝜙𝑒𝑟𝑟𝑜𝑟  in a least square sense. Therefore, 
coefficients in Eq. 4 can be obtained without the need of unwrapping the phase. 

Therefore, according to Eq. 5, the fitting procedure implies performing a linear regression of ∇𝜙𝑤  in the 𝜉 
and 𝜂 directions, to the theoretical planes: 

 𝐴𝜉𝜉 + 𝐵𝜉 = 2𝑎𝜉[𝜉 − 𝑏𝜉] (6) 

and  

 𝐴𝜂𝜂 + 𝐵𝜂 = 2𝑎𝜂[𝜂 − 𝑏𝜂] (7) 

given that 𝑎𝜉 = 𝐴𝜉/2 , 𝑎𝜂 = 𝐴𝜂/2, 𝑏𝜉 = −𝐵𝜉 /𝐴𝜉  and 𝑏𝜂 = −𝐵𝜂/𝐴𝜂. 

Finally, in order to reduce computational cost even more, instead of a 2D fitting to the planes given by Eq. 6 
and 7, a one-dimensional fitting is proposed by extracting two profiles from ∇𝜙𝑤   in the 𝜉 and 𝜂 directions. 
Thus, a 1D fitting is carried out to the straight lines of Eq. 6 and 7. Each profile consists of arranging the 
median value of each 𝜉 (𝜂) coordinate in a 1D array. As an advantage, if the specimen tested spans over an 
area smaller than the background, it is expected that median values extracted in each direction do not 
correspond with any value of the object under study. In this case, any phase values shift introduced by the 
specimen will be discarded, reducing estimation errors due to the sample itself. 
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3. Experimental Results 
For off-axis hologram recording a CMOS sensor Bayer Array 2592x1944 pix2, 1.75 m square pixels was 
used. Tilt aberration is corrected by shifting the filtered hologram spectrum to the coordinate origin of the 
frequency domain. Wavefront reconstruction is carried out by the angular spectrum method [14].  Then, an 
amplitude and wrapped phase contrast images are obtained. To illustrate the unwanted phase aberration 
introduced by the MO, in Fig. 3 the reconstructed wrapped phase map obtained from a hologram of a 
Pediastrum cell immersed in an aqueous medium is shown.  As one can observe, the image background is 
not uniform as it should be according to the homogeneity of the surrounding medium, in this case water. 
The curvature aberration reveals itself as concentric circles and the density of concentric circles manifests 
the level of phase aberration. In this particular case, two 20X/0.40 NA objectives were used, one in the object 
arm and the other in the reference arm of the interferometer. However, as seen in Fig. 3, phase curvature 
has not been compensated since the distances of the objective lenses from the exit of the interferometer 
were not equal. In fact, the greater the distance difference from the exit of the interferometer, the greater 
the phase aberration will be.  

Fig.3. Reconstructed wrapped phase of a Pediastrum hologram reveling spherical phase aberration. 

 

It worth noting that some extra aberration appears in Fig. 3; there exists a residual tilt aberration, due to off 
axis geometry; however, a distortion evidenced as spurious horizontal ripples is also observed. This latter 
arises from the so called rolling shutter effect and is due to the sequential-readout nature of the CMOS sensor 
used for recording. A method for correcting this effect was described in Ref. [15]. 

Fig.4. Wrapped phase gradient ∇𝜙𝑤  :  a) 𝑑𝜙𝑤/𝑑𝜉 ; b) 𝑑𝜙𝑤 /𝑑𝜂 ; c) 𝐷𝜉
∗ ; d) 𝐷𝜂

∗ .  

 

In order to correct the aberration, the wrapped phase gradient ∇𝜙𝑤  is computed in Python by means of 
NumPy, its fundamental package for scientific computing. Gradient components 𝑑𝜙𝑤/𝑑𝜉 and 𝑑𝜙𝑤/𝑑𝜂  are 
shown in Fig. 4 a) and 4 b) respectively. Due to the multiple 2 jumps borders of the wrapped phase, the 

a b 

c d 
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gradient map also suffers from large discontinuities in the exact same pixels. In fitting procedure, these 
discontinuities will act as outliers, and will impact on the fitting performance. To reduce them, each 
component of ∇𝜙𝑤  is wrapped using a wrapping operator W that wraps all values of it argument into the 
range (-,) by adding or subtracting an integral number of 2 radians from its argument, so that W[∇𝜙𝑤] =
(𝐷𝜉

∗ , 𝐷𝜂
∗). As a result, the two matrixes 𝐷𝜉

∗  and 𝐷𝜂
∗ obtained are shown in Fig. 4 c) and 4 d), where it can be 

seen that the discontinuities due to the spherical aberration have vanished.  

As explained in the previous section, these data could be 2D fitted to planes 𝐷𝜉  and 𝐷𝜂 described by Eq. 5, 
6 and 7. Instead, the median values of each column of   𝐷𝜉

∗  and each row of 𝐷𝜂
∗ are computed and stored in 

1D arrays, Γ𝜉  and Γ𝜂 respectively. These arrays incorporate enough information of the aberration and 
discard any information of the specimen since, in this case, specimen spans over an area smaller than the 
background. As an example, in Fig. 5 a) the Γ𝜂 profile is depicted, revealing a linear trend corrupted by 
pronounced oscillations related to the rolling shutter aberration due to the use of the CMOS sensor. 

Then, linear regressions of such profiles to the theoretical straight lines given by Eq. 6 and 7 are carried out 
in order to obtain the adjustment coefficients 𝑎𝜉 , 𝑏𝜉, 𝑎𝜂  and  𝑏𝜂. To illustrate, the estimated straight line 
using least squares procedure is also shown in Fig. 5 a). As can be seen, CMOS aberration may strongly affect 
estimation; therefore, results could be notably improved by correcting this effect [15] or by using a CCD 
sensor or a CMOS with global shutter as recording devices. The paraboloid of Eq. 4 is obtained straight 
forward and shown in Fig 5 b). 

Fig.5. a) 1D profile Γ𝜂   and linear regression. b) Correction paraboloid. 

 
Finally, the paraboloid is subtracted point by point from the wrapped phase map and wrapped again; the 
result is illustrated in Fig. 6 b), alongside original wrapped phase (Fig. 6 a)) for comparison purposes. As 
evidenced, a phase map free of spherical aberration is obtained; compared with Fig. 6 a), it is clear that the 
phase curvature has been removed from the phase distribution, even with the presence of the unwanted 
rolling shutter effect. 

Fig 6. a) Uncorrected wrapped map. b) Corrected wrapped map. 
 

In order to report a quantitative analysis of the accuracy of the proposed methodology, a hologram without 
a specimen is recorded. Assuming no air temperature variations, the refractive index is supposed to be 
uniform over the entire field of view, so the phase signal should be a constant. In Fig. 7 a) and 7 b) the 
resulting uncorrected and corrected wrapped maps are shown respectively, both corrupted by the rolling 
shutter effect. Given the horizontal nature of the latter effect, it is not reliable to estimate phase errors by 

a b 
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computing the standard deviation of a flat area in the phase maps, since they will be affected by this 
unwanted aberration. In order to compute a measure of the errors induced by the spherical aberration only, 
phase values of several profiles in the X direction of the phase image with and without correction are 
evaluated by a standard deviation computation. As an example, in Fig. 7 c) a horizontal profile and its 
corrected version are depicted. As expected, when correction is performed, phase is approximately 
constant. Additionally, when standard deviation values are compared, an average value of 2.13, equivalent 
to an optical path length 213 nm, is computed for the uncorrected profiles, and an average of 0.34 for the 
corrected ones. The latter value can be considered as a typical phase error introduced by holographic 
imaging, which is susceptible to various sources of noise, including quantization noise, shot noise, thermal 
noise, vibrations and sometimes even speckle. 

Fig 7. Wrapped signals without specimen a) Uncorrected. b) Corrected. c) An horizontal profile extracted from a) and b) 

 

4. Conclusions 

Digital holographic microscopy suffers from phase aberrations induced by the imaging system. A simple 
and fast automatic numerical method for correcting phase curvature introduced by the objective lens has 
been proposed. The phase aberration is extracted from the wrapped phase gradient. No prior knowledge of 
the setup was necessary, and no unwrapping algorithms were required. The experiment results show that 
the proposed method is useful and simple.  It is worth emphasizing that the success on the correction was 
tied to two main assumptions: that specimen phase delays are small compared with the aberration and that 
spherical aberration can be estimated within the paraxial and thin lens approximation. For high order 
aberrations (distortion, astigmatism, field curvature, spherical aberration, and so on), the method could be 
useful inasmuch fitting procedure is carried out with more sophisticated polynomials (such as Zernike 
polynomials) than the simple one employed in this work. 
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