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Abstract. Let k be a commutative ring. We find and characterize a new
family of twisted planes (i. e. associative unitary k-algebra structures on the
k-module k[X, Y ], having k[X] and k[Y ] as subalgebras). Similar results are
obtained for the k-module of two variables power series k[[X, Y ]].

Introduction

Let k be a commutative ring and let A, B be unitary k-algebras. By definition,
a twisted tensor product of A with B (over k) is an algebra structure defined on
A ⊗k B, with unit 1 ⊗k 1, such that the canonical maps iA : A → A ⊗k B and
iB : B → A⊗k B are algebra maps satisfying a⊗b = iA(a)iB(b). This structure has
been formerly studied by many people with different motivations (see for instance
[Ca], [C-S-V], [G-G], [Ma], [Tam], [VD-VK]). On one hand it is the most general
solution to the problem of factorization of structures in the setting of associative
algebras. Consequently, a number of examples of classical and recently defined
constructions in ring theory fits into this construction. For instance, Ore extensions,
skew group algebras, smash products, etcetera (for the definition and properties of
these structures we refer to [Mo] and [Ka]). On the other hand it has been proposed
as the natural representative for the cartesian product of noncommutative spaces,
this being based on the existing duality between the categories of algebraic affine
spaces and commutative algebras, under which the cartesian product of spaces
corresponds to the tensor product of algebras. And last, but not least, twisted
tensor products arise as a tool for building algebras starting with simpler ones.

Given algebras A and B, a basic problem is to determine all the twisted tensor
products of A with B and classify them up to a natural equivalence relation. A
(noncommutative) polynomial extension of a k-algebra B is a twisted tensor product
of a polynomial ring with B. A twisted plane is such an extension in which B is
also a polynomial algebra k[X]. That is, an associative unitary algebra C, with
underlying k-module k[X, Y ], such that:

- the natural inclusions ik[X] : k[X] → C and ik[Y ] : k[Y ] → C are algebra
maps,

- ik[X](Xm)ik[Y ](Y n) = XmY n for each n,m ≥ 0.

For instance, Ore extensions of k[X] are examples of twisted planes. The aim of this
paper is to begin the study of the polynomial extensions, with emphasis in the prob-
lem of the classification of the twisted planes. Actually, we do not solve completely
this problem in the present work, but we give the first step on having found a new
family of twisted planes. Besides the twisted polynomial extensions, in this article
we also consider twisted extensions of the power series ring k[[X]], finding a new
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family of twisted tensor products of k[[X]] with k[[Y ]]. Indeed, the natural setting
to deal with adelically complete algebras such as k[[X]] is the monoidal category of
filtered k-modules which are complete with respect to the induced topology. Con-
sequently, in this case we look for adelically complete algebras C, with underlying
topological k-module k[[X,Y ]], such that:

- the natural inclusions ik[[X]] : k[[X]] → C and ik[[Y ]] : k[[Y ]] → C are con-
tinuous algebra maps,

- ik[[X]](Xm)ik[[Y ]](Y n) = XmY n for each n,m ≥ 0.

From now on we assume implicitly that all the maps are k-linear maps, all the
algebras are over k, and the tensor product over k is denoted ⊗, without any
subscript.

The paper is organized as follows: In Section 1 we have compiled without
proofs some of the standard facts on twisted tensor products, thus making our
exposition self-contained. In particular we recall the definition of a twisting map
s : A ⊗ B → B ⊗ A and we establish the bijective correspondence s 7→ B ⊗s A
between twisting maps and twisted tensor products. We also set up notation and
terminology. In Section 2 we begin the study of the noncommutative polynomial
extensions. Consider an algebra A and maps αj : A → A (j ≥ 0). In Theorem 2.1,
we determine necessary and sufficient conditions for the existence of a (necessarily
unique) twisting map s : k[Y ]⊗A → A⊗ k[Y ] such that

s(Y ⊗ a) =
∞∑

j=0

αj(a)⊗ Y j .

When αj = 0 for all j ≥ 2, then we reobtain the familiar conditions to build an
Ore extension of A. That is, α1 must be an algebra endomorphism and α0 must
be an (α1, id)-derivation. After that we give several examples, and later on, in
Theorem 2.7 and Corollary 2.8, we establish a method to construct a twisting map
with α0 = 0 and α1 = id beginning with a locally nilpotent derivation. Section 3 is
devoted to the study of twisted planes. Theorem 3.1 and 3.4 are two of the main
results of this paper. Applying them, in Corollary 3.6 we obtain all the twisting
maps

s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ]
such that α0 = 0, α1 is the evaluation at an element of k and {n : αn 6= 0} is finite.
The aim of Section 4 is to determine all the twisting maps

s : k[Y ]⊗ k[t]/〈t2〉 → k[t]/〈t2〉 ⊗ k[Y ].

To do this we first study the twisted tensor products k[t]/〈t2〉⊗sA, then we consider
in detail the case A = k[Y ], and use that s is a twisting map if and only if τ ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤τ
is, where τ denotes the flip. Finally, in Section 5 we begin the study of the twisted
tensor products of the power series ring k[[Y ]] with an algebra A, in the monoidal
category of complete filtered k-modules. In this case, each map

s : k[[Y ]]⊗̂A → A⊗̂k[[Y ]]

(where ⊗̂ denotes the completed tensor product over k) is also determined by a
family of maps αj : A → A (j ≥ 0), but the conditions that these maps must
satisfy to guarantee that s is a twisting map, which are found in Theorem 5.3,
are somewhat different from those required when dealing with noncommutative
polynomial extensions. In Theorem 5.4 we give a version for complete algebras of
Theorem 2.7, but the main result of this section, and one of the main results of the
paper, is Theorem 5.6, in which we obtain all the twisting maps

s : k[[Y ]]⊗̂A → A⊗̂k[[Y ]]
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with α0 = 0.
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1. Preliminaries

In this section we review some of the basic facts about twisted tensor products.
For their proofs we refer to [C-S-V], [VD-VK] and [C-I-M-Z]. Given an algebra A
we let ηA and µA denote the unit and the multiplication maps of A, respectively.

Let A and B be algebras. A twisted tensor product of A with B is an algebra
structure on the k-module A⊗B, such that the canonical maps

iA : A → A⊗B and iB : B → A⊗B

are algebra homomorphisms and µ ¨§¦¥¡¢£¤(iA ⊗ iB) = idA⊗B , where µ denotes the multi-
plication map of the twisted tensor product.

Assume we have a tensor product of A with B. Then, the map

s : B ⊗A → A⊗B,

define by s := µ ¨§¦¥¡¢£¤(iB ⊗ iA), satisfies:

(1) s ¨§¦¥¡¢£¤(ηB ⊗A) = A⊗ ηB and s ¨§¦¥¡¢£¤(B ⊗ ηA) = ηA ⊗B,
(2) s ¨§¦¥¡¢£¤(µB ⊗A) = (A⊗ µB) ¨§¦¥¡¢£¤(s⊗B) ¨§¦¥¡¢£¤(B ⊗ s),
(3) s ¨§¦¥¡¢£¤(B ⊗ µA) = (µA ⊗B) ¨§¦¥¡¢£¤(A⊗ s) ¨§¦¥¡¢£¤(s⊗A).

A map satisfying these conditions is called a twisting map. Conversely, if

s : B ⊗A → A⊗B

is a twisting map, then A⊗B becomes a twisted tensor product via

µs := (µA ⊗ µB) ¨§¦¥¡¢£¤(A⊗ s⊗B).

This algebra will be denoted A⊗s B. Furthermore, these constructions are inverse
one of each other.

The twisted tensor product A⊗s B has the following universal property: Given
algebra maps f : A → C and g : B → C such that

µC
¨§¦¥¡¢£¤(g ⊗ f) = µC

¨§¦¥¡¢£¤(f ⊗ g) ¨§¦¥¡¢£¤s,
there is a unique morphism of algebras h : A⊗s B → C satisfying

f = h ¨§¦¥¡¢£¤iA and g = h ¨§¦¥¡¢£¤iB .

Indeed, it is easy to check that h = µC
¨§¦¥¡¢£¤(f ⊗ g).

The twisting maps are the objects of a category. Let s : B ⊗ A → A ⊗ B and
t : D ⊗ C → C ⊗ D be twisting maps. A morphism (f, g) : s → t is a pair of
morphism of algebras f : A → C and g : B → D such that

t ¨§¦¥¡¢£¤(g ⊗ f) = (f ⊗ g) ¨§¦¥¡¢£¤s.
The composition is the evident one. Two twisting maps s, t : B ⊗ A → A ⊗ B are
said to be equivalent if they are isomorphic. That is, if there exist automorphisms
f : A → A and g : B → B such that t = (f−1 ⊗ g−1) ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤(g ⊗ f).
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The following result is useful to check that a map s : B⊗A → A⊗B is a twisting
map, and will be used implicitly in this paper.

Proposition 1.1. Let s : B⊗A → A⊗B be a map satisfying conditions (1) and (2).
If (bi)i∈I generates B as an algebra and

s(bi ⊗ aa′) = (µA ⊗B) ¨§¦¥¡¢£¤(A⊗ s) ¨§¦¥¡¢£¤(s⊗A)(bi ⊗ a⊗ a′)

for all a, a′ ∈ A and each index i, then s is a twisting map.

In the last section of this paper we will consider twisting maps between complete
filtered algebras. Hence, we will work in the monoidal category CMod, of complete
filtered k-modules, where k is a commutative ring. An object of CMod is a k-module
M endowed with a filtration

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ,

such that each Mi is a k-module and M is complete with respect to the topology
induced by the filtration. A morphism in CMod is a continuous map f : M → N
(namely, a map f satisfying the requirement that for each i ≥ 0 there exists ni

such that f(Mni
) ⊆ Ni). The tensor product of M with N in CMod, denoted by

M⊗̂N , is the completation of the usual tensor product M ⊗N , with respect to the
topology induced by the filtration

(M ⊗N)i =
∑

r+s=i

(Mr ⊗Ns),

where  : Mr ⊗Ns → M ⊗N is the canonical map.
Standard modules are considered as objects of CMod via the filtration

M = M0 ⊇ 0 = 0 = · · · (Mi = 0 for all i > 0).

The power series ring k[[Y ]] is an algebra in CMod via the usual filtration

K[[Y ]] ⊇ Y k[[Y ]] ⊇ Y 2k[[Y ]] ⊇ · · · .

Moreover, the completed tensor product k[[Y ]]⊗̂M is canonically isomorphic to
M [[Y ]], for each standard module M .

All the discussion preceding Proposition 1.1 is valid for arbitrary monoidal cat-
egories.

2. Non-commutative polynomial extensions

This section is devoted to the study of the twisting maps k[Y ]⊗A → A⊗ k[Y ],
where A is an arbitrary algebra. Given a family of maps (αj : A → A)j≥0 and
indices n1, . . . , nr ≥ 0, we set |n1, . . . , nr| = n1+· · ·+nr and αn1...nr = αn1

¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤αnr .
Moreover we write

γ
(0)
j = δ0j id and γ

(r)
j =

∑

|n1,...,nr|=j

αn1...nr for r > 0,

where δ0j denotes the symbol of Kronecker. Note that γ
(1)
j = αj .

Theorem 2.1. Let A be an algebra and s : k[Y ] ⊗ A → A ⊗ k[Y ] a twisting map.
The equation

s(Y ⊗ a) =
∞∑

j=0

αj(a)⊗ Y j ,

defines a family of maps αj : A → A, which satisfies:

(1) For each a ∈ A there exists j0 ≥ 0, such that αj(a) = 0 whenever j > j0.
(2) αj(1) = δj1.
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(3) For all j ≥ 0 and all a, b ∈ A,

(2.1) αj(ab) =
∞∑

r=0

αr(a)γ(r)
j (b).

Moreover,

(2.2) s(Y r ⊗ a) =
∞∑

j=0

γ
(r)
j (a)⊗ Y j

for all r ≥ 0 and a ∈ A. Conversely, given maps αj : A → A (j ≥ 0) satisfying
(1)–(3), the formula (2.2) defines a twisting map.

Proof. Let s be a twisting map. The formula for s(Y r ⊗ a) can be easily checked
by induction on r, using that s(1⊗ a) = a⊗ 1 and the compatibility of s with the
multiplication of k[Y ]. Item (1) is immediate and items (2) and (3) are consequences
of the compatibility of s with the unit and the multiplication of A. Conversely,
assume we have a family of maps (αj)j≥0 satisfying (1), (2) and (3). Let

f : A[Y ] → A[Y ]

be the map given by f(aY j) =
∑∞

i=0 αi(a)Y i+j , which is well defined by (1). Since
fr(a) =

∑∞
j=0 γ

(r)
j (a)Y j and obviously fr(a) ∈ A[Y ], for each a ∈ A and r > 0,

there exists n ≥ 0 such that γ
(r)
j (a) = 0 whenever j > n. This establishes the

well-definition of formula (2.2). We leave the proof that s is a twisting map to the
reader. ¤

Remark 2.2. If s : k[Y ] ⊗ A → A ⊗ k[Y ] is a twisting map, then ker(α0) is a
subalgebra of A. Moreover,

- If α0 = 0, then α1 is a endomorphism of algebras.
- Let ν > 1. If α0 = 0 and αj = 0 for 1 < j < ν, then

αν(ab) = α1(a)αν(b) + αν(a)αν
1(b).

Example 2.3. If α : A → A is an algebra endomorphism and δ : A → A is an
α-derivation (that is δ(ab) = δ(a)b+α(a)δ(b)), then there is a unique twisting map
s : k[Y ]⊗A → A⊗ k[Y ] such that

s(Y ⊗ a) = α(a)⊗ Y + δ(a)⊗ 1 for all a ∈ A.

Example 2.4. Let A = k[t]/〈t2〉. Consider the family of maps (αj : A → A)j≥0,
defined by

α0 = 0, α1 = id, α2(λ + µt) = µt and αj = 0 for j > 2.

The formula s(Y ⊗ a) = α1(a)⊗ Y + α2(a)⊗ Y 2 defines a twisting map.

Let α : A → A be an algebra automorphism and let (βi : A → A)i≥1 be a family
of maps. For i1, . . . , il ≥ 1, let

β(i1,...,il) = βi1
¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤βi2

¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤βil−2
¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤βil−1

¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤βil

Note that β(i) = βi. If i1, . . . , il = 1 we will write β
(l)
(1) instead of β(1,...,1). In

particular β
(1)
(1) = β(1) = β1. We also write β

(0)
(1) = α.

Lemma 2.5. Let (αj : A → A)j≥0 be the family of maps defined by α0 = 0, α1 = α
and

αj =
j−1∑

l=1

∑

|i1,...,il|=j−1

β(i1,...,il) for j ≥ 2.
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Then, for all j ≥ r,

γ
(r)
j = L +

∑
n1,...nr≥0

|n1,...,nr|=j−r

β
(n1)
(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) ,

where L is sum of compositions of α’s, α−1’s and βi’s, in which at least one βi with
i > 1, appears.

Proof. Since

αj = β
(j−1)
1 +

j−2∑

l=1

∑

|i1,...,il|=j−1

β(i1,...,il) for all j ≥ 1,

we have

γ
(r)
j =

∑

|n1,...,nr|=j

αn1...nr

= L +
∑

|n1,...,nr|=j

β
(n1−1)
(1)

¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr−1)
(1) ,

= L +
∑

n1,...nr≥0
|n1,...,nr|=j−r

β
(n1)
(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) ,

as desired. ¤

Let A be an algebra and ϕ, ψ endomorphisms of A. Recall that a map d : A → A
is a (ϕ,ψ)-derivation if

d(ab) = d(a)ψ(b) + ϕ(a)d(b) for all a, b ∈ A.

Lemma 2.6. For each i ≥ 1, let βi : A → A be an (α, αi+1)-derivation. Assume
that if i + i′ ≥ 3, then αr(βi(a))βi′(b) = 0 for all r ∈ Z and a, b ∈ A. We have:

(1) β(i1,...,il)(a)L(b) = 0, where L is as in Lemma 2.5.
(2) If some iu > 1 and some nv > 0, then

β(i1,...,il)(a)αh ¨§¦¥¡¢£¤β1(b) = αh ¨§¦¥¡¢£¤β1(a)β(i1,...,il)(b) = 0.

(3) If some iu > 1, then

β(i1,...,il) is an (α, αj)-derivation,

where j = 1 + i1 + · · ·+ il.

Proof. (1) let f1
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv, where fi = {α, α−1, β1, β2, . . . } be a term of L. Let i0 be

the least i such that fi = βj with j > 1. By definition β(i1,...,il)(a) = βi1(a
′), where

a′ = α−1(β(i2,...,il)(a)). If i0 = 1, then

βi1(a
′)

(
f1
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b)

)
= 0,

by hypothesis. The general case follows by induction on i0 using that if f1 = α±1,
then

βi1(a
′)f1
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b) = f1

(
f−1
1
¨§¦¥¡¢£¤βi1(a

′)f2
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b)

)

and if f1 = β1, then

βi1(a
′)f1
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b) = β1

(
α−1 ¨§¦¥¡¢£¤βi1(a

′)f2
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b)

)

+ α2
(
α−2 ¨§¦¥¡¢£¤β1

¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤βi1(a
′)f2
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤fv(b)

)
.

(2) It is similar to (1).
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(3) We make the proof by induction on l. First assume that u > 1. Then, by the
inductive hypothesis,

β(i1,...,il)(ab) = βi1
¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤β(i2,...,il)(ab)

= βi1
¨§¦¥¡¢£¤α−1

(
β(i2,...,il)(a)α1+i2+···+il(b) + α(a)β(i2,...,il)(b)

)

= β(i1,...,il)(a)α1+i1+···+il(b) + β(i2,...,il)(a)βi1
¨§¦¥¡¢£¤αi2+···+il(b)

+ βi1(a)αi1 ¨§¦¥¡¢£¤β(i2,...,il)(b) + α(a)β(i1,...,il)(b)

= β(i1,...,il)(a)α1+i1+···+il(b) + α(a)β(i1,...,il)(b),

where the last equality follows from the fact that, by item (2),

β(i2,...,il)(a)βi1
¨§¦¥¡¢£¤αi2+···+il(b) = βi1(a)αi1 ¨§¦¥¡¢£¤β(i2,...,il)(b) = 0.

Assume now that u = 1. Then, arguing as above we obtain,

β(i1,...,il)(ab) = β(i1,...,il−1)
¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤βil

(ab)

= β(i1,...,il)(a)α1+i1+···+il(b) + α(a)β(i1,...,il)(b),

as desired. ¤

Theorem 2.7. Let α : A → A be an algebra automorphism. For each i ≥ 1, let
βi : A → A be an (α, αi+1)-derivation. If

(1) αr(βi(a))βi′(b) = 0 for all r ∈ Z and a, b ∈ A whenever i + i′ ≥ 3,
(2) For all a ∈ A there is n ∈ N such that

j∑

l=1

∑

|i1,...,il|=j

β(i1,...,il)(a) = 0 for all j > n,

then, the formula

s(Y ⊗ a) =
∞∑

j=0

αj(a)⊗ Y j ,

where the maps αj : A → A (j ≥ 0) are constructed as in Lemma 2.5, defines a
twisting map s : k[Y ]⊗A → A⊗ k[Y ].

Proof. By item (2), the maps αj satisfy condition (1) of Theorem 2.1. Condi-
tion (2) follows from the fact that the βi’s are derivations. It remains to check that
condition (3) also holds. For j ≤ 1 this is immediate. Assume j ≥ 2 and set

T =
∞∑

r=0

αr(a)γ(r)
j (b).

On one hand, by Lemma 2.5 and 2.6,

T =
j∑

r=1

αr(a)γ(r)
j (b)

= α1(a)γ(1)
j (b) + αj(a)γ(j)

j (b) +
j−1∑
r=2

αr(a)γ(r)
j (b)

=
j−1∑

l=1

∑

|i1,...,il|=j−1

α(a)β(i1,...,il)(b) +
j−1∑

l=1

∑

|i1,...,il|=j−1

β(i1,...,il)(a)αj(b)

+
j−1∑
r=2




r−1∑

l=1

∑

|i1,...,il|=r−1

β(i1,...,il)(a)





L(b) +

∑

|n1,...,nr|=j−r

β
(n1)
(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b)
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=
j−1∑

l=1

∑

|i1,...,il|=j−1

α(a)β(i1,...,il)(b) +
j−1∑

l=1

∑

|i1,...,il|=j−1

β(i1,...,il)(a)αj(b)

+
j−1∑
r=2

∑

|n1,...,nr|=j−r

β
(r−1)
(1) (a)β(n1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b).

On the other hand, since by item (3) of Lemma 2.6, β(i1,...,il) is an (α, αj)-derivation
whenever some iu > 1, we have

αj(ab) =
j−1∑

l=1

∑

|i1,...,il|=j−1

β(i1,...,il)(ab)

=
j−2∑

l=1

∑

|i1,...,il|=j−1

(
α(a)β(i1,...,il)(b) + β(i1,...,il)(a)αj(b)

)
+ β

(j−1)
(1) (ab).

So, in order to finish the proof it suffices to show that for all j ≥ 2,

β
(j−1)
(1) (ab) = α(a)β(j−1)

(1) (b) + β
(j−1)
(1) (a)αj(b)

+
j−1∑
r=2

∑

|n1,...,nr|=j−r

β
(r−1)
(1) (a)β(n1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b).

We proceed by induction on j. When j = 2,

β
(1)
(1)(ab) = β1(ab) = α(a)β1(b) + β1(a)α2(b),

since β1 is an (α, α2)-derivation. Assume that the result is valid for j. Then,

β
(j)
(1)(ab) = β1

¨§¦¥¡¢£¤α−1 ¨§¦¥¡¢£¤β(j−1)
(1) (ab)

= β1

(
aα−1 ¨§¦¥¡¢£¤β(j−1)

(1) (b)
)

+ β1

(
α−1 ¨§¦¥¡¢£¤β(j−1)

(1) (a)αj−1(b)
)

+ β1




j−1∑
r=2

∑

|n1,...,nr|=j−r

α−1 ¨§¦¥¡¢£¤β(r−1)
(1) (a)α−1 ¨§¦¥¡¢£¤β(n1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b)




= α(a)β(j)
(1)(b) + β

(j)
(1)(a)αj+1(b)

+ β1(a)α ¨§¦¥¡¢£¤β(j−1)
(1) (b) + β

(j−1)
(1) (a)β1

¨§¦¥¡¢£¤αj−1(b)

+
j−1∑
r=2

∑

|n1,...,nr|=j−r

β
(r)
(1)(a)α ¨§¦¥¡¢£¤β(n1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b)

+
j−1∑
r=2

∑

|n1,...,nr|=j−r

β
(r−1)
(1) (a)β(n1+1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b)

= α(a)β(j)
(1)(b) + β

(j)
(1)(a)αj+1(b)

+
j∑

r=2

∑

|n1,...,nr|=j+1−r

β
(r−1)
(1) (a)β(n1)

(1)
¨§¦¥¡¢£¤ · · · ¨§¦¥¡¢£¤β(nr)

(1) (b).

This finishes the proof. ¤

Corollary 2.8. Let A be an algebra, α : A → A be an algebra automorphism and
β : A → A be an (α, α2)-derivation. Let (αj : A → A)j≥0 be the family of maps
defined by α0 = 0 and αj =

(
β ¨§¦¥¡¢£¤α−1

)j−2 ¨§¦¥¡¢£¤β for j ≥ 1. If β ¨§¦¥¡¢£¤α−1 is locally nilpotent
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(that is, for each a ∈ A there exists n ≥ 1 such that
(
β ¨§¦¥¡¢£¤α−1

)n(a) = 0), then the
formula

s(Y ⊗ a) =
∞∑

j=0

αj(a)⊗ Y j

defines a twisting map s : k[Y ]⊗A → A⊗ k[Y ].

Proof. Take β1 = β and βj = 0 for j > 1 in Theorem 2.7. ¤

Example 2.9. Let A = k[t]/〈tn〉. Let D : A → A be the derivation defined by
D(P )(t) = P ′(t)t2. The formula

s(Y ⊗ P ) = P ⊗ Y +
∞∑

j=1

Dj(P )⊗ Y j+1

defines a twisting map s : k[Y ]⊗A → A⊗ k[Y ].

3. Twisted planes

The aim of this section is to study in detail the twisting maps

s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ].

We use implicitly the canonical identification k[X]⊗k[Y ] ' k[X,Y ]. Consequently,
given Q =

∑
ij qijX

i ⊗ Y j ∈ k[Y ]⊗ k[X], we write

∂m+nQ

∂Xm∂Y n
(X, Y ) =

∑

i≥m

∑

j≥n

i!
(i−m)!

j!
(j − n)!

qijX
i−mY j−n,

for all m, n ≥ 0.

Theorem 3.1. For each Q ∈ X2k[X] ⊗ Y 2k[Y ] there is a unique twisting map
s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ] such that s(Y ⊗X) = Q. Moreover s(Y r ⊗Xs) = 0
whenever r, s > 0 and r + s > 2.

Proof. First we assume that a such twisting map exists, and we prove that it satisfies
s(Y r ⊗ Xs) = 0 if r, s > 0 and r + s > 2. Let (αj)j≥0 be as in Theorem 2.1.
So, αj(X) = ∂jQ

∂Y j (X, 0). The hypothesis means that α0(X) = α1(X) = 0 and
αj(X) ∈ X2k[X] for each j ≥ 2. Consequently, by Remark 2.2, α0 = 0 and α1 is
the evaluation in 0. We assert that αj(Xn) = 0 for each j ≥ 0 and n ≥ 2. For
j = 0, 1 this is clear. Assume αl(Xn) = 0 for all l < j and n ≥ 2. Then, by item (3)
of Theorem 2.1, we have

αj(X2) =
j∑

r=2

αr(X)γ(r)
j (X),

which vanishes, because clearly αn1...nr (X) = 0 if nr ≤ 1, and also if nr ≥ 2 since,
in this case, αnr (X) ∈ X2k[X] and nr−1 < j. Assuming now that n ≥ 3 and
αj(Xn) = 0, using again item (3) of Theorem 2.1, we obtain

αj(Xn) =
j∑

r=2

αr(X2)γ(r)
j (Xn−2) = 0.

It is now easy to check that s(Y r ⊗Xs) = 0 whenever r, s > 0 and r + s > 2, as
wanted. Finally, to check the existence of s, it suffices to note that the family of
maps (αj : A → A)j≥0, defined by α0 = 0, α1(Xn) = δ1n and

αj(Xn) =

{
∂jQ
∂Y j (X, 0) if n = 1,
0 otherwise,
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for j ≥ 2 satisfies the conditions required in Theorem 2.1. We leave the details to
the reader. ¤

Definition 3.2. A twisting map s : k[Y ] ⊗ k[X] → k[X] ⊗ k[Y ] is left bounded if
there exists n0 ∈ N such that

s(Y ⊗Xn) ⊆ k[X]⊗
n⊕

i=0

kY i for all n ≥ n0.

It is right bounded if τ ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤τ is left bounded, where τ denotes the flip. In other words,
if there exists n0 ∈ N such that

s(Y n ⊗X) ⊆
n⊕

i=0

kXi ⊗ k[Y ] for all n ≥ n0.

Finally, we say that s is bounded if it is left and right bounded.

Example 3.3. Twisting maps associated with Ore extensions k[X][Y, α, δ] are left
bounded, but in general they are not right bounded. The twisting maps introduced
in Theorem 3.1 are bounded.

By the sake of continuity the proof of the following result is relegated to an
appendix.

Theorem 3.4. Assume that k is a commutative domain. Let Q ∈ k[X] ⊗ k[Y ].
The following facts hold:

(1) If Q ∈ k[X] ⊗ Y 2k[Y ] and there is a (necessarily unique) left bounded
twisting map s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ] such that s(Y ⊗X) = Q, then
Q ∈ X2k[X]⊗ Y 2k[Y ].

(2) If Q ∈ X2k[X] ⊗ k[Y ] and there is a (necessarily unique) right bounded
twisting map s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ] such that s(Y ⊗X) = Q, then
Q ∈ X2k[X]⊗ Y 2k[Y ].

We say that a twisting map s : k[Y ]⊗ k[X] → k[X]⊗ k[Y ] is almost null if it is
equivalent (in the sense introduced above Proposition 1.1) to one of the twisting
maps considered in Theorem 3.1.

Corollary 3.5. Assume that k is a commutative domain. Let R ∈ k[X] ⊗ k[Y ].
The following facts hold:

(1) There is an almost null twisting map s′ : k[X] ⊗ k[Y ] → k[Y ] ⊗ k[X] such
that s′(Y ⊗X) = R, if and only if there exist λ, ξ ∈ k satisfying:

(a) ξ is multiple root of ∂iR
∂Xi (0, Y ) for each i > 1,

R(0, ξ) = 0,
∂R

∂X
(0, ξ) = ξ,

∂R

∂Y
(0, ξ) = λ,

∂2R

∂X∂Y
(0, ξ) = 0,

(b) λ is multiple root of ∂jR
∂Y j (X, 0) for each j > 1,

R(λ, 0) = 0,
∂R

∂Y
(λ, 0) = λ,

∂R

∂X
(λ, 0) = ξ,

∂2R

∂X∂Y
(λ, 0) = 0,

Moreover, the equivalence s′ ' s is realized by means of the automorphisms

f : k[Y ] → k[Y ] and g : k[X] → k[X],

defined by f(Y ) = Y − ξ and g(X) = X − λ.
(2) If there exist λ, ξ ∈ k that satisfy item (a), but not item (b), then there is

not a left bounded twisting map s′ : k[Y ] ⊗ k[X] → k[X] ⊗ k[Y ] such that
s′(Y ⊗X) = R.
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(3) If there exist λ, ξ ∈ k that satisfy item (b), but not item (a), then there is
not a right bounded twisting map s′ : k[Y ]⊗ k[X] → k[X]⊗ k[Y ] such that
s′(Y ⊗X) = R.

Proof. It is easy to check that s′ : k[Y ] ⊗ k[X] → k[X] ⊗ k[Y ] is an almost null
twisting map if and only if there exist λ, ξ ∈ k such that

s = (g−1 ⊗ f−1) ¨§¦¥¡¢£¤s′ ¨§¦¥¡¢£¤(f ⊗ g)

satisfies the conditions required in Theorem 3.1, where

f : k[Y ] → k[Y ] and g : k[X] → k[X]

are the automorphisms defined by f(Y ) = Y − ξ and g(X) = X − λ. Write

s(Y ⊗X) =
∑

ij

qijX
i ⊗ Y j and s′(Y ⊗X) =

∑

ij

rijX
i ⊗ Y j .

Let U = R−X ⊗ Y . A direct computation shows that

Q(X, Y ) = s(Y ⊗X)

=
(
(g−1 ⊗ f−1) ¨§¦¥¡¢£¤s′ ¨§¦¥¡¢£¤(f ⊗ g)

)
(Y ⊗X)

=
∑

ij

( ∞∑
mn=0

(
m

i

)(
n

j

)
λm−iξn−jrmn

)
Xi ⊗ Y j −X ⊗ ξ − λ⊗ Y − λ⊗ ξ,

=
∑

ij

1
i!

1
j!

∂i+jU

∂Xi∂Y j
(λ, ξ)Xi ⊗ Y j

= U(X + λ, Y + ξ),

where we have adopted the usual convention that a combinatorial number is zero
if its numerator is lesser than its denominator. So s′ is almost null if and only if
there is λ, µ ∈ k such that U(X + λ, Y + ξ) ∈ X2k[X] ⊗ Y 2k[Y ]. Note now that
U(X + λ, Y + ξ) ∈ k[X]⊗ Y 2k[Y ] if and only if

∂iU

∂Xi
(λ, ξ) =

∂i+1U

∂Xi∂Y
(λ, ξ) = 0 for all i ≥ 0,

and U(X + λ, Y + ξ) ∈ X2k[X]⊗ k[Y ] if and only if

∂jU

∂Y j
(λ, ξ) =

∂1+jU

∂X∂Y j
(λ, ξ) = 0 for all j ≥ 0.

Since
∂iU

∂Xi
(λ, ξ) =

∑

n≥0

∂i+nU

∂Xi
(0, ξ)λn and

∂iU

∂Xi
(0, ξ) =

∑

n≥0

(−1)n ∂i+nU

∂Xi
(λ, ξ)λn

we have
∂iU

∂Xi
(λ, ξ) = 0 for all i ≥ 0 ⇔ ∂iU

∂Xi
(0, ξ) = 0 for all i ≥ 0.

Similarly

∂i+1U

∂Xi∂Y
(λ, ξ) = 0 for all i ≥ 0 ⇔ ∂i+1U

∂Xi∂Y
(0, ξ) = 0 for all i ≥ 0,

∂jU

∂Y j
(λ, ξ) = 0 for all j ≥ 0 ⇔ ∂jU

∂Y j
(λ, 0) = 0 for all j ≥ 0,

∂1+jU

∂X∂Y j
(λ, ξ) = 0 for all j ≥ 0 ⇔ ∂1+jU

∂X∂Y j
(λ, 0) = 0 for all j ≥ 0.

Hence U(X + λ, Y + ξ) ∈ k[X]⊗ Y 2k[Y ] if and only if

(3.1)
∂iU

∂Xi
(0, ξ) =

∂i+1U

∂Xi∂Y
(0, ξ) = 0 for all i ≥ 0,
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and that U(X + λ, Y + ξ) ∈ X2k[X]⊗ k[Y ] if and only if

(3.2)
∂jU

∂Y j
(λ, 0) =

∂1+jU

∂X∂Y j
(λ, 0) = 0 for all j ≥ 0.

But, it is easy to see that equalities (3.1) are equivalent to conditions in item(1)(a),
and equalities (3.2) are equivalent to conditions in item(1)(b). Now, the corollary
follows easily from Theorems 3.1 and 3.4. ¤

Corollary 3.6. Let R. The following facts hold:

(1) If R ∈ k ⊗ kY + k[X] ⊗ Y 2k[Y ], then there exists a left bounded twisting
map s′ : k[Y ] ⊗ k[X] → k[X] ⊗ k[Y ] such that s′(Y ⊗X) = R, if and only
if ∂R

∂Y (0, 0) is a multiple root of ∂jR
∂Y j (X, 0) for each j > 1.

(2) If R ∈ kX ⊗ k + X2k[X]⊗ k[Y ], then there exists a right bounded twisting
map s′ : k[Y ] ⊗ k[X] → k[X] ⊗ k[Y ] such that s′(Y ⊗X) = R, if and only
if ∂R

∂X (0, 0) is a multiple root of ∂iR
∂Y i (X, 0) for each i > 1.

Proof. Item (2) follows immediately from item (1), since s′ is a twisting map if and
only if τ ¨§¦¥¡¢£¤s′ ¨§¦¥¡¢£¤τ is, where τ is the flip. So, we are reduced to prove the first item. This
follows from Corollary 3.5, since

(
∂R
∂Y (0, 0), 0

)
always satisfies the conditions asked

for (λ, ξ) in item (1)(a) of that corollary and
(

∂R
∂Y (0, 0), 0

)
satisfies those required

to (λ, ξ) in item (1)(b) if and only if ∂R
∂Y (0, 0) is a multiple root of ∂jR

∂Y j (X, 0) for
each j > 1. ¤

The Corollary gains in interest if we realize that in item (1) we get all the left
bounded twisting maps with α0 = 0 and α1 the evaluation in an element of k.

4. Non-commutative extensions of the dual numbers

It seems very difficult to compute all the twisting maps s : k[Y ]⊗A → A⊗ k[Y ]
for a particular algebra A. In this section we accomplish this for A = k[t]/〈t2〉
using the evident fact that s is a twisting map if and only if τ ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤τ is also, where τ
denotes the flip.

Theorem 4.1. Let A be an algebra and s : k[t]/〈t2〉 ⊗A → A⊗ k[t]/〈t2〉 a twisting
map. The maps ι0 : A → A and ι1 : A → A, defined by

(4.1) s(t⊗ a) = ι0(a)⊗ 1 + ι1(a)⊗ t,

satisfy:

(1) ι1 is a morphism of algebras.

(2) ι0(ab) = ι0(a)b + ι1(a)ι0(b) (that is, ι0 is an ι1-derivation).

(3) ι20 = 0 and ι0 ¨§¦¥¡¢£¤ι1 = −ι1 ¨§¦¥¡¢£¤ι0.
Conversely, given maps ι0 : A → A and ι1 : A → A satisfying (1)–(3), the for-
mula (4.1) determines a twisting map.

Proof. Left to the reader. ¤

Lemma 4.2. We define

AN
n =

N−n∑

k=0

(−1)k

(
n + k

n

)
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Then the following facts hold:

2AN
n −AN−1

n−1 = (−1)N−n

(
N

n

)
,(4.2)

2AN
n −AN

n−1 = (−1)N−n

(
N + 1

n

)
,(4.3)

2AN
0 = (−1)N + 1, AN

N = 1.(4.4)

Proof. Assume N − n = 2j is even. Since
(
n+k

n

)− (
n+k+1

n

)
= −(

n+k
n−1

)
,

AN
n = −

j−1∑

k=0

(
n + 2k

n− 1

)
+

(
N

n

)
and AN

n =
j∑

k=0

(
n + 2k − 1

n− 1

)
.

Summing both results, we obtain

2AN
n =

N−n∑

k=0

(−1)k

(
n− 1 + k

n− 1

)
+ (−1)N−n

(
N

n

)
,

and so

2AN
n = AN−1

n−1 + (−1)N−n

(
N

n

)
,

which is (4.2). The case N −n odd is similar. The equality (4.3) follows from (4.2).
Finally, (4.4) can be easily checked by a direct computation. ¤

Lemma 4.3. A vector y = (yi) ∈ km satisfies the set of equalities

m−1∑

i=h

yi+1A
i
i−h = 0 for all h = 0, . . . , m− 1,

where AN
n =

∑N−n
k=0 (−1)k

(
n+k

n

)
, if and only if it satisfies the set of equalities:

m∑

i=h

(
i

h

)
yi = (−1)hyh for all h = 0, . . . , m.

Proof. Set

A(h) =
m−1∑

i=h

yi+1A
i
i−h and B(h) =

m∑

i=h

(
i

h

)
yi − (−1)hyh.

We claim that

2A(h)−A(h + 1) = (−1)hB(h + 1) for all h = 0, . . . , m− 1.

From this equality and from A(0) = B(0) it follows by induction on h that

A(h) =
h∑

k=0

(−1)k2h−kB(k),
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and hence the lemma. Now we prove the claim:

2A(h)−A(h + 1) =
m−1∑

i=h

2Ai
i−hyi+1 −

m−1∑

i=h+1

Ai
i−h−1yi+1

=
m−1∑

i=h+1

(2Ai
i−h −Ai

i−h−1)yi+1 + yh+12Ah
0

=
m−1∑

i=h+1

(−1)h

(
i + 1
i− h

)
yi+1 + yh+1((−1)h + 1)

=
m∑

i=h+1

(−1)h

(
i

h + 1

)
yi + yh+1

= (−1)hB(h + 1),

where the third equality follows from equalities (4.3) and (4.4). ¤

Theorem 4.4. Let s : k[t]/〈t2〉 ⊗ k[Y ] → k[Y ]⊗ k[t]/〈t2〉 be a twisting map. Write
s(t⊗ Y ) = Q⊗ 1 + P ⊗ t. If Q 6= 0, then P = −Y + p0 and

(1) If p0 = 0, then Q ∈ k[Y 2],

(2) If p0 6= 0, then ∂Q
∂Y (p0) = (−1)i ∂Q

∂Y (0) for all i = 0, . . . , m = dg(Q).

(Note that item (2) with i = m implies that m is even). Conversely, if Q = 0
and P is arbitrary or P = −Y + p0 and conditions (1), (2) are satisfied, then
there is a unique twisting map s : k[t]/〈t2〉 ⊗ k[Y ] → k[Y ] ⊗ k[t]/〈t2〉 such that
s(t⊗ Y ) = Q⊗ 1 + P ⊗ t.

Proof. Let s be a twisting map and ιj : k[Y ] → k[Y ] (j = 0, 1) be the maps intro-
duced in Theorem 4.1. Assume Q =

∑m
i=0 qiY

i 6= 0. In the sequel we adopt the
convention that P 0 = 1 even if P = 0. It is easy to check by induction on l, that

(4.5) ι0(Y l) =
l−1∑

i=0

ι1(Y )iι0(Y )Y l−i−1 = Q

l−1∑

i=0

P iY l−i−1.

We claim that dg(P ) = 1. Suppose dg(P ) 6= 1 or P = 0. Let l ≥ 1. If dg(P ) > 1,
then ι0(Y l) has degree (l − 1) dg(P ) + dg(Q), and if P is a constant, then it has
degree l − 1 + dg(Q). In both cases it is easy to see that ι20 = 0 ⇔ dg(Q) = 0.
So, by item (3) of Theorem 4.1, it must be m = 0. Let Q = q ∈ k \ {0}. It is
immediate that if dg(P ) > 1, then ι0(ι1(Y )) = ι0(P ) has degree (dg(P )− 1) dg(P ).
Since ι1(ι0(Y )) = q, it is impossible that ι0 ¨§¦¥¡¢£¤ι1 = −ι1 ¨§¦¥¡¢£¤ι0. So, again by item (3) of
Theorem 4.1, we have P = 0 or dg(P ) ≤ 1. If P is a constant, then ι0(ι1(Y )) = 0
and also in this case ι0 ¨§¦¥¡¢£¤ι1 6= −ι1 ¨§¦¥¡¢£¤ι0. This proves the claim. Write P = p1Y + p0.
We assert that the following facts hold

(3) ι20(Y ) = Q

m−1∑

h=0

m−1∑

i=h

i∑

j=i−h

(
j

i− h

)
pj−i+h
1 pi−h

0 qi+1Y
h.

(4) ι1(ι0(Y )) =
m∑

i=0

m∑

j=i

(
j

i

)
qjp

j−i
0 pi

1Y
i and ι0(ι1(Y )) = p1

m∑

i=0

qiY
i.

In fact by (4.5), we have

ι20(Y ) =
m∑

i=0

qiι0(Y i) = Q

m∑

i=1

i−1∑

j=0

qiP
jY i−j−1.
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Since P j =
∑j

l=0

(
j
l

)
pj−l
1 pl

0Y
j−l, this gives

ι20(Y ) = Q

m∑

i=1

i−1∑

j=0

j∑

l=0

qi

(
j

l

)
pj−l
1 pl

0Y
i−l−1.

A change of indices yields item (3). Next we check item (4). We have

ι1(ι0(Y )) =
m∑

j=0

qjι1(Y )j =
m∑

j=0

j∑

l=0

qj

(
j

l

)
pj−l
1 pl

0Y
j−l =

m∑

j=0

j∑

i=0

qj

(
j

i

)
pi
1p

j−1
0 Y i.

Interchanging the sums we obtain item (4), since the second equality is clear. Con-
sidering now the terms of maximal degree in items (3) and (4), we get

m−1∑

j=0

pj
1 = 0 and pm

1 = −p1,

since, by Theorem 4.1 we know that

(4.6) ι20(Y ) = 0 and ι1(ι0(Y )) = −ι0(ι1(Y )).

Hence p1 = −1 and equalities (3) and (4) become

(5) ι20(Y ) = Q

m−1∑

h=0

m−1∑

i=h

i∑

j=i−h

(
j

i− h

)
(−1)j−i+hpi−h

0 qi+1Y
h.

(6) ι1(ι0(Y )) =
m∑

i=0

m∑

j=i

(
j

i

)
qjp

j−i
0 (−1)iY i and ι0(ι1(Y )) = −

m∑

i=0

qiY
i.

From this it follows immediately that equalities (4.6) implies items (1) and (2).
Now we prove the second part. First note that for P, Q ∈ k[Y ] arbitrary, equalities
ι0(Y ) = Q and ι1(Y ) = P determine unique maps ι0, ι1 : k[Y ] → k[Y ] satisfying
conditions (1) and (2) of Theorem 4.1. Clearly condition (3) is also fulfilled if and
only if ι20(Y ) = 0 and ι1(ι0(Y )) = −ι0(ι1(Y )). When Q = 0 these last equalities
are trivially true. Assume now Q 6= 0 and P = −Y + p0. Then, arguing as above,
we obtain that (5) and (6) are satisfied. From this it follows immediately that, if
p0 = 0 and qi = 0 for i odd, then equalities (4.6) are true. Assume now that p0 6= 0.
In this case from (5) and (6) it follows that ι20(Y ) = 0 if and only if the qi’s satisfy

m−1∑

i=h

qi+1p
i+1
0 Ai

i−h = 0 for all h = 0, . . . , m− 1,

where AN
n :=

∑N−n
k=0 (−1)k

(
n+k

n

)
and that ι1(ι0(Y )) = −ι0(ι1(Y )) if and only if the

qi’s satisfy
m∑

j=i

(
j

i

)
qjp

j−i
0 = (−1)iqi for all i = 0, . . . , m,

which is true by item (2). But, by Lemma 4.3, applied to {yi = qip
i
0}, the last set

of equalities implies the first one. So the theorem is proved. ¤
In the previous theorem we found necessary and sufficient conditions, on poly-

nomials P,Q ∈ k[Y ], in order that a twisting map

s : k[t]/〈t2〉 ⊗ k[Y ] → k[Y ]⊗ k[t]/〈t2〉
such that s(t⊗Y ) = P ⊗ t+Q⊗1 exists. If Q = 0, then P is arbitrary and if Q 6= 0
then P = −Y +p0 and items (1) or (2) of Theorem 4.4 must be satisfied, depending
on if p0 = 0 or p0 6= 0. In the first case the condition is simply that Q ∈ k[Y 2]. The
second case is more involved and we give a complete solution under the hypothesis
that k is a characteristic zero field.
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Corollary 4.5. (Classification of the non-commutative extension of the algebra
of dual numbers by k[Y ]). Let k be a characteristic zero field. If Q 6= 0, then
any choice of p0 ∈ k \ {0}, m even and q0, q2, q4, . . . , qm−2, qm ∈ k, with qm 6= 0
determines univocally polynomials P = −Y + p0 and Q =

∑m
i=0 qiY

i satisfying
condition (2) of Theorem 4.4.

Proof. For each i ≥ 0, let yi = qip
i
0. Consider y = (y0, . . . , ym) as a column vector.

By item (3) of Theorem 4.4, there is a twisting map

s : k[t]/〈t2〉 ⊗ k[Y ] → k[Y ]⊗ k[t]/〈t2〉
such that s(t ⊗ Y ) = P ⊗ t + Q ⊗ 1, if and only if

∑m
j=i

(
j
i

)
yj − (−1)iyi = 0 for

i = 0, . . . , m. Write the system of equations

B(i) =
m∑

j=i

(
j

i

)
yj − (−1)iyi = 0 (j = 0, . . . , m)

in the matrix form Cy = 0. It is then easy to see that C = (cij)0≤i,j≤m
is




0 1 1 1 1 1 1 . . . . . . . . . . . 1
0 2 2 3 4 5 6 . . . . . . . . . . .

(
m
1

)

0 0 0 3 6 10 15 . . . . . . . . . . .
(
m
2

)

0 0 0 2 4 10 20 . . . . . . . . . . .
(
m
3

)

0 0 0 0 0 5 15 . . . . . . . . . . .
(
m
4

)

0 0 0 0 0 2 6 . . . . . . . . . . .
(
m
5

)

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 · · · (
m−1

1

) (
m
2

)

0 0 0 0 0 0 0 · · · 2
(
m
1

)




By the shape of this matrix it is clear that the even rows are linearly independent
and so we only need to prove that rank(C) = m/2. For this it suffices to check that

(4.7)
n∑

k=0

(−1)kci,2n−k

(
n

k

)
= 0 for n ≥ 1 and i = 0, . . . , m,

since then the even columns will be linear combinations of the previous ones. Let

D
(n)
ij =

{(
j−n
i−n

)
if n ≤ i ≤ j,

0 otherwise,
and E

(n)
ij =

{
(−1)j+1

(
n

j−i

)
if j − n ≤ i ≤ j,

0 otherwise.

Since E
(n)
i,2n + D

(n)
i,2n = 0 in order to prove (4.7) it is enough to show that

E
(n)
ij + D

(n)
ij =

n∑

k=0

(
n

k

)
(−1)kci,j−k for i = 0, . . . , m and j ≥ n.

This follows immediately from the equalities

E
(0)
ij + D

(0)
ij = cij ,

D
(n)
ij =

n∑

k=0

(−1)kD
(0)
i,j−k

(
n

k

)
,

E
(n)
hj =

n∑

k=0

(−1)kE
(0)
i,j−k

(
n

k

)
,

for i = 0, . . . , m and j ≥ n. The first and the third one can be checked by a direct
computation, while the second one by induction on n. ¤
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Let s, P and Q be as in Theorem 4.4. Let αj : k[t]/〈t2〉 → k[t]/〈t2〉 be the maps
defined by

τ ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤τ(Y ⊗ t) =
∞∑

j=0

αj(t)⊗ Y j ,

where τ is the flip. If Q = 0 and P =
∑n

i=0 piY
i, then αj(t) = pjt. If P and Q are

as in items (1) and (2) of Theorems 4.4, then

αj(t) =





q0 + p0t if j = 0,
q1 − t if j = 1,
qj if 2 ≤ j ≤ m,
0 if j > m.

5. Twisted extensions by power series

Let k be a commutative ring. This section is devoted to the study of twisting
tensor products between the power series ring k[[Y ]] and a filtered complete algebra
A. Hence we work in the monoidal category CMod of complete filtered k-modules
(see Section 1). Recall that the tensor product of CMod is denoted by ⊗̂. We will
use freely the notations introduced in Sections 1 and 2.

Lemma 5.1. Let A be a filtered complete algebra and (αj : A → A)j≥0 a family of
continuous maps. If for each i ≥ 0 there exists n0 ≥ 0 such that αn

0 (A) ⊆ Ai for all
n ≥ n0, then for each i, j ≥ 0 there exists r0 ≥ 0 such that γ

(r)
j (Ah) ⊆ Ai whenever

r + h ≥ r0.

Proof. We proceed by induction on j. First we assume j = 0. By hypothesis there
exists n0 ≥ 0, such that γ

(n)
0 (A) = αn

0 (A) ⊆ Ai whenever n ≥ n0. Since α0 is
continuous, there exists h0 ≥ 0 such that γ

(n)
0 (Ah) = αn

0 (Ah) ⊆ Ai, for each n < n0

and h > h0. Clearly we can take r0 = n0 + h0. Assume the lemma is valid for j
and write

γ
(r)
j+1 =

r−1∑

l1=0

j+1∑

l2=1

αl1
0
¨§¦¥¡¢£¤αl2
¨§¦¥¡¢£¤γ(r−l1−1)

j+1−l2
.

Since αn
0 (A) ⊆ Ai for all n ≥ n0 in order to complete the inductive step it suffices

to show that for all l1 < n0 and l2 ≤ j + 1, there exists r0 ≥ 0 such that

αl1
0
¨§¦¥¡¢£¤αl2
¨§¦¥¡¢£¤γ(r−l1−1)

j+1−l2
(Ah) ⊆ Ai whenever r + h ≥ r0,

which follows immediately from the continuity of αl1
0
¨§¦¥¡¢£¤αl2 and the inductive hypoth-

esis. ¤

Remark 5.2. If s : k[[Y ]]⊗̂A → A⊗̂k[[Y ]] is a twisting map, then ker(α0) is a closed
subalgebra of A. Moreover,

- If α0 = 0, then α1 is a endomorphism of algebras.
- Let ν > 1. If αj = 0 for 1 < j < ν, then

αν(ab) = α1(a)αν(b) + αν(a)αν
1(b).

Theorem 5.3. Let A be a filtered complete algebra and s : k[[Y ]]⊗̂A → A⊗̂k[[Y ]]
a twisting map. The equation

s(Y ⊗̂a) =
∞∑

j=0

αj(a)⊗̂Y j ,

defines a family of maps αj : A → A, which satisfies:
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(1) The αj’s are continuous maps.
(2) For each i ≥ 0 there exists n0 such that αn

0 (A) ⊆ Ai for all n ≥ n0.
(3) αj(1) = δj1.
(4) For all j ≥ 0 and all a, b ∈ A,

αj(ab) =
∞∑

r=0

αr(a)γ(r)
j (b) (this formula makes sense by Lemma 5.1).

Moreover,

(5.1) s

( ∞∑
r=0

Y r⊗̂ar

)
=

∞∑

j=0

( ∞∑
r=0

γ
(r)
j (ar)

)
⊗̂Y j .

Conversely, given maps αj : A → A (j ≥ 0) satisfying (1)–(4), the formula (5.1)
defines a twisting map.

Proof. Items (1) and (2) follows easily from the continuity of s, and items (3)
and (4) can be checked as in the proof of Theorem 2.1. To check (5.1) we can
assume that only one ar 6= 0. In this case we can proceed again as in the proof
of Theorem 2.1. Conversely, assume we have a family of continuous maps (αj)j≥0

satisfying (1), (2), (3) and (4) and define s by the formula (5.1). By Lemma 5.1
this map is well defined and it is continuous. We leave the task to prove that s is
a twisting map to the reader. ¤

Theorem 5.4. Let α : A → A be an automorphism of filtered completed algebras.
For each i ≥ 1, let βi : A → A be a continuous (α, αi+1)-derivation. If

αr(βi(a))βi′(b) = 0 for all r ∈ Z and a, b ∈ A whenever i + i′ ≥ 3,

then, the formula

s(Y ⊗ a) =
∞∑

j=0

αj(a)⊗ Y j ,

where the maps αj : A → A (j ≥ 0) are constructed as in Lemma 2.5, defines a
twisting map s : k[[Y ]]⊗̂A → A⊗̂k[[Y ]].

Proof. Mimic the proof of Theorem 2.7. ¤

Lemma 5.5. Let Q ∈ k[[X]]⊗̂Y k[[Y ]]. The equality α1(X) = ∂Q
∂Y (X, 0) defines a

continuous algebra map α1 : k[[X]] → k[[X]] if and only if the independent term
∂Q
∂Y (0, 0) of α1(X) is nilpotent. Moreover, in this case, there is a unique family of
continuous maps

(
αj : k[[X]] → k[[X]]

)
j≥2

, that satisfy

αj+1(1) = δj+1,1,

αj+1(X) =
1

(j + 1)!
∂j+1Q

∂Y j+1
(X, 0),

αj+1(Xn+1) =
j+1∑
r=1

αr(Xn)γ(r)
j+1(X),

for all j ≥ 1.

Proof. The first assertion is immediate. Let q = ∂Q
∂Y (0, 0). In order to prove the

second one it will be sufficient to show that

αj(Xn) ∈
n−j+1∑

r=0

qn−j−r+1Xrk[[X]] if n ≥ j.
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We will prove this fact by induction on j. For j = 1 this is clear. Assume it is true
for j and for αj+1(Xh) with j ≤ h ≤ n. Then, by the inductive hypothesis and the
facts that

αj+1(Xn+1) =
j+1∑
s=1

αs(Xn)γ(s)
j+1(X)

and

γ
(j+1)
j+1 (X) = αj+1

1 (X) ∈ qk[[X]] + Xk[[X]],

we get that for all n ≥ j,

αj+1(Xn+1) ∈
j∑

s=1

n−s+1∑
r=0

qn−s−r+1Xrk[[X]] + qn−j−rXrk[[X]](qk[[X]] + Xk[[X]]).

Using this the proof can be easily finished. ¤

Theorem 5.6. Let Q ∈ k[[X]]⊗̂Y k[[Y ]]. If ∂Q
∂Y (0, 0) is nilpotent, then there is

a unique twisting map s : k[[Y ]]⊗̂k[[X]] → k[[X]]⊗̂k[[Y ]] such that s(Y ⊗̂X) = Q.
Moreover

s(Y ⊗̂P ) =
∑

j≥1

αj(P )⊗̂Y j ,

where αj : k[[X]] → k[[X]] (j ≥ 1) are the maps introduced in Lemma 5.5.

Proof. The uniqueness and the last assertion are immediate. Let us prove the
existence. Let α0 = 0. By Lemma 5.5 we know that the maps αj are well defined
and continuous. Moreover, it is evident that items (1), (2) and (3) of Theorem 5.3
are satisfied. So we only must prove item (4), which (by linearity and continuity)
reduce to check that

αj(XmXn) =
j∑

l=1

αl(Xm)γ(l)
j (Xn) for all m,n ≥ 0.

For j = 1 this follows from Remark 5.2. Assume that the result is true for αi with
i < j and for αj(XmXv) with v ≤ n. By the recursive definition of αj and the
inductive hypothesis,

αj(XmXn+1) =
j∑

r=1

αr(XmXn)γ(r)
j (X)

=
j∑

r=1

r∑

l=1

αl(Xm)γ(l)
r (Xn)γ(r)

j (X)

=
j∑

l=1

j∑

r=l

αl(Xm)γ(l)
r (Xn)γ(r)

j (X).

So it is enough to show that

γ
(l)
j (Xn+1) =

j∑

r=l

γ(l)
r (Xn)γ(r)

j (X) for l = 1, . . . , j.
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We prove this formula by induction on l. When l = 1 this is true by the recursive
definition of αj(Xn+1) = γ

(1)
j (Xn+1). Suppose l > 1. Then, we have

γ
(l)
j (Xn+1) =

j−l+1∑

i1=1

∑

|i2,...,il|=j−i1

αi1

(
αi2...il

(Xn+1)
)

=
j−l+1∑

i=1

αi

(
γ

(l−1)
j−i (Xn+1)

)

=
j−l+1∑

i=1

j−i∑

s=l−1

αi

(
γ(l−1)

s (Xn)γ(s)
j−i(X)

)

=
j−1∑

s=l−1

j−s∑

i=1

i∑

h=1

αh

(
γ(l−1)

s (Xn)
)
γ

(h)
i

(
γ

(s)
j−i(X)

)

=
j−1∑

s=l−1

j−s∑

h=1

j−s∑

i=h

αh

(
γ(l−1)

s (Xn)
)
γ

(h)
i

(
γ

(s)
j−i(X)

)

=
j∑

r=l

γ(l)
r (Xn)γ(r)

j (X),

as desired. ¤

Remark 5.7. Let Q =
∑

ij qijX
i⊗̂Y j ∈ Xk[[X]]⊗̂k[[Y ]]. Suppose q10 = ∂Q

∂X (0, 0)
is nilpotent. By Theorem 5.6 we know that there exists a unique twisting map
s : k[[X]]⊗̂k[[Y ]] → k[[Y ]]⊗̂k[[X]] satisfying

s(X⊗̂Y ) =
∑

ij

qijY
j⊗̂Xi.

But then the map τ ¨§¦¥¡¢£¤s ¨§¦¥¡¢£¤τ , where τ : k[[Y ]]⊗̂k[[X]] → k[[X]]⊗̂k[[Y ]] is the flip, is a
twisting map taking Y ⊗X to Q.

Appendix A

This appendix is devoted to prove Theorem 3.4. So, we assume that k is a
commutative domain. Let R = k[X] ⊗s k[Y ] be the twisted algebra determined
by s. By a sake of simplicity we will write X instead of X ⊗ 1 and Y instead of
1⊗ Y . Hence R = k[X, Y ] as a left k-module.

In the setting of Theorem 3.4 (1) we have:

Lemma A.1. RY is a two-sided ideal of R, thus (RY m)(RY n) = RY m+n for any
nonnegative integers m and n.

Proof. We have by assumption that Y X ⊆ RY , thus Y R ⊆ RY . The lemma
follows. ¤

Lemma A.2. Y Xn ∈ RY n+1 for all n ≥ 1.

Proof. For n = 1 we have by assumption Y X ∈ RY 2. We complete the proof by
induction on n, using Lemma A.1. ¤

Lemma A.3. Y Xn = 0 for n À 0.

Proof. By the previous lemma, we have Y Xn ∈ RY n+1 for all n ≥ 1. Since the
map s is left bounded, we obtain that Y Xn = 0 for n À 0. ¤

By assumption we have Y X = (f0 + Xf1)Y 2, where f0 ∈ k[Y ] and f1 ∈ R.
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Lemma A.4. Suppose that f0 6= 0 and write f0 = f0Y
t with f0(0) 6= 0. Then,

Y nX ∈ f0Y
n+1 + RY t+n+2 + XR for all n ≥ 1.

Proof. We proceed by induction on n. Case n = 1 is trivial. Assume that the result
is valid for n. Then, by the inductive hypothesis and Lemma A.1,

Y n+1X = Y n(f0 + Xf1)Y 2

= f0Y
n+2 + Y nXf1Y

2

∈ f0Y
n+2 +

(
f0Y

n+1 + RY t+n+2 + XR
)
f1Y

2

⊆ f0Y
n+2 + RY t+n+3 + XR,

as we want. ¤
Corollary A.5. Assume that Y X /∈ XR. If h is an element in R\ (k +XR), then
hXm /∈ k + XR for all m ≥ 1.

Proof. Clearly it is enough to consider the case m = 1. By assumption h ∈ g+XR,
where g ∈ k[Y ] \ k. Write g = c + gY n with c ∈ k and g(0) 6= 0. By the previous
lemma and using the same notation

gX = cX + gY nX ∈ gf0Y
n+1 + RY t+n+2 + XR.

Hence, gX /∈ k + XR and so hX /∈ k + XR. ¤
Lemma A.6. Y X ∈ XR.

Proof. Assume Y X /∈ XR. Since Y X ∈ RY , this implies that Y X /∈ k + XR. So,
by the previous corollary, Y Xm 6= 0 for all m ≥ 1, contradicting Lemma A.3. ¤
Corollary A.7. RX ⊆ XR, so XR is a two-sided ideal of R.

Lemma A.8. Assume that Y X = Xg + X2h, where g ∈ k[Y ] and h ∈ R. Let f be
a polynomial in k[Y ]. Then fX ∈ X(f ¨§¦¥¡¢£¤g) + X2R.

Proof. By the previous corollary, X2R is an ideal of R. By induction on n we
obtain that Y nX ≡ Xgn (mod X2R) for n ≥ 1. The lemma follows. ¤

We now complete the proof of Theorem 3.4 (1) in the paper:

Theorem A.9. Y X ∈ X2R.

Proof. Assume that Y X /∈ X2R. We prove by induction that

Y Xn = Xngn + Xn+1hn

for a nonzero polynomial gn ∈ k[Y ] and an element hn ∈ R. The case n = 1 holds
by assumption and by Lemma A.6. Let n > 1. By the inductive assumption we
have Y Xn+1 = (Y Xn)X = (Xngn + Xn+1hn)X. By Lemma A.8,

gnX = X(gn
¨§¦¥¡¢£¤g1) (mod X2R).

We have gn
¨§¦¥¡¢£¤g1 6= 0 since k is an integral domain. Also hnX ∈ XR by Corol-

lary A.7. Hence Y Xn+1 is of the desired form. It follows that Y Xn 6= 0 for all n,
in contradiction to Lemma A.3. The theorem follows. ¤
Remark A.10. Theorem 3.4 remains valid if we replace the hypothesis that s is left
bounded by the weaker one that there exists n ∈ N such that

s(Y ⊗Xn) ∈ k[X]⊗
n⊕

i=0

kY i.

Remark A.11. Setting Y X = fY , we have Y Xn = fnY for all n ≥ 0. This fact
was not used in the proof.
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École Normale Supérieure, Paris (1991-1992).
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