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Abstract. We study the equivalences between two matching models, where
the agents in one side of the market, the workers, have responsive preferences

on the set of agents of the other side, the firms. We modify the firms’ pref-

erences on subsets of workers and define a function between the set of many-
to-many matchings and the set of related many-to-one matchings. We prove

that this function restricted to the set of stable matchings is bijective and that

preserves the stability of the corresponding matchings in both models. Using
this function, we prove that for the many-to-many problem with substitutable

preferences for the firms and responsive preferences for the workers, the set of
stable matchings is non-empty and has a lattice structure.

1. Introduction. Many-to-many matching models have been useful for studying
assignment problems with the distinctive feature that agents can be divided into
two disjoint subsets: the set of firms and the set of workers.1 The nature of the
assignment problem consists of matching each agent with a subset of agents from
the other side of the market. Thus, each firm may hire a subset of workers while
each worker may work for a number of different firms.

Stability has been considered the main property to be satisfied by any matching.
A matching is called stable if all agents have acceptable partners and there is no
unmatched worker-firm pair who both would prefer to be matched to each other
rather than staying with their current partners. Unfortunately, the set of stable
matchings may be empty. Substitutability2 is the weakest condition that has so far
been imposed on agents’ preferences under which the existence of stable matchings
is guaranteed. An agent has substitutable preferences if he wants to continue being
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1We will be using as a reference (and as a source of terminology) labor markets with part-time

jobs and we will generically refer to these two sets as the two sides of the market.
2Hatfield and Kojima [6] in matching models with contracts introduce a weaker condition

called bilateral substitutability and show that this condition is sufficient for the existence of a
stable matching. Also, they consider a strengthening of the bilateral substitutability condition

called unilateral substitutability. Both conditions reduce to standard substitutability in matching
problems without contracts. See Definitions 3 and 5 in Hatfield and Kojima [6] for a precise and

formal definition of bilateral and unilateral substitutability, respectively.
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matched to an agent on the other side of the market even if other agents become
unavailable.3

The college admissions problem is the name given by Gale and Shapley [4] to a
many-to-one matching model. Colleges have responsive preferences over students
and students have preference over colleges; each college c has a maximum number of
positions to be filled (its quota qc), it ranks individual students and orders subsets
of students in a responsive manner (Roth [12]); namely, to add “good” students to a
set leads to a better set, whereas to add “bad” students to a set leads to a worst set.
In addition, for any two subsets that differ in only one student, the college prefers
the subset containing the most preferred student. In this model the set of stable
matchings satisfies the following additional properties: (i) there is a polarization
of interests between the two sides of the market along the set of stable matchings,
(ii) the set of unmatched agents is the same under every stable matching, (iii) the
number of workers assigned to a firm through stable matchings is the same, and
(iv) if a firm does not complete its quota under some stable matching then it is
matched to the same set of workers at any stable matching.4

The case in which all quotas are equal to one is called the marriage problem,5 and
is symmetric between the two sides of the market. It was initially thought that the
essential features of the college admissions problem could be captured by treating
it as a marriage problem in which each of the qc positions available at a college c
would be treated as qc different colleges, denote by c1, c2, . . . , cqc . There is a nat-
ural injective correspondence between matchings in the original college admissions
problem and matchings in the related marriage problem in this way: a matching µ
of the college admissions problem, which matches a college c with the set of stu-
dents µ(c), corresponds to the matching µ′ in the related marriage market in which
the students in µ(c) are matched, in the order that they occur in its preferences,
with the ordered positions of c that appear in the related marriage market; that
is, if s is c’s most preferred student in µ(c), then µ′(c1) = s, and so forth. This
correspondence preserves the stability of the matchings. This construction is due
to Gale and Sotomayor [5]. Most of the subsequent theoretical literature concerned
with these problems focused on the marriage problem, with the assumption that
results established for the marriage problem would carry over to the college admis-
sions problem through this kind of transformation. However, Roth [12] observed
that certain results, as those of optimality and incentives, cannot be extended from
the case of the marriage problem.

Knuth [8] established that the set of stable matchings for the marriage model has
a lattice structure and attributed this result to Conway. Roth [11] showed that the
least upper bound and the greatest lower bound used by Knuth [8] did not work in
a more general many-to-many matching model. Blair [2] proposed a natural exten-
sion of the partial ordering used in Knuth [8]. However, its binary operations were
unnatural and complicated since they were obtained as the outcomes of nontrivial

3Kelso and Crawford [7] were the first to use substitutability to show the existence of stable

matchings in a many-to-one model with money. Roth [10] shows that, if all agents have substi-
tutable preferences, the set of many-to-many stable matchings is non-empty.

4Property (i) is a consequence of the decomposition lemma proved by Gale and Sotomayor
[5]. Properties (ii) and (iii) were proved independently by Gale and Sotomayor [5] and Roth [10].
Property (iv) was proved by Roth [13].

5It is the name given to the one-to-one matching model. See Roth and Sotomayor [15] for a

precise and formal definition of such model.
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sequences of matchings. Roth and Sotomayor [15] extended the result of the mar-
riage problem to the college admission problem and this work was further extended
by Mart́ınez et al. [9] by proposing, for a many-to-one model with substitutable and
separable with quota preferences, two very natural binary operations that endow to
the set of stable matchings with a lattice structure.

The college admissions problem with substitutable preferences is the name given
by Roth and Sotomayor [15] to the most general many-to-one model with ordinal
preferences. Firms are restricted to have substitutable preferences over subsets of
workers, while workers may have all possible preferences over the set of firms. Un-
der this hypothesis Roth and Sotomayor [15] showed that the deferred-acceptance
algorithms produce either the firm-optimal stable matching or the worker-optimal
stable matching, depending on whether the firms or the workers make the offers.
The firm (worker)-optimal stable matching is unanimously considered by all firms
(respectively, workers) to be the best among all stable matchings.

It is natural to think that there exists a natural bijective function between the set
of stable matchings in the original many-to-many model with responsive preferences
for the workers and the set of stable matchings in the related many-to-one model.
However, we show that the natural extension presented by Gale and Sotomayor [5]
does not preserve the equivalence between the set of stable matchings in the many-
to-many matching model and the corresponding set of stable matchings of the related
many-to-one model.6 We study a many-to-many matching model with responsive
preferences for the workers, by investigating how to define agents’ preferences in
its related many-to-one model to preserve the stability between matchings in the
original many-to-many model and matchings in the related many-to-one model. For
this reason, over the subsets of copies of workers in the related many-to-one model,
we modify the firms’ preferences and define a function between the set of many-to-
many matchings and the set of related many-to-one matchings. We show that this
function, restricted to the set of stable matchings, is bijective. Hence, it preserves
the stability between both sets of stable matchings, obtaining our main theorem.

Moreover, we prove that the modified firms’ preferences, defined over the subsets
of copies of students in the related many-to-one market, inherit the restriction of
substitutability when the firms have substitutable preferences in the original many-
to-many model. Since the function defined preserves the stability between both sets
of stable matchings, we give an alternative proof that the set of stable matchings
is non-empty for the many-to-many model with substitutable preferences for the
firms, and responsive preferences for the workers. Also, we prove that this function
preserves the Blair partial order of the agents on each side of the market over the set
of stable matchings, and that this set has a lattice structure for the many-to-many
model with substitutable preferences for the firms, and responsive preferences for the
workers. From here, it follows that both sets of stable matchings have equivalent
lattice structures.

Our paper contributes to this literature by proposing a new tool to prove results
in the many-to-many model that follow from results in the many-to-one model. In
this paper, we present novel proofs of two already well-known results in the many-
to-many model. However, it is important to mention that this new technique of
demonstration introduced in this paper, could be used to prove results not known
yet in the many-to-many model.

6See Example 1, Section 3.
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The paper is organized as follows. In Section 2, we present the preliminary
notations and definitions. In Section 3, we introduce a many-to-many matching
model and its related many-to-one matching model, and we present the principal
result of this paper. In Section 4, we prove that the set of stable matchings in the
many-to-many model has a lattice structure. Finally, in Section 5, we conclude with
some final remarks.

2. Preliminaries. There are two finite and disjoint sets of agents, the set of n firms
F = {f1, ..., fn} and the set of m workers W = {w1, ..., wm}. Each worker wj ∈W
with j = 1, . . . ,m has a maximum number of positions to be filled: its quota,7

denoted by sj . Observe that, the quota of worker w imposes only a restriction on
the maximal number of firms to which w can be assigned. Let s = (s1, . . . , sm) be
the list of quotas, one for each worker wj ∈W. To simplify the notation, sometimes,
we denote a generic firm by f (instead of fi) and a generic worker by w (instead
of wj), and its quota by sw. Each firm f ∈ F has an antisymmetric, transitive and
complete preference relation �f over the set of all subsets of W , and each worker
w ∈ W has an antisymmetric, transitive and complete preference relation �w over
the set of all subsets of F . Given A, B ⊆ W, we write A �f B to indicate that
firm f likes A at least as well as B. Given the preference relation �f , we say
that A �f B when A �f B and A 6= B. Analogously, for each worker w ∈ W
and any two sets of firms C, D ⊆ F, we write C �w D and C �w D. Preferences
profiles are (n+m)-tuples of preference relations and they are represented by �=
(�f1 , . . . ,�fn ,�w1

, . . . ,�wm
) = ((�f )f∈F , (�w)w∈W ). We denote by a ∈ F ∪W a

generic agent of either set. Given a preference relation of an agent �a, the subsets
of partners preferred to the empty set by a are called acceptable.

To express preference relations in a concise manner, and since only accept-
able sets of partners will matter, we will represent preference relations as lists
of acceptable partners. For instance, �fi= {w1, w3}, {w2}, {w1}, {w3} and �wj

=
{f1, f3}, {f1}, {f3} indicate that {w1, w3} �fi {w2} �fi {w1} �fi {w3} �fi ∅ and
{f1, f3} �wj

{f1} �wj
{f3} �wj

∅.
The assignment problem consists of matching workers with firms keeping the

bilateral nature of their relationship and allowing for the possibility that both,
firms and workers, may remain unmatched. Formally,

Definition 2.1. A matching µ is a mapping from the set F ∪W into the set of
all subsets of F ∪W such that, for all w ∈W and f ∈ F :

1. µ(f) ∈ 2W .
2. µ(w) ∈ 2F and |µ(w)| ≤ sw.
3. w ∈ µ(f) if and only if f ∈ µ(w).8

We say that an agent a is single in a matching µ if µ (a) = ∅. Otherwise, the
agent is matched. A matching is said to be one-to-one (known as the marriage
problem) if firms can hire at most one worker, and workers can work for at most
one firm. A matching is said to be many-to-one if workers can work for at most
one firm but firms may hire many workers.

7This limitation may arise from, for example, technological, legal, or budgetary reasons. The
college admissions problem (Roth [12]) incorporates the quota restriction of each college by im-
posing a limit on the number of students that a college may admit. However, from the point of
view of stability, this is equivalent to supposing that all sets of students with cardinality larger

than the quota are unacceptable for the college.
8We will often abuse notation by omitting the brackets to denote a set with a unique element.
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Suppose each worker w gives its ranking of individual firms and orders subsets
of firms in a responsive manner; namely, to add “good” firms to a set leads to a
better set, whereas to add “bad” firms to a set leads to a worst set. In addition, for
any two subsets that differ in only one firm, a worker prefers the subset containing
the most preferred firm. Given an ordered list of quotas s = (s1, . . . , sm) of the
workers, we state the definition formally, as follow,

Definition 2.2. The preference relation �w over 2F is responsive if satisfies the
following conditions:

1. For all T ⊆ F such that |T | > sw, we have that ∅ �w T.
2. For all T ⊆ F such that |T | < sw and f /∈ T, we have that T ∪ {f} �w T if

and only if {f} �w ∅.
3. For all T ⊆ F such that |T | < sw and f, f ′ /∈ T, we have that T ∪ {f} �w
T ∪ {f ′} if and only if {f} �w {f ′}.

A preference profile (�w)w∈W is responsive if each �w satisfies responsiveness.
Given a set of firms S ⊆ F , each worker w ∈W can determine which subset of S

would most prefer to hire. We will call this the w’s choice set from S, and denote
it by Ch (S,�w). Formally,

Ch(S,�w) = max
�w

{T : T ⊆ S} .

Symmetrically, given a set of workers S ⊆ W , let Ch (S,�f ) denote firm f ’s most
preferred subset of S according to its preference relation �f . Formally,

Ch(S,�f ) = max
�f

{T : T ⊆ S} .

We assume that firms’ preferences for groups of workers are such that the firms
regard individual workers more as substitutes for each other than as complements.
See Chapter 6 in Roth and Sotomayor [15]’s book for the complete bibliography.
Formally,

Definition 2.3. The preference relation �f over 2W is substitutable if for any
set S ⊆ W containing workers w and w̄ (w 6= w̄), w ∈ Ch(S,�f ) implies w ∈
Ch (S\ {w̄} ,�f ).

That is, if f has substitutable preferences, then if its preferred set of employees
from S includes w, so will its preferred set of employees from any subset of S that
still includes w.9 A preference profile (�f )f∈F is substitutable if each �f satisfies
substitutability. Note that substitutability is a weaker condition than responsive-
ness.

A matching µ is blocked by agent a if µ (a) 6= Ch (µ (a) ,�a). A matching µ is
individually rational if it is not blocked by any individual agent. A matching µ is
blocked by a worker-firm pair (w, f) if w /∈ µ (f), w ∈ Ch (µ (f) ∪ {w} ,�f ) , and
f ∈ Ch(µ(w)∪{f},�w). A matching µ is stable if it is not blocked by any individual
agent or any worker-firm pair.

Let M = (F,W, s,�) be a specific many-to-many matching problem such that
firms have substitutable preferences and workers have responsive preferences.10 Let

9Remember that the quota of worker w imposes only a restriction on the maximal number of

firms to which w can be assigned. But, it is important to emphasize that the quota of worker w
does not have any effect about how a firm ranks subsets of workers.

10An example of this many-to-many problem is a labor market where workers can worker for
a maximum number of firms, and firms hire workers but without any capacity restriction. We
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M be the set of all matching in M. Let S(M) be the set of all stable matchings in
M.

Remark 1. When µ ∈ M is blocked by a worker-firm pair (w, f) , and since we
assume that (�w)w∈W is responsive, an equivalent formulation of the condition
f ∈ Ch(µ(w) ∪ {f},�w) is the following:
a. If |µ(w)| < sw, then f �w ∅.
b. If |µ(w)| = sw then, there exists f ′ ∈ µ(w), such that f �w f ′.

3. The connection between the models. Gale and Sotomayor [5] give a formal
proof of the equivalence between the college admissions problem and its related
marriage problem. In the present section, we study if it is possible to extend in a
natural way the methodology developed by Gale and Sotomayor [5] to study the
equivalence between the many-to-many matching model and its related many-to-one
matching model.

3.1. The related many-to-one problem. Given the many-to-many matching
problem M we can consider its related many-to-one problem, in which each worker
wj with quota sj is broken into sj “pieces” of itself. In the related market each
worker has a quota of one. In other words, we replace each worker wj by sj positions
(copies) of wj , denoted by w1

j , . . . , w
sj
j , where the superscript of wtj indicates the

t-th copy of wj .
11 Each one of them, in that related many-to-one problem, has

preferences over F ∪ ∅ that are identical with those of wj with a quota of one. We
denote by W s the set of copies of W ; that is,

W s =
{
w1

1, . . . , w
s1
1 , w

1
2, . . . , w

s2
2 , . . . , w

1
m, . . . , w

sm
m

}
.

Observe that, |W s| =
∑m

j=1 sj . In addition, in the related market, each firm has

preferences over W s ∪ ∅ as follow: the preference relation of each firm f ∈ F is
modified replacing wj , where this appears, by the list w1

j , . . . , w
sj
j in that order.

That is, if a firm f in the original many-to-many problem prefers w to w′, then the
firm f in the related many-to one problem, will prefer all of the positions of w over
all of the positions of w′. Since every firm f ∈ F has preferences over the set of
positions (copies) of workers, we will suppose that, if wj �f ∅, then wtj �f wt

′

j if
and only if t < t′. We denote by Ij = {1, . . . , sj} the set of indexes of the copies of
every worker wj .

The following example shows that the natural correspondence used by Gale and
Sotomayor [5] to prove the equivalence between the college admissions problem and
its related marriage problem can not be extended in a natural way to many-to-many
matching problems and their related many-to-one matching problems.

Example 1. Let F = {f1, f2}, W = {w1, w2} and s = (2, 2). The firms have the
following substitutable preferences,

{w1, w2} �f1 {w1} �f1 {w2} �f1 ∅
{w1, w2} �f2 {w1} �f2 {w2} �f2 ∅

The workers have the following responsive preferences,

{f1, f2} �w1
{f1} �w1

{f2} �w1
∅

observe that our many-to-many problem is more general that the many-to-many problem with

capacity restrictions in both sides of the market.
11If some worker wj has quota equal to one, then simply will denote its unique copie as w1

j .
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{f1, f2} �w2 {f1} �w2 {f2} �w2 ∅
Consider the related many-to-one problem in which each worker wj is replaced

by two positions (copies) of himself, then W s = {w1
1, w

2
1, w

1
2, w

2
2}. Now, preferences

of each wtj are over F ∪∅, and preferences of each fi are over W s∪∅. Each copy has
the same preferences over firms that are identical with those of wj with a quota of
one, that is, {f1} �wt

j
{f2} �wt

j
∅ for all j = 1, 2 and t = 1, 2. To construct firms’

preferences is only needed the firms preference on singleton subsets of workers.
Thus, each firm fi has the following preferences:

{w1
1} �fi {w2

1} �fi {w1
2} �fi {w2

2} �fi ∅.
Let ν be the following stable matching of the related many-to-one problem,

ν =

(
f1 f2{

w1
1, w

2
1

} {
w1

2, w
2
2

} ) .
Following Gale and Sotomayor [5], note that since all copies w1

1, w
2
1 corresponding

to worker w1 have the same preferences then, in order for the matching ν in the
related many-to-one problem, corresponds to a matching µ in the many-to-many
problem, it must be that the most preferred firm in µ(w1) is matched to w1

1 and the
second most preferred to w2

1. Thus, µ(w1) = f1. Similarly, µ(w2) = f2. To sum up,

µ =

(
f1 f2
w1 w2

)
.

However, matching µ is not stable in the many-to-many problem because is
blocked, for example,by the worker-firm pair (w2, f1) since the quota of worker w2

is two. �

Example 1 shows that the straightforward extended of the procedure proposed
by Gale and Sotomayor [5] for the college admission problem and the marriage
problem does not preserve the stability of the matchings between the many-to-
many matching problem and the corresponding related many-to-one problem. This
negative result, led us to modify the agents’ preferences in the related many-to-one
model and investigate if such equivalence exists.

Definition 3.1. Given S ⊆ W s, we will say that S has clones if there exists wj

and t, t′ ∈ Ij (t 6= t′) such that
{
wtj , w

t′

j

}
⊆ S. If S ⊆ W s has no clones, we call it

a simple set.

Definition 3.1 specifies that a subset of copies of workers, S ⊆W s, has clones if
there exists at least two copies of a same worker in S ⊆W s.Given S ⊆W s, let

S = {wj ∈W | ∃ t ∈ Ij such that wtj ∈ S}.

We define for each firm a strict preference relation �∗f over 2W
s

derived from �f
over 2W as follows,

Definition 3.2. Let S, S′ ⊆ W s and �f over 2W be given. Denote by �∗f any

complete preference relation 12 over 2W
s

that satisfies the following properties:

1. If S is not a simple set, then ∅ �∗f S.

12We note that, given the complete preference �f over 2W , the complete preference �∗
f over

2W
s

is not necessarily unique.
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2. If S and S′ are simple sets:
(a) If wtj ∈ S and wt

′

j /∈ S are such that t < t′, and wj �f ∅, then

S �∗f
(
S\
{
wtj
})
∪
{
wt

′

j

}
.

(b) If S 6= S
′
, then S �∗f S′ if and only if S �f S

′
.

The following lemmata characterize the choice set of firm f ∈ F in the related
many-to-one market.

Lemma 3.3. Let S be a subset of W s. Then,

Ch(S,�∗f ) =
{
wtj ∈ S | wj ∈ Ch(S,�f ) and t ≤ t′ for all wt

′

j ∈ S
}
.

Proof. Suppose that S ⊆W s is not a simple set. Let

A =
{
wtj ∈ S | wj ∈ Ch(S,�f ) and t ≤ t′ for all wt

′

j ∈ S
}
.

We observed that Ch(S,�∗f ) is a simple set, otherwise, ∅ �∗f Ch(S,�∗f ).

Claim. Ch(S,�f ) = Ch(S,�∗f ).

Proof of Claim. Since Ch(S,�∗f ) is a simple set, then for all wt
′

j ∈ S such that

t < t′ we obtain that wt
′

j /∈ Ch(S,�∗f ) because wtj �∗f wt
′

j . So, by the definition of
the choice set

Ch(S,�∗f ) �∗f S′ for all S′ ⊆ S such that S′ 6= Ch(S,�∗f )

which implies that if S′ is a simple set and if Ch(S,�∗f ) 6= S′ then, by definition of

�∗f , Ch(S,�∗f ) �f S′ for all S′ ⊆ S; that is, Ch(S,�f ) = Ch(S,�∗f ). If S′ is not a

simple set, by definition of �∗f , we have ∅ �∗f S′ and then by definition of the choice

set Ch(S,�∗f ) �∗f ∅, thus by transitivity of �∗f
Ch(S,�∗f ) �∗f S′ for all S′ ⊆ S such that S′ 6= Ch(S,�∗f ) (1)

which implies, by definition of �∗f , Ch(S,�∗f ) �f S′ for all S′ ⊆ S; that is,

Ch(S,�f ) = Ch(S,�∗f ).

Let wtj ∈ Ch(S,�∗f ). By definition, wj ∈ Ch(S,�∗f ), thus by the Claim, wj ∈
Ch(S,�f ). Hence, wtj ∈ A.

Let wtj ∈ A ⊆ S; that is, wj ∈ Ch(S,�f ) and t ≤ t′ for all wt
′

j ∈ S. It

follows from the Claim that wj ∈ Ch(S,�∗f ), and there exists t ∈ Ij such that

wtj ∈ Ch(S,�∗f ) and t < t′ for all wt
′

j ∈ S. Thus, wtj ∈ Ch(S,�∗f ).
Particularly, if S ⊆W s is a simple set, we obtain that

Ch(S,�∗f ) =
{
wtj ∈ S | wj ∈ Ch(S,�f )

}
.

Therefore, denote the many-to-one problem related to M by:

Ms = (F,W s, s, (�∗f )f∈F , (�wt)wt∈W s)
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where, for each f ∈ F, �∗f is a preference relation over 2W
s

and, for each wt ∈ W,
�wt is the preference relation over 2F generated by �w over 2F . LetMs be the set
of all matchings in Ms.

For simplicity of notation we will use the letter µ to denote a matching in M
and will use the letter ν to denote a matching in Ms.

A matching ν ∈Ms is individually rational if it is not blocked by any individual
agent. In this case, a matching ν ∈ Ms is blocked by a position wt ∈ W s, if
∅ �wt ν(wt); that is, if the agent wt prefers remaining alone to be matched to
ν(wt).

Lemma 3.4. Let ν ∈ Ms be an individually rational matching. Then ν(f) is a
simple set for all f ∈ F .

Proof. Suppose that ν(f) is not a simple set. From Lemma 3.3, Ch(ν(f),�∗f ) is a

simple set. Since ν is individually rational, ν(f) = Ch(ν(f),�∗f ). Thus, ν(f) is a
simple set.

Note that a matching ν in Ms is blocked by a worker-firm pair (wt, f) if wt /∈
ν(f), wt ∈ Ch(ν(f) ∪ {wt} , �∗f ), and f �wt ν(wt). A matching ν ∈ Ms is stable

if it is not blocked by any individual agent or any worker-firm pair. Let S(Ms) be
the set of stable matchings in Ms.

We will define a correspondence between matchings in the original many-to-many
model and matchings in the related many-to-one model as follows. We say that
matching µ ∈ M corresponds to matching ν ∈ Ms if f is the w’s most preferred
firm in µ(w), then ν(w1) = f, where w1 is the first copy of worker w. Analogously,
if f is the second w’s most preferred firm in µ(w), then ν(w2) = f, where w2 is the
second copy of worker w, and so forth. Also, if w does not fill his quota at µ(w),
i.e., |µ(w)| = r < sw, ν(wt) = ∅ for those copies wt of w, with t > r. Formally:

Let µ ∈M and wj ∈W be such that µ(wj) = {fi1 , fi2 , . . . , fir} , r ≤ sj and

{fi1} �wj {fi2} �wj . . . �wj {fir}.
Define,

φ :M→Ms,

by denoting φ(µ) ≡ φµ, as follows;

φµ(wtj) =

{
fit if fit ∈ µ(wj),
∅ if r < t ≤ sj .

(2)

φµ(fit) =
{
wtj | φµ(wtj) = fit

}
.

By definition, φµ is a matching.
Since each worker wj ∈ W has responsive preferences over 2F , we have that

φµ(wtj) �wj
φµ(wt+1

j ) for all t ∈ Ij . The next theorem states that the sets of stable
matchings of the many-to-many problem M, and its related many-to-one problem
Ms, are equivalent. Thus, we obtain a generalization of the result of Gale and
Sotomayor [5].13

Theorem 3.5. Let φ : M→Ms be defined as in (2). Let M = (F,W, s,�)
be a many-to-many problem such that workers’ preferences are responsive and let
Ms = (F,W s, s, (�∗f )f∈F , (�wt)wt∈W s) be its related many-to-one problem. Then,

µ ∈ M is stable if and only if φ(µ) ∈Ms is stable.

13Also see Roth and Sotomayor [15], Lemma 5.6.
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It is important to highlight that Theorem 3.5 does not require the condition of
substitutability for the firms’ preferences.

The proof of Theorem 3.5 will use the following lemmata:

Lemma 3.6. The function φ is injective.

Proof. Let µ and µ′ ∈M be such that µ 6= µ′. Consequently, there exists f ∈ F such
that µ(f) 6= µ′(f); that is, there exists w ∈ W such that, w ∈ µ(f) and w /∈ µ′(f).
Thus, by definition, there exist a copy of w, wt ∈ W s such that wt ∈ φµ(f) but,
wt /∈ φµ′(f). We thus get,

φµ(f) 6= φµ′(f). (3)

By the bilateral nature of µ, µ′ ∈M and definition of φ, φµ(wt) = f and φµ′(wt) 6=
f. Thus, φµ(wt) 6= φµ′(wt). Finally, the last inequality and (3) yield that φµ 6=
φµ′ .

Remark 2. Note that when firms can employ only one worker, the natural injec-
tive correspondence defined by Gale and Sotomayor [5] is a particular case of our
injective application φ :M→Ms.

Lemma 3.7. Let µ ∈ M be a stable matching. Then, φ(µ) ∈ Ms is a stable
matching.

Proof. Suppose that φ(µ) /∈ S(Ms) and denote ν ≡ φ(µ). We will consider the
following two cases:

Case 1. The matching ν is not individually rational in Ms.

(a) If wt ∈ W s blocks ν, ∅ �wt ν(wt). Let ft = ν(wt); hence by definition,
ft ∈ µ(w). We obtain ∅ �wt ft, and so ∅ �w ft.

Since |µ(w)| ≤ sw, we have |µ(w)\ {ft}| < sw. Since �w is responsive, µ(w)\
{ft} �w µ(w), so ft /∈ Ch(µ(w),�w). Finally, µ(w) 6= Ch(µ(w),�w); that is,
worker w ∈W blocks µ, which is impossible. Therefore, wt does not block ν.

(b) If f ∈ F blocks ν, ν(f) 6= Ch(ν(f),�∗f ). Note that

ν(f) =
{
w ∈W | wt ∈ ν(f)

}
= µ(f),

by the definition of φ. If wt ∈ W s is such that wt ∈ ν(f) but wt /∈ Ch(ν(f),�∗f ),

it follows that w ∈ µ(f) and from Lemma 3.3, w /∈ Ch(µ(f),�f ). Thus, µ(f) 6=
Ch(µ(f),�f ). That is, firm f ∈ F blocks µ, which contradicts our assumption.
Therefore, f does not block ν.

Case 2. The matching ν is individually rational but is blocked by a worker-firm
pair.

By assumption, there exists a pair (wtj , fi) which blocks ν; that is, wtj /∈ ν(fi),
and
(1) wtj ∈ Ch(ν(fi) ∪

{
wtj
}
,�∗fi),

(2) fi �wt
j
ν(wtj).

From (1) and Lemma 3.3, wj ∈ Ch(ν(fi) ∪
{
wtj
}
,�fi) and t < t′ for all wt

′

j ∈
ν(fi) ∪

{
wtj
}

.

Claim. ν(fi) ∪
{
wtj
}

= µ(fi) ∪ {wj} .
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Proof of Claim. Remember that

ν(fi) ∪
{
wtj
}

=
{
wj′ | ∃t ∈ Ij′ such that wt

′

j′ ∈ ν(fi) ∪
{
wtj
}}

.

(⊆) Let wj′ ∈ ν(fi) ∪
{
wtj
}
. If j′ 6= j, there exists t′ ∈ Ij′ such that wt

′

j′ ∈ ν(fi) ∪{
wtj
}
, hence wt

′

j′ ∈ ν(fi), thus wj′ ∈ µ(fi). Accordingly, wj′ ∈ µ(fi) ∪ {wj} .
If j′ = j, there exists t′ ∈ Ij such that wt

′

j ∈ ν(fi) ∪
{
wtj
}
. If t′ = t, we have

wj ∈ µ(fi) ∪ {wj} . Otherwise, if t′ 6= t, we have wt
′

j ∈ ν(fi) ∪
{
wtj
}
, and from (1)

and Lemma 3.3, t < t′, which gives ν(wt
′

j ) = fi. Then by (2), ν(wt
′

j ) �wj
ν(wtj),

thus t′ < t, contrary to t < t′. This proves that there does not exist t′ 6= t such that
wt

′

j ∈ ν(fi) ∪
{
wtj
}

.

Since wtj /∈ ν(fi), and there does not exist t′ 6= t such that wt
′

j ∈ ν(fi) ∪
{
wtj
}

,
so wj /∈ µ(fi). Therefore, wj ∈ µ(fi) ∪ {wj} .
(⊇) Let wj′ ∈ µ(fi) ∪ {wj} . If j′ = j, then wtj′ ∈ ν(fi) ∪

{
wtj
}

holds trivially;

hence, wj′ ∈ ν(fi) ∪
{
wtj
}
. Otherwise, if j′ 6= j, then wj′ ∈ µ(fi); that is, fi ∈

µ(wj′). Accordingly, there exists t′ such that wt
′

j′ ∈ ν(fi), which implies wj′ ∈
ν(fi) ∪

{
wtj
}

.

This establishes that,

wj ∈ Ch(µ(fi) ∪ {wj} ,�fi). (4)

Since wj /∈ µ(fi), then fi /∈ µ(wj). Suppose that ν(wtj) = fi′ for some i′ 6= i; thus,
fi′ ∈ µ(wj), then from condition (2) we have fi �wt

j
fi′ ; that is, fi �wj

fi′ ; since

�wj
is responsive. By Remark 1, we obtain:

fi ∈ Ch(µ(wj) ∪ {fi} ,�wj ). (5)

Finally, from (4) and (5), µ is blocked by a worker-firm pair (fi, wj), which is a
contradiction. Therefore, ν ∈ S(Ms).

By Lemma 3.6 the function φ is injective. However, the function φ is not sur-
jective. For example, let F = {f1, f2}, W = {w} and sw = 2, be such that w is
acceptable by f1 and f2, and w has the following responsive preference,

{f1, f2} �w {f1} �w {f2} �w ∅.
Consider the related many-to-one problem in which the worker w is replaced by two
copies of himself; then W s = {w1, w2}. Now, preferences of each wt are over F ∪ ∅,
and preferences of each fi are over W s ∪ ∅, for all t = 1, 2 and for all i = 1, 2. Each
copy has the same preferences over firms that are identical with those of w with a
quota of one, that is, {f1} �wt {f2} �wt ∅ for all t = 1, 2. In addition, each firm fi
has the following preferences:

{w1} �fi {w2} �fi ∅.
Let ν be a matching of the related many-to-one problem Ms

ν =

(
f1 f2
w2 w1

)
.

Let µ be a matching of the many-to-many problem M

µ =

(
{f1, f2}
w

)
.
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Then,

φµ =

(
f1 f2
w1 w2

)
.

Thus, ν 6= φµ. Since µ is the unique matching in M, we conclude that the function
φ is not surjective.

Next, we will consider the restriction of φ over the set of stable matchings, de-
noted by φS . The following lemma states that φS is a surjective function.

Lemma 3.8. The function φS : S(M)→ S(Ms) is surjective.

Proof. Fix ν ∈ S(Ms) and define for each fi ∈ F and wj ∈W

µ(fi) =
{
wj | ∃t ∈ Ij such that ν(wtj) = fi

}
and

µ(wj) =
{
ν(wtj) | t ∈ Ij

}
.

By definition, φS(µ) ≡ ν. We show that µ ∈ S(M). Suppose that µ /∈ S(M). We
will distinguish between two cases:

Case 1. The matching µ is not individually rational.

(a) If w ∈ W blocks µ, µ (w) 6= Ch (µ (w) ,�w) . Let f ∈ µ (w) but f /∈
Chw (µ (w) ,�w) , then µ (w) \ {f} �w µ (w) . Since |µ (w)| ≤ sw, we have
|µ (w) \ {f}| < sw. Then, since �w is responsive, ∅ �wt f for all t ∈ Iw. As
f ∈ µ (w) , there exists t ∈ Iw such that f = ν(wt). Since ∅ �wt ν(wt), worker
wt blocks the matching ν, which is a contradiction. Therefore, µ ∈ S(M).

(b) If f ∈ F blocks µ, µ (f) 6= Ch (µ (f) ,�f ) . Let w ∈ µ (f) but w /∈ Ch (µ (f) ,

�f ) . Then, there exists t ∈ Iw such that wt ∈ ν(f). We observe that µ(f) = ν(f).

Accordingly, w /∈ Ch
(
ν(f),�f

)
and thus, by Lemma 3.3, wt /∈ Ch(ν(f),�∗f ).

Finally, ν(f) 6= Ch(ν(f),�∗f ); that is, firm f blocks ν, which is a contradiction.

Therefore, µ ∈ S(M).

Case 2. The matching µ is individually rational but it is blocked by a worker-firm
pair (wj , fi); that is, fi /∈ µ(wj), and
(1) fi ∈ Ch(µ(wj) ∪ {fi} ,�wj

),
(2) wj ∈ Ch(µ(fi) ∪ {wj} ,�fi).

Since wj /∈ µ(fi), we have that for all t ∈ Ij , wtj /∈ ν(fi). By assumption, ν ∈
S(Ms), therefore ν is individually rational and, by Lemma 3.4, ν(fi) is a simple
set. Thus, ν(fi) ∪

{
wtj
}

is a simple set, which implies that, wtj ∈ ν(fi) ∪
{
wtj
}

and
wj ∈ Ch(µ(fi) ∪ {wj} ,�fi).

Claim. µ(fi) ∪ {wj} = ν(fi) ∪
{
wtj
}
.

Proof of Claim. Remember that ν(fi) ∪
{
wtj
}

= {wj′ | ∃t′ ∈ Ij′ such that wt
′

j′ ∈
ν(fi) ∪

{
wtj
}
}.

(⊆) Let wj′ ∈ µ(fi) ∪ {wj} . If j′ = j, then wtj′ ∈ ν(fi) ∪
{
wtj
}
, hence wj′ ∈

ν(fi) ∪
{
wtj
}
. Assume that j′ 6= j, then wj′ ∈ µ(fi). Accordingly, there exists

t′ ∈ Ij′ such that wt
′

j′ ∈ ν(fi), which implies wj′ ∈ ν(fi) ∪
{
wtj
}

.

(⊇) Let wj′ ∈ ν(fi) ∪
{
wtj
}
. If j′ = j, wj′ ∈ µ(fi) ∪

{
wtj
}
. Assume that j′ 6= j;

then, there exists t′ ∈ Ij′ such that wt
′

j′ ∈ ν(fi) ∪
{
wtj
}
, and so wt

′

j′ ∈ ν(fi); thus,

by definition, wj′ ∈ µ(fi). Accordingly, wj′ ∈ µ(fi) ∪
{
wtj
}
.
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We conclude from Lemma 3.3 that, for all t ∈ Ij ,

wtj ∈ Ch(ν(fi) ∪
{
wtj
}
,�∗f ). (6)

Since fi ∈ Ch(µ(wj) ∪ {fi} ,�wj
), fi /∈ µ(wj).

Assume first that |µ(wj)| = sj . Then, since �wj is responsive, from Remark 1,
there exists fi′ ∈ µ(wj) such that fi �wj fi′ . Thus, fi �wt

j
fi′ for all t ∈ Ij .

Since wj ∈ µ(fi′), this implies there exists t̂ ∈ Ij such that ν(wt̂j) = fi′ ; hence,

wt̂j ∈ ν(fi′). By Lemma 3.4, ν(fi) is a simple set for all fi ∈ F. Hence, there does

not exist t 6= t̂ such that wtj ∈ ν(fi′).
Since, fi �wt

j
fi′ for all t ∈ Ij , then

fi �wt̂
j
fi′ . (7)

We conclude from (6) and (7) that the pair (wt̂j , fi) blocks ν, which is a contradiction.
Finally, µ ∈ S(M).

Assume now that |µ(wj)| < sj . Then, since �wj
is responsive, from Remark 1,

fi �wj ∅. Also, there exists t′ ∈ Ij such that ν(wt
′

j ) = ∅ and fi �wj ∅, so fi �wt
j
∅

for all t ∈ Ij ; particularly,

fi �wt′
j
ν(wt

′

j ). (8)

We conclude from (6) and (8) that the pair (wt
′

j , fi) blocks ν, which is a contradic-
tion. Thus, µ ∈ S(M).

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. By Lemma 3.6, φ : M→Ms is injective. By Lemma 3.7,
the restriction φS : S(M) → S(Ms) is well-defined, and by Lemma 3.8, φS is
surjective. Therefore, φS is a bijective function and the result follows.

3.1.1. Existence of stable matchings under substitutability. We provide here an al-
ternative proof of the existence of stable matchings. The result is already known in
the literature.14

Theorem 3.9. Every many-to-many problem such that firms have substitutable
preferences and workers have responsive preferences, has a non-empty set of stable
matchings.

We will prove Theorem 3.9 using the application φS , defined before Lemma
3.8. Previously, we need the following lemma, which says that the modified firms’
preferences, �∗f , in the related many-to-one problem inherits substitutability.

Lemma 3.10. Assume f ’s preferences �f are substitutable in M. Then, f ’s pref-
erences �∗f are substitutable in Ms.

Proof. Fix f ∈ F and let S ⊆ W s be such that wtj , w
t′

j′ ∈ S, with wtj 6= wt
′

j′ , and

assume wtj ∈ Ch(S,�∗f ). We will distinguish between two cases:

Case 1. j 6= j′.

14Blair [2] shows that in a many-to-many matching model such that agents have susbstitutable
preferences, the set of stable matchings is non-empty.
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If wtj ∈ Ch(S,�∗f ) then, by Lemma 3.3, t ≤ t for all wtj ∈ S and wj ∈ Ch(S,�f ).

Since �f is substitutable, and wj , wj′ ∈ S are such that wj 6= wj′ ,

wj ∈ Ch(S\{wj′},�f ). (9)

Also,

wtj ∈ S\
{
wt

′

j′

}
. (10)

Finally, from (9), (10) and Lemma 3.3, we have that wtj ∈ Ch(S\
{
wt

′

j′

}
,�∗f ).

Case 2. j = j′.
By hypothesis t 6= t′ and wtj ∈ Ch(S,�∗f ). By Lemma 3.3, wt

′

j /∈ Ch(S,�∗f ) for all

t 6= t′. Since wtj ∈ S\
{
wt

′

j

}
, we conclude that Ch(S,�∗f ) ⊂ S\

{
wt

′

j

}
⊂ S. Hence

by a property of the choice set, established by Blair [2],15

Ch(S,�∗f ) = Ch(S\
{
wt

′

j

}
,�∗f )

Finally, since wtj ∈ Ch(S,�∗f ), we have wtj ∈ Ch(S\
{
wt

′

j

}
,�∗f ).

Proof of Theorem 3.9. Assume M is such that firms have substitutable preferences
and workers have responsive preferences. Then, Lemma 3.10 implies that in its
related many-to-one model, Ms, firms’ preferences are substitutable. But S(Ms)
is non-empty,16 and hence, by Theorem 3.5, we conclude that S(M) is non-empty,
which completes the proof.

4. Lattice Structure. We recall that a partially ordered set (L,�)17 define a
lattice if every two elements of L have a supremum (also called the least upper
bound or join) and an infimum (also called the greatest lower bound or meet).
Given a, b ∈ L, they are denoted by a ∨ b and a ∧ b, respectively.

Let (L,�) and (L′,�′) be two lattices. A function f : L −→ L′ is a lattice
isomorphism if, for all a, b ∈ L,

1. f(a ∨ b) = f(a) ∨′ f(b).
2. f(a ∧ b) = f(a) ∧′ f(b).
3. f is bijective.

Two lattices are isomorphic if there exists a lattice isomorphism f : L −→ L′.
In this case, we say that (L,�) and (L′,�′) are lattices equivalent. A function
f : L −→ L′ is an isomorphism of ordered sets if and only if f is bijective and f as
well as f−1 preserve the order.

The following two results were established by Birkhoff [1].

Lemma 4.1. A function f : L −→ L′ is a lattice isomorphism if and only if the
function f is an isomorphism of ordered sets.

Lemma 4.2. Let (L,�) be a lattice and f : L −→ L′ be an isomorphism of ordered
sets. Then, (L′,�′) is a lattice. Also, by Lemma 4.1, they are isomorphic lattices.

15Let A and B be subsets of agents and let i be an agent. If Chi(A) ⊂ B ⊂ A, then Chi(B) =

Chi(A).
16See Roth and Sotomayor [15] (Theorem 6.5). Without the restricction of substitutability, it is

easy to construct examples of preference profiles with the property that the set of stable matchings
is empty (see, for instance, Example 2.7 in Roth and Sotomayor [15]).

17We denote by � any partial order.
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In the previous section we defined the function φ mapping matchings of the
original problem M into matchings of the related problem Ms and we proved that
both problems have sets of equivalent stable matchings. In this section, using the
function φS , we will establish that the set of stable matchings of M has a lattice
structure.18

Following Blair [2], let µ1 and µ2 two individually rational matchings for all firms
in the many-to-many problem M. Define the partial order �BF , by setting

µ1 �BF µ2 ⇐⇒ Ch(µ1(f) ∪ µ2(f),�f ) = µ1(f) for all f ∈ F.
Similarly, we define the partial order �BW for all workers in the many-to-many model
M.

Let ν1 and ν2 two individually rational matchings for all firms in the related
many-to-one model Ms. Define the partial order �∗BF , by setting

ν1 �∗BF ν2 ⇐⇒ Ch(ν1(f) ∪ ν2(f),�∗f ) = ν1(f) for all f ∈ F.
Finally, we define the partial order �W s in the related many-to-one model Ms, by
setting

ν1 �W s ν2 ⇐⇒ ν1(w) �w ν2(w) for all w ∈W s.

Theorem 4.3. Let M = (F,W, s,�) be a many-to-many matching problem such
that firms have substitutable preferences and workers have responsive preferences.
Then, the partial orders �BF and �BW endow the set of stable matchings with two
lattice structures.

Corollary 1. Let M = (F,W, s,�) be a many-to-many matching problem such that
firms have substitutable preferences and workers have responsive preferences. Then,
i) (S(M),�BF ) and (S(Ms),�∗BF ) are lattices equivalent.
ii) (S(M),�BW ) and (S(Ms),�WS) are lattices equivalent.

We will prove Theorem 4.3 using the application φS . Since φS is a bijective
function, the function φ−1S : S(Ms)→ S(M) is bijective also and it is given by:[

φ−1S (ν)
]

(fi) =
{
wj | ∃t ∈ Ij such that ν(wtj) = fi

}[
φ−1S (ν)

]
(wj) =

{
ν(wtj) | t ∈ Ij

}
.

Theorem 4.4. The function φ−1S : S(Ms) → S(M) is an isomorphism of ordered
sets.

The proof of Theorem 4.4 will use lemmata below:

Lemma 4.5. Let ν, ν′ ∈ S(Ms). Then, for all f ∈ F,
ν(f) �∗Bf ν′(f) if and only if φ−1S (ν)(f) �Bf φ−1S (ν′)(f).

Proof. (=⇒) From Theorem 3.5, there exist µ, µ′ ∈ S(M) such that, for all f ∈ F[
φ−1S (ν)

]
(f) = µ(f) (11)[

φ−1S (ν′)
]

(f) = µ′(f). (12)

By definition of the Blair’s partial ordering,

ν(f) �∗Bf ν′(f) if and only if Ch(ν(f) ∪ ν′(f),�∗f ) = ν(f). (13)

18In the many-to-many problem with substitutable preferences Blair [2] proved that the set of
stable matchings has a lattice structure. We obtain the same result but, we prove it using the

function φS .
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We denote T = µ(f) ∪ µ′(f) and define T =
{
wtj | wj ∈ µ(f) ∪ µ′(f)

}
.

Claim. T = ν(f) ∪ ν′(f).

Proof of Claim. Let wtj ∈ T. Then, wj ∈ µ(f) ∪ µ′(f). If wj ∈ µ(f), by (11) there

exist t ∈ Ij such that wtj ∈ ν(f). Hence, wtj ∈ ν(f) ∪ ν′(f). If wj ∈ µ′(f), we

conclude from (12), in the same manner, that wtj ∈ ν(f)∪ ν′(f). In the other hand,

let wtj ∈ ν(f) ∪ ν′(f). If wtj ∈ ν(f), we conclude from (11) that wj ∈ µ(f), thus

wj ∈ µ(f) ∪ µ′(f). Hence, wtj ∈ T. Suppose that wtj ∈ ν′(f), in the same manner,

we can see that wj ∈ µ(f) ∪ µ′(f). Then, wtj ∈ T.

We need to prove that µ(f) �Bf µ′(f), which is equivalent to show that

Ch(µ(f) ∪ µ′(f),�f ) = µ(f)

holds.
(⊇) Let wj ∈ µ(f) and so, there exists t ∈ Ij such that wtj ∈ ν(f), but by (13)

Ch(ν(f) ∪ ν′(f),�∗f ) = ν(f), which implies that wtj ∈ Ch(T,�∗f ). By definition of

the choice set, wj ∈ Ch(T ,�f ); that is, wj ∈ Ch(µ(f) ∪ µ′(f),�f ).
(⊆) Suppose that wj ∈ Ch(µ(f) ∪ µ′(f),�f ); that is, wj ∈ µ(f) ∪ µ′(f). If

wj ∈ µ(f), then the inclusion follows. In the other case, if wj ∈ µ′(f)\ µ(f), by
definition of φS , there exists t ∈ Ij such that wtj ∈ ν′(f) and wtj /∈ ν(f) for all

t ∈ Ij ; that is, from (13), wtj /∈ Ch(ν(f)∪ν′(f),�∗f ) for all t ∈ Ij . Thus, Lemma 3.3

and Claim above would imply that wj /∈ Ch(µ(f) ∪ µ′(f),�f ), which is impossible
by hypothesis. It might as well be the case that wj ∈ Ch(µ(f)∪µ′(f),�f ) but then,

would there exist wt
′

j ∈ ν(f)∪ν′(f) with t′ < t such that wt
′

j ∈ Ch(ν(f)∪ν′(f),�∗f );

that is, wt
′

j ∈ ν′(f) but also wtj ∈ ν′(f), which is again a contradiction, because
ν′(f) is a simple set, since ν′ ∈ S(Ms). Finally, wj ∈ µ(f). We conclude that

Ch(T ,�f ) = µ(f).

(⇐=) We will show that ν(f) �∗Bf ν′(f); that is, Ch(T,�∗f ) = ν(f).

Let wtj ∈ Ch(T,�∗f ). By Lemma 3.3, wj ∈ Chf (T ,�f ) and t ≤ t′ for all wt
′

j ∈ T.
Then, by hypothesis, wj ∈ µ(f). Hence by definition wtj ∈ ν(f), hence,

Ch(T,�∗f ) ⊆ ν(f). (14)

To prove the other inclusion, suppose that for some t ∈ Ij , wtj ∈ ν(f). By hypothesis

ν(f) is a simple set; that is, there does not exist t′ 6= t such that wt
′

j ∈ ν(f). Then,

by definition of the function φS , wj ∈ µ(f), so by hypothesis wj ∈ Ch(T ,�f ) and

wtj ∈ ν(f) ∪ ν′(f). We suppose there exists t′ 6= t such that wt
′

j ∈ ν′(f)\ν(f);
that is, wj ∈ µ′(f) but wj /∈ µ(f), which contradicts the hypothesis. Thus, there

does not exist t′ 6= t such that t′ < t and wt
′

j ∈ ν′(f). Finally by Lemma 3.3,

wtj ∈ Ch(T,�∗f ); that is,

ν(f) ⊆ Ch(T,�∗f ). (15)

We conclude from (14) and (15) that Ch(T,�∗f ) = ν(f).

Lemma 4.6. Let ν, ν′ ∈ S(Ms). Then, for all w ∈W and wt ∈W s,[
φ−1S (ν)

]
(w) �Bw

[
φ−1S (ν′)

]
(w) if and only if ν(wt) �wt ν′(wt).

Proof. (=⇒) From Theorem 3.3, there exist µ, µ′ ∈ S(M) such that for all w ∈W,[
φ−1S (ν)

]
(w) = µ(w) and

[
φ−1S (ν′)

]
(w) = µ′(w). By hypothesis, µ(w) �Bw µ′(w),
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which is equivalent to Ch(µ(w) ∪ µ′(w),�w) = µ(w); that is, µ(w) �w T for all
T ⊆ µ(w) ∪ µ′(w).

Since �wj
is responsive, there do not exist f ′ ∈ µ′(w)\µ(w) and f ∈ µ(w) such

that f ′ �w f, otherwise we will have |µ(w)\ {f}| < sw and µ(w)\ {f} ∪ {f ′} �w
µ(w), which is impossible since µ(w)\ {f}∪{f ′} ⊂ µ(f)∪µ′(f). Therefore, f �w f ′
for all f ′ ∈ µ′(w)\µ(w) and f ∈ µ(w). Then, f �wt f ′ for all t ∈ Iw; that is,
ν(wt) �wt ν′(wt).

(⇐=) If fit = ν(wt) �wt ν′(wt) = fi′t , we have fit �w fi′t . By hypothesis µ, µ′ ∈
S(M), |µ (w)| ≤ sw and |µ′ (w)| ≤ sw, so |µ (w) \ {fit}| < sw and

∣∣µ′ (w) \
{
fi′t
}∣∣ <

sw. Also, we know that �wj
is responsive. Then, µ (w) �wj

µ (w) \ {fit} ∪
{
fi′t
}
.

Since µ (w) \ {fit} ∪
{
fi′t
}
⊂ µ(f) ∪ µ′(f), we have that

Ch(µ(w) ∪ µ′(w),�w) = µ(w).

Proof of Theorem 4.4. By Theorem 3.5, the mapping φS : S(M) → S(Ms) is bi-
jective, therefore, φ−1S is bijective too. In addition, by Lemmata 4.5 and 4.6, we

have that φ−1S preserves the Blair partial order of the agents. Then, by definition,

φ−1S : S(Ms)→ S(M) is an isomorphism of ordered sets.

We are ready now to prove Theorem 4.3

Proof of Theorem 4.3. By Theorem 4.4, we have proved that S(M) and S(Ms) are
isomorphic as ordered sets. Also, by Theorem 10 of Echenique and Oviedo [3], we
know that (S(Ms),�∗BF ) and (S(Ms),�WS) are non-empty lattices. We conclude
from Lemma 4.2 that (S(M),�BF ) and (S(M),�BW ) have lattice structures as well.
Finally, from Lemma 4.1 it follows that the sets of stable matchings of both problems
are isomorphism lattices.

Proof of Corollary 1. By Theorem 4.4, φ−1S : S(Ms)→ S(M) is an isomorphism of
ordered sets. Moreover, by Theorem 4.3, (S(M),�BF ) and (S(M),�BW ) have lattice
structures. Finally, from Lemma 4.1 it follows that i)(S(M),�BF ) and (S(Ms),�∗BF )
are lattices equivalent, and ii)(S(M),�BW ) and (S(Ms),�WS) are lattices equiva-
lent.

Corollary 2. Let µ, µ′ ∈ S(M). If for some w we have that µ(w) �Bw µ′(w), then
f �w f ′ for all f ∈ µ(w) and f ′ ∈ µ′(w)\µ(w).

Proof. If µ(w) �Bw µ′(w), then Ch(µ(w)∪µ′(w),�w) = µ(w), since�w is responsive,
therefore, there is no f ′ ∈ µ′(w)\µ(w) and f ∈ µ(w) such that f ′ �w f. Otherwise
µ(w)\ {f} ∪ {f ′} �w µ(w), contradicting the hypothesis. Thus, f �w f ′ for all
f ∈ µ(w) and f ′ ∈ µ′(w)\µ(w).

5. Final Remarks. This paper contributes to the literature by proposing a new
tool (the bijection φS) to prove results in the many-to-many model that follow from
results in the many-to-one model. In particular, we gave an alternative proof of
the non-emptiness and lattice structure of the set of stable matchings in the many-
to-many model with substitutable preferences for firms, and responsive preferences
for workers. The proof follows from results that hold in the related many-to-one
model. We finish the paper with two final remarks.

First, Lemma 3.10 shows that, if the preference relation �f is substitutable in
the model M, then the preference relation �∗f is substitutable in the model Ms.
Nevertheless, if we assume that the preference relation �f is responsive in the
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model M, then we can not assure that the preference relation �∗f is responsive in
the model Ms. The following example shows this possibility:

Example 1 (Continued). Let F = {f1, f2}, W = {w1, w2} and assume that
the quota of each agent is equal to two. The agents have the following responsive
preferences over the other side of the market:

{w1, w2} �fi {w1} �fi {w2} �fi ∅ for i = 1, 2.

{f1, f2} �wj
{f1} �wj

{f2} �wj
∅ for j = 1, 2.

Consider the related many-to-one problem in which each worker wj is replaced
by two positions (copies) of himself, then W s = {w1

1, w
2
1, w

1
2, w

2
2}. Now, preferences

of each wtj are over F ∪∅, and preferences of each fi are over W s∪∅. Each copy has
the same preferences over firms that are identical with those of wj with a quota of
one; that is, {f1} �wt

j
{f2} �wt

j
∅ for all j = 1, 2 and t = 1, 2. For each firm fi in

the related many-to-one problem, we consider the modified preference relation �∗f
over 2W

s

:{
w1

1, w
1
2

}
�∗fi

{
w1

1, w
2
2

}
�∗fi

{
w2

1, w
2
2

}
�∗fi {w

1
1} �∗fi {w

2
1} �∗fi {w

1
2} �∗fi {w

2
2} �∗fi ∅.

Let T =
{
w2

1

}
. Since {w1

1} �∗fi {w
2
2} holds, if the preference relation �∗fi is respon-

sive over 2W
s

we have that T ∪ {w1
1} �∗fi T ∪ {w

2
2}; that is,{

w1
1, w

2
1

}
�∗fi

{
w2

1, w
2
2

}
,

But, this is not true since
{
w1

1, w
2
1

}
is not a simple set, therefore

∅ �∗fi
{
w1

1, w
2
1

}
which implies that the set

{
w2

1, w
2
2

}
is not acceptable for the firm fi, which is a

contradiction. �

Gale and Sotomayor [5] proved that there exists a bijection between the set of
stable matchings of the colleges admission problem (with responsive preferences)
and the set of stable matchings of its related marriage problem. We prove the
existence of a bijection, φS , between the set of stable matchings of a many-to-
many matching problem (such that the workers preferences are responsive and firms
preferences are substitutable), and the set of stable matchings of its related many-
to-one model. This function allows us to give an alternative proof of the result
which says that S(M) is non-empty and has a lattice structure. Nevertheless, if
M is an instance such that all agents have responsive preferences, in Example 1
(Continued), we have showed that the partial order �∗f defined over 2W

s

is not
necessarily responsive in Ms. Then, since the substitutability condition is weaker
than the responsiveness condition, we can not assure the existence of a bijection
between the sets of stable matchings of the many-to-many model and its related
marriage problem.

Second, using the bijection φS , it would be interesting to ask whether one could
define two binary operations in a many-to-many model as a consequence of the result
that hold in the related many-to-one model. Thus, using these binary operations I
would prove that the set of stable matchings has a lattice structure. In addition,
Sotomayor [16] defined, in a many-to-many model, a new concept of stability called
setwise stability. A matching µ is setwise stable if it is individually rational and
cannot be blocked by a coalition that forms new links only among its members, but
may preserve its links to agents outside of the coalition. Sotomayor [10] proposes
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to find a sufficient condition for the existence of setwise stable matchings. Thus, it
would be interesting to ask, using the bijection φS , whether one could prove that
the set of setwise stable matchings is non-empty. But, we leave the answers of these
questions for further research.
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