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The Web has recently been changing more and more to what is called the Social 
Semantic Web. As a consequence, the ranking of search results no longer depends solely 
on the structure of the interconnections among Web pages. In this paper, we argue 
that such rankings can be based on user preferences from the Social Web and on 
ontological background knowledge from the Semantic Web. We propose an approach to 
top-k query answering under user preferences in Datalog+/– ontologies, where the queries 
are unions of conjunctive queries with safe negation, and the preferences are defined via 
numerical values. To this end, we also generalize the previous RankJoin algorithm to our 
framework. Furthermore, we explore the generalization to the preferences of a group of 
users. Finally, we provide experimental results on the performance and quality of our 
algorithms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

During the recent years, the Web has been increasingly turning into the so-called Web of Data as a special case of the 
Semantic Web. Furthermore, users themselves play an increasingly central role in the creation and delivery of contents on 
the Web. The combination of these two technological waves is called the Social Semantic Web (or also Web 3.0), where the 
classical Web of interlinked documents is more and more turning into (i) semantic data and tags constrained by ontologies, 
and (ii) social data, such as connections, interactions, reviews, and tags. The Web is thus shifting away from data on linked 
Web pages towards interlinked data in social networks on the Web that rely on ontologies. This requires new technologies 
for search and query answering, where the ranking of search results is not solely based on the link structure between 
Web pages anymore, but on the information available in the Social Semantic Web—in particular, the underlying ontological 
knowledge present in user-created content, as well as preferences that the user implicitly or explicitly presents in such 
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content [1–3]. Because of the explosion of social content, it is also important to model the preferences of large groups of 
users. Clearly, social media are a valuable source for mining preferences and opinions of groups of users for commercial or 
political purposes. In addition, also the users themselves profit: people post their preferences on social media and expect 
to get personalized information. For these reasons, in this work, we focus on exploiting users’ preferences, in the form 
of scores, for top-k query answering over ontological knowledge bases, in order to generalize the current PageRank-based 
sorting of search results.

To address this problem, a model of preferences of individual users can be adopted and then the individual preferences 
can be aggregated into a group’s preferences. However, this comes along with two additional challenges. The first challenge 
is to define a group preference semantics that solves (all but certain) disagreements among users—e.g., people (even friends) 
often have different tastes in restaurants; a system should return results in such a way that certain properties are satisfied 
(e.g., ensuring that each individual benefits from the result). The second challenge is to allow for efficient algorithms, i.e., to 
compute efficiently the answers to queries under aggregated group preferences [4].

In previous work, we studied the complexity of the single-user case, showing intractability for conjunctive queries (CQs) 
and motivating the search for tractable special cases [5]; then, in [6], we developed algorithms to answer k-rank queries 
for unions of atomic queries under group preferences and uncertainty in Datalog+/– [7] ontologies, where the preferences 
of every user are expressed as strict partial orders (irreflexive and transitive binary relations). The algorithms in [6] are 
not optimized for score-based preferences, as they do not leverage this simpler structure. As we show below, the special 
case of score-based preferences allows us to compute answers in polynomial time. In [8], the single-user case for CQs and 
scores is studied; here, the novelty relative to that work lies in adding negation, projection, and disjunction to queries, 
plus multiple users and an experimental evaluation. As underlying ontology languages, we chose the Datalog+/– family of 
ontology languages, because it is highly flexible, it generalizes the lightweight ontology languages in the DL-Lite family, and 
there are also implementations available [9,10].

The main contributions of this work can be briefly summarized as follows:

(i) We propose an approach to top-k query answering under user preferences in Datalog+/– ontologies, where the queries 
are unions of conjunctive queries with safe negation, and the preferences are defined via numerical scores. The evalua-
tion of queries involves joining and aggregating multiple inputs to provide users with the top-k results based on their 
preferences.

(ii) We develop an algorithm for top-k query answering in this framework, which is based on a generalization of the 
previous RankJoin algorithm [8] to ontology-based data access and to unions of conjunction queries (UCQs) with safe 
negation as queries.

(iii) We generalize the above approach to top-k query answering under the preferences of a group of users (rather than a 
single user only), which involves the aggregation of (potentially conflicting) user preferences. We study two different 
approaches to such aggregations and their properties.

(iv) We provide experimental results on the performance (in terms of running time) and the quality of our algorithms. More 
specifically, using standard measures from information retrieval, we explore which of the techniques for aggregating 
user preferences is the best and how much their results differ.

The rest of this paper is organized as follows. In Section 2, we provide some preliminaries on Datalog+/– and its general-
ization by (single-user) preferences. Section 3 introduces (single-user) k-rank answers to unions of conjunctive queries with 
safe negation, while Section 4 extends the RankJoin algorithm [8] to work with such queries in our framework. In Section 5, 
we then generalize this framework to group preferences. Section 6 reports on experimental results, and Section 7 discusses 
related work. In Section 8, we summarize the main results and give an outlook on future research.

2. Preliminaries

In this section, we briefly recall some necessary background from Datalog+/– [7], namely on relational databases, 
(Boolean) conjunctive queries ((B)CQs), tuple-generating dependencies (TGDs), negative constraints, universal models, and 
ontologies in Datalog+/–. We also briefly recall a generalization of Datalog+/– by preferences from [5].

Datalog+/–. We assume an infinite universe of constants � (the “normal” domain of a database), an infinite set of (labeled) 
nulls �N , and an infinite set of variables V . Different constants represent different values (unique name assumption), while 
different nulls may represent the same value. We assume a relational schema R, which is a finite set of predicate symbols
(or simply predicates). The vocabulary � consists of �, �N , and R. A term t is a constant, null, or variable. An atom has the 
form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. The (extended) Herbrand base for �, denoted HB� , 
is the set of all atoms with predicates from R and arguments from � ∪�N . Conjunctions of atoms are often identified with 
the sets of their atoms. An instance I is a (possibly infinite) set of atoms p(t), where t is a tuple over � ∪ �N . A database
D is a finite instance with only constants. A homomorphism is a substitution h : � ∪ �N ∪ V → � ∪ �N ∪ V that is the 
identity on � and that maps �N to � ∪ �N ; it is naturally extended to atoms, sets of atoms, and conjunctions of atoms. 
A conjunctive query (CQ) has the form q(X) = ∃Y ϕ(X, Y), where ϕ(X, Y) is a conjunction of atoms with the variables X, Y, 
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and possibly constants (but no nulls); its set of all answers over an instance I , denoted q(I), is the set of all tuples t over 
� for which a homomorphism μ : X ∪ Y →� ∪ �N exists such that μ(�(X, Y)) ⊆ I and μ(X)= t. A Boolean CQ (BCQ) is a CQ 
q(), often written without quantifiers. A BCQ q is true over I , denoted I |=q, if q(I) �=∅.

A tuple-generating dependency (TGD) σ is a first-order formula ∀X ϕ(X) → ∃Y p(X, Y), where X ∪ Y ⊆ V , ϕ(X) is a con-
junction of atoms (without nulls), and p(X, Y) is an atom (without nulls); ϕ(X) is the body of σ , while p(X, Y) is the head
of σ . For clarity, we consider single-atom-head TGDs; however, our results can be extended to TGDs with a conjunction of 
atoms in the head. A TGD σ is guarded, if it contains an atom in its body that contains all universally quantified variables 
of σ . A TGD σ is linear, if it contains only a single atom in its body. An instance I satisfies σ , written I |= σ , if whenever 
a homomorphism h exists such that h(ϕ(X)) ⊆ I , then there exists h′ ⊇ h|X , where h|X is the restriction of h on X, such 
that h′(p(X, Y))∈ I . A negative constraint (NC) ν is a first-order formula ∀X ϕ(X) → ⊥, where X ⊆ V , ϕ(X) is a conjunction of 
atoms (without nulls), called the body of ν , and ⊥ denotes the truth constant false. An instance I satisfies ν , written I |= ν , 
if there is no homomorphism h such that h(ϕ(X)) ⊆ I . We often omit the universal quantifiers in front of TGDs and NCs. 
As another component, Datalog+/– allows for special types of equality-generating dependencies (EGDs) [7], which are omitted 
here, as they can also be modeled via NCs. We define answers to CQs relative to databases, TGDs, and NCs as those answers 
that are true in all their models as follows. Given a set � of TGDs and NCs, an instance I satisfies (or is a model of) �, 
denoted I |= �, if I satisfies each TGD and NC of �. The models of a database D and �, denoted mods(D, �), is the set of 
instances {I | I ⊇ D, I |=�}. The answer to a CQ q relative to D and � is the set of tuples ans(q, D, �) = ⋂

I∈mods(D,�) q(I). 
The answer to a BCQ q relative to D and � is true, denoted D ∪ � |= q, if ans(q, D, �) �= ∅.

BCQs q over D and sets of TGDs � can be evaluated on universal models U D,� of D and � (i.e., D ∪� |= q iff U D,� |= q), 
which can be homomorphically mapped onto every model in mods(D, �). NCs are then easily added to �: violating any of 
them results into D and � being unsatisfiable, and so q being true. One universal model is the (possibly infinite) chase for 
D and �, denoted chase(D, �) [7]. Query answering under general TGDs is undecidable [11,12]. Here, we consider only sets 
of TGDs � where the evaluation of BCQs q is decidable and possible on a finite portion of chase(D, �) of polynomial size in 
the data complexity, such as guarded and linear TGDs [7].

A Datalog+/– ontology O = (D, �), where �=�T ∪ �NC , consists of a database D , a finite set of TGDs �T , and a finite set 
of negative constraints �NC . The following example illustrates a simple Datalog+/– ontology.

Example 1. A Datalog+/– ontology O = (D, �) for the restaurant domain is given below. Intuitively, D encodes that f1, f2, 
f3, f4, and f5 are pizza, pasta, salad, fish, and sushi, respectively. Also, we have two places p1 and p2, where p1 is a pizzeria
and a fine_dining place that serves pizza and pasta, while p2 is a sushi bar that serves fish and sushi. The TGDs in � encode 
that every place has a location and a type.

D = {food( f1,pizza), food( f2,pasta), food( f3, salad), food( f4,fish), food( f5, sushi), serves(p1, f1), serves(p1, f2),

serves(p2, f4), serves(p2, f5), place(p2, sushi_bar), place(p1,pizzeria), place(p1,fine_dining)},
� = {place(P , T ) → ∃L located_in(P , L); place(P , T ) → type(T )}. �

PrefDatalog+/–. We recall some basic concepts from PrefDatalog+/–. A preference relation is any binary relation � ⊆
HB� × HB� . In the following, we assume that a �b iff a′ �b′ , if a and b are isomorphic to a′ and b′ , respectively. Here, 
s is isomorphic to s′ , if ν(s) = ν(s′), where ν substitutes every null by the same fresh null ν� . Intuitively, any two atoms 
that cannot be distinguished depending on predicates and constants (and thus may represent the same objects, as some 
of the contained nulls may represent the same objects) should be treated as the same in “�”. Here, we also adapt Pref-
Datalog+/– in [5] to the special case where the preference model is score-based, i.e., it is an assignment of a numeric score 
to each element in HB� in such a way that a1 � a2 iff score(a1) > score(a2) (also called strict weak orderings). In the sequel, 
we only refer to such score functions, and the corresponding preference relation is implicit. A preference-based Datalog+/–
(PrefDatalog+/–) ontology (or knowledge base) KB = (O , score) consists of a Datalog+/– ontology O and a score function score
from its extended Herbrand base HB� to [0, 1].

Note that score functions are generally defined via compact representations rather than enumerations (e.g., possibilis-
tic networks from knowledge representation and reasoning [13] or rankings from machine learning [14]); they are either 
explicitly defined by the user, or implicitly mined from the user’s behavior (e.g., search and click history).

Example 2. Continuing Example 1, the scores of the atoms entailed by O over the predicates food, serves, type, 
place, and located_in under the score functions scoreu1 , scoreu2 , and scoreu3 are shown in Fig. 1. The scores of 
some non-entailed atoms are as follows: scoreu1 (serves(p2, f1))= 0.5, scoreu1 (serves(p2, f2)) = scoreu1 (serves(p2, f3))= 0.3, 
scoreu1 (serves(p1, f3))= scoreu1 (serves(p1, f4))= scoreu1 (serves(p1, f5))= 0.4. �

3. Answering UCQs with negation

We now explore how to obtain k-rank answers to unions of CQs with (safe) negation (UNCQs).
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food Score functions

ID Name scoreu1 scoreu2 scoreu3

t1 f1 pizza 0.8 0.3 0.7
t2 f2 pasta 0.7 0.6 0.65
t3 f3 salad 0.6 0.2 0.1
t4 f4 fish 0.2 0.9 0.7
t5 f5 sushi 0.2 0.2 0.5

serves Score functions

Place Food scoreu1 scoreu2 scoreu3

t14 p1 f2 0.7 0.4 0.3
t15 p1 f1 0.6 0.2 0.3
t16 p2 f4 0.6 0.9 0.6
t17 p2 f5 0.5 0.1 0.65

type Score functions

ID scoreu1 scoreu2 scoreu3

t6 sushi_bar 0.8 0.2 0.4
t7 pizzeria 0.6 0.5 0.75
t8 fine_dining 0.6 0.2 0.4

place Score functions

ID Type scoreu1 scoreu2 scoreu3

t11 p1 pizzeria 0.6 0.5 0.75
t12 p2 sushi_bar 0.6 0.2 0.4
t13 p1 fine_dining 0.1 0.1 0.2

located_in Score functions

Place Location scoreu1 scoreu2 scoreu3

t9 p1 l1 0.7 0.7 0.7
t10 p2 l2 0.8 0.6 0.1

Fig. 1. Some scores of the score functions scoreu1 , scoreu2 , and scoreu3 of users u1, u2, and u3, respectively, in the running example.

As a first step, the query-relevant part of the Datalog+/– ontology is materialized, i.e., given an ontology KB =
((D, �), score), we obtain one of the form KB′ = ((D ′, ∅), score) on which the query can be equivalently evaluated. For 
guarded Datalog+/– ontologies, this is possible in polynomial time (and thus the materialization has also a polynomial 
size) in the data complexity (where the schema R, the set � of TGDs and NCs, and the query size are all fixed) by com-
puting the guarded chase forest [7] up to a certain (query-dependant) depth. This materialized database is equivalent to the 
original ontology in that it can be used to evaluate all CQs that are of bounded width, fixed, or atomic, and thus no loss of expressive 
power is suffered by taking this step. This evaluation can clearly be done in polynomial time in the data complexity; however, 
although the materialized database has a polynomial size, it may be quite large in general, which motivates realizing the 
score-based evaluation of unions of CQs with safe negation via a combination with a corresponding generalization of the 
RankJoin algorithm [8], to make the evaluation more efficient. In the rest of this paper, whenever we refer to a Datalog+/– 
ontology O or a PrefDatalog+/– ontology KB= (O , score), we assume that O is already materialized unless stated differently.

We focus on unions (i.e., disjunctions) of CQs that admit safely negated atoms, where safeness intuitively means that the 
domain of arguments of a negated atom is restricted to the domain of arguments of the positive atoms.

Definition 1 (NCQs/UNCQs). A CQ with safe negation (NCQ) has the form q(X) = ∃YR1(Z1) ∧ · · · ∧ Rm(Zm) ∧ ¬Nm+1(Zm+1) ∧
· · · ∧ ¬Nm+n(Zm+n), where (i) Ri and N j are predicates from R, (ii) Z j are tuples of variables over X ∪ Y such that X ⊆
Z1 ∪· · ·∪Zm , and (iii) for every negated atom Ni , it holds that Zi ⊆ Z1 ∪· · ·∪Zm . The positive part of q(X), denoted Pos(q(X)), 
is defined as ∃YR1(Z1) ∧ · · · ∧ Rm(Zm). A union of CQs with safe negation (UNCQ) has the form q(X)= ∨l

i=1 qi(X), where each 
qi(X) is an NCQ. Its positive part, denoted Pos(q(X)), is defined as 

∨l
i=1 Pos(qi(X)).

Example 3. Consider the following NCQ q1(X1, X2) = ∃Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2)) over the rela-
tions in Fig. 1, which asks for the pairs of places X1 and foods X2 such that X2 is not served in X1. The positive part is 
∃Y1, Y2 (place(X1, Y1) ∧ food(X2, Y2)). The query q1(X1, X2) = ∃Y1 place(X1, Y1) ∨ ∃Y2 (¬serves(X1, X2) ∧ food(X2, Y2)) is a 
UNCQ. �

Before defining the answers to NCQs and UNCQs, we introduce the notion of joined tuple and their scores for NCQs. 
Intuitively, any joined tuple is a sequence of tuples, one for each atom of the NCQ, whose natural join projected to the 
answer variables forms an answer to the NCQ. As for the scores of joined tuples, since we are dealing with a database 
containing score-based tuples, we need a suitable way to combine the scores of these tuples to obtain scores for query 
answers. A natural choice is that of using standard fuzzy operators, as widely adopted for tuples with scores in [0, 1]. 
Specifically, we use the min (resp., max) operator for computing the scores of tuples resulting from conjunction (resp., 
disjunction), and the not operator for negation (i.e., taking 1 − score(ti), if ti results from a negated atom of the query). This 
is quite common in the evaluation of top-k queries over score-based tuples. Indeed, considering an atom p(t), if a user u
assigns a score s to tuple t in p(t), then this means that (i) u’s appreciation for t is quantified as s, and (ii) u’s dislike for t
in p(t) is quantified as 1 − s. Thus, t is not fully liked or disliked by u, but it is both liked and disliked with a certain degree. 
Intuitively, among all correct query answers, when considering matching tuples for positive (resp., negated) query atoms, 
we maximize the user’s appreciation (resp., dislike) for these matching tuples. The following definition formally states how 
the computation is done for NCQs.
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Definition 2. Given a PrefDatalog+/– ontology KB = (O , score) and an NCQ q(X) = ∃YR1(Z1) ∧· · ·∧ Rm(Zm) ∧¬Nm+1(Zm+1) ∧
· · · ∧ ¬Nm+n(Zm+n), a joined tuple t̂ of q over KB is a sequence of tuples t1, . . . , tm over � ∪�N where a homomorphism 
μ : Z1 ∪ · · · ∪ Zm → � ∪�N exists such that, for every i ∈{1, . . . , m}, μ(Zi) = ti for some Ri(ti)∈ O . We often identify t̂ with 
the natural join of its tuples. Each such t̂ is associated with the score ŝ = min(minm

i=1score(ti), minn
j=1score′(tm+ j)), where 

tm+ j = μ(Zm+ j) and score′(tm+ j) = 1 − score(tm+ j), if Nm+ j(tm+ j) /∈ O , for all j ∈{1, . . . , n}.

Example 4. Consider q1(X1, X2) = ∃Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2)) of Example 3 and consider the 
score function scoreu1 . Then, t̂ = p2, sushi_bar, f1, pizza is a joined tuple of q1; it comes from joining t12 = (p2, sushi_bar)
from the relation place and t1 = ( f1, pizza) from food. As there is no tuple in serves that matches the values for variables X1
and X2 set by t̂ , and we have from Example 2 that scoreu1 (serves(p2, f1)) = 0.5, the score of t̂ is min(0.6, 0.8, 1 − 0.5) = 0.5. 
Also, both t̂1 = p1, pizzeria, f4, fish and t̂2 = p1, fine_dining, f4, fish are joined tuples of q1, whose scores are min(0.6, 0.2, 1 −
0.4) = 0.2 and min(0.1, 0.2, 1 − 0.4) = 0.1, respectively, recalling that scoreu1 (serves(p1, f4)) = 0.4 from Example 2. �

Given a PrefDatalog+/– ontology KB = (O , score) and an NCQ q(X) = ∃YR1(Z1) ∧ · · · ∧ Rm(Zm) ∧ ¬Nm+1(Zm+1) ∧ · · · ∧
¬Nm+n(Zm+n), we denote with J (q, KB) the set of pairs (t̂, ̂s) such that t̂ is a joined tuple of q over KB, and ŝ is its score, 
and by Jt(q, KB) the set of pairs (t̂, ̂s) of J (q, KB) such that the projection onto X of t̂ yields t . We now define the answers 
to NCQs.

Definition 3 (Answers to NCQs). Given a PrefDatalog+/– ontology KB and an NCQ q(X), the set of answers to q over KB, 
denoted ans(q, KB), is the set of all (t, p) such that (i) t is a tuple over � and the projection of some joined tuple t̂ of q
over KB onto X, and (ii) p = max(t̂,ŝ)∈ Jt (q(X),KB) ŝ.

Example 5. Continuing the previous example, we have that the tuple’s (p1, f4) score is computed as follows max(min(0.6,

0.2, 1 − 0.4), min(0.1, 0.2, 1 − 0.4)) = 0.2, i.e., we compute the maximum scores of the joined tuples t̂1 and t̂2. �

We are now ready to define answers to UNCQs. Intuitively, an answer to an UNCQ q is a pair (t, s) such that t is an 
answer to some NCQ qi in q, and s is the maximum score of t among all qi ’s.

Definition 4 (Answers to UNCQs). Given a PrefDatalog+/– ontology KB and a UNCQ q(X) = ∨l
i=1 qi(X), the set of an-

swers to q over KB, denoted ans(q, KB), is the set of all (t, g) such that there exists (t, p) ∈ ⋃l
i=1 ans(qi, KB) with g =

max{p | (t, p) ∈ ⋃l
i=1 ans(qi,KB)}.

Example 6. Consider the following UNCQ q1(X1) = ∃Y1 place(X1, Y1) ∨ ∃X2 serves(X1, X2) over the relations in Fig. 1 with 
the score function scoreu1 . Then, (p1, 0.7) = (p1, max(0.7, 0.6)) is an answer to q1. �

We next define top-k answers to UNCQs, which are intuitively at most k answers whose scores are always above or equal 
to the score of all non-top-k answers.

Definition 5 (Top-k answers). Given a PrefDatalog+/– ontology KB and a UNCQ q(X) = ∨l
i=1 qi(X), a top-k answer to q over 

KB, denoted ansk(q, KB), is a sequence of pairs (t, s) of atoms and scores such that:

(i) ansk(q, KB) ⊆ ans(q, KB),
(ii) |ansk(q, KB)| = min(k, |ans(q, KB)|), and

(iii) s ≥ s′ for all (t, s) ∈ ansk(q, KB) and (t′, s′) ∈ ans(q, KB) − ansk(q, KB).

Example 7. Consider again the NCQ q1(X1, X2) = ∃Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2)) over the relations 
in Fig. 1 with the score function scoreu1 , and recall the scores of the non-entailed atoms of Example 2. Then, all the top-1
answers to q1 are {(p2, f2)}, {(p2, f3)}, {(p1, f3)}, as all have the score of 0.6. �

In the rest of the paper, we refer to “a top-k answer”, since (as shown above) ties in scores can lead to different 
sequences satisfying the conditions in the definition of top-k answer. We use the notation pos(a, s) to refer to the position 
of an element a in a sequence s. For simplicity, we also slightly abuse notation by sometimes referring to answers as 
sequences of atoms (without the scores), and we sometimes treat sequences as sets.

4. Computing top-k answers

Our approach extends the RankJoin operator in [8] to work with UNCQs. The original RankJoin operator takes as input an 
integer k, a positive conjunctive query, a monotonic ranking function f , and m relations (where each tuple in each relation 
is accompanied by a score), and it yields the top-k joined tuples over the m relations, in descending order of their combined 
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Algorithm RankJoin-UNCQ

Input: (i) PrefDatalog+/– ontology KB = (O , score), (ii) UNCQ q(X) = ∨l
i=1 qi(X), and (iii) integer k > 0.

Output: a top-k answer to q(X).

Global Variables: relList, hashTab, Its.

1. querySet := {q1(X), . . . , ql(X)};
2. top-k :=∅;
3. InitStructures(querySet); /* Fig. 3 */
4. while CanContinue(querySet, top-k, k) do
5. q := chooseQuery(querySet);
6. T S :=getTuples(q); /* Fig. 4 */
7. if (T S = ⊥) /* all the iterators in Its(q) reached the end */
8. remove q from querySet
9. else

10. for each (t, p) in T S do
11. UpdateTopK(top-k, (t, p));
12. T := getThreshold(q);
13. if (|top-k| = k and T ≤minScore(top-k)) then
14. remove q from querySet if present;
15. return top-k.

Fig. 2. The main algorithm RankJoin-UNCQ.

Procedure InitStructures
Input: querySet = {q1(X), . . . , ql(X)}.

1. relList := empty mapping from queries qi in querySet to lists of relations;
2. hashTab := empty mapping from queries qi in querySet to sets of hash tables;
3. Its := empty mapping from queries qi in querySet to sets of iterators;
4. for each qi in querySet do
5. for each relation R j appearing in Pos(qi(X)) do
6. add R j to relList(qi);
7. add empty hash table H j to hashTab(qi);
8. add It j to Its(qi), and set It j to the first tuple in R j .

Fig. 3. Initialization procedure.

scores (computed using f ). Specifically, it assumes that each of the m input relations is sorted by tuple-score in descending 
order, and tuples from the m relations are scanned and joined until k joined tuples are found such that the lowest among 
their scores is greater than or equal to a certain threshold.

Our ranking function f computes the scores ŝ, p, and g of tuples by applying the min and max operators to the scores 
of the atoms of HB� , as defined in Definitions 2, 3, and 4, respectively. This generalizes conjunctions and disjunctions in 
classical logic; the framework can be easily adapted to other score computations.

We describe in detail our algorithm, since it is important to prove the correctness of the computation of the top-k
answers, without the need to compute the scores of all the joined tuples.

RankJoin-UNCQ Algorithm. The algorithm is shown in Fig. 2. It takes as input a UNCQ q(X) = ∨l
i=1 qi(X) over KB =

(O , score), and an integer k, and it produces as output a set top-k of pairs (t, g), representing a top-k answer to q(X)

over KB, according to Definition 5.

Variables and initialization. RankJoin-UNCQ uses two local variables querySet and top-k, where querySet stores the NCQs 
qi(X) composing the input query Q (X), and top-k stores the set of pairs (t, g) that represent the top-k answers to Q (X)

computed so far. Furthermore, we assume three global variables relList, hashTab, and Its, which are mappings from elements 
in querySet into lists of relation names, sets of hash tables, and sets of iterators, respectively. InitStructures, called in line 3 of 
RankJoin-UNCQ, initializes these structures as follows: for each NCQ qi in querySet, relList contains the list with the (names 
of the) m relations R1, . . . , Rm that appear in Pos(qi) (these are the positive relations over which qi is evaluated), hashTab
contains a hash table for each R j in relList, which is used to store the tuples of R j that have already been scanned, and Its
contains a set of iterators, one for each table R j in relList(qi); iterator It j in Its(qi) points to the next tuple to be scanned 
in R j in the evaluation of qi , so it is initialized to the first tuple in R j . Note that if qi contains the same relation R multiple 
times (self-joins), relList accordingly contains R multiple times, and Its(qi) contains an iterator for each occurrence of R . We 
assume, as done in [8], that relations are sorted by score from maximum to minimum; in this way, getNext always retrieves 
the tuple with the maximum score from the ones not parsed yet. (See Fig. 3.)

Main loop. At each iteration, RankJoin-UNCQ randomly chooses an NCQ q from querySet via chooseQuery (line 5), and re-
trieves a set T S of pairs (t, p) by calling getTuples (Fig. 4, line 6), which deals with the progressive evaluation of the NCQ q. 
If T S is empty (line 7), i.e., no more tuples can be obtained for the evaluation of q, RankJoin-UNCQ removes q from querySet
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Function getTuples

Input: NCQ q(X) = ∃Y�(X, Y).

Output: Set T S of pairs (t, p), where t is an instance of the free variables in X, and p is its score.

1. Let {H1, . . . , Hm} be hashTab(q); /* hash tables over relations R1, . . . , Rm in relList(q) */
2. Let {It1, . . . , Itm} be Its(q); /* iterators over relations R1, . . . , Rm in relList(q) */
3. T S := ∅; currRel := ⊥;
4. done := false;
5. while (relList(q) �= ∅ and !done) do
6. currRel := chooseRel(relList(q));
7. Let i be such that currRel = Ri ;
8. if !hasNext(Iti) then remove Ri from relList(q) /*Ri has been completely scanned */
9. else done := true;

10. if (relList(q) = ∅) then return ⊥;
11. Let i be such that currRel = Ri ;
12. (t, score(t)) := getNext(Iti);
13. Put (t, score(t)) in Hi ;
14. J := join(�, H1, . . . , Hi−1, t, Hi+1, . . . , Hm);
15. J P := computeScore(J,q); /* Fig. 5 (left) */
16. for each (t̂, ̂s) ∈ J P do
17. UpdateTS((t̂, ̂s), T S); /* Fig. 5 (right) */
18. return T S .

Fig. 4. Function evaluating a CQ.

(line 8). Otherwise, UpdateTopK is called for each pair (t, p) to update the current top-k answers, if needed. As each rela-
tion is sorted by score, then at each iteration, getTuples returns the answers to q with the highest possible score. Thus, if 
top-k contains already k answers, and getThreshold(q) is lower than the minimum score of the answers in top-k, then none 
of the rest of the answers to q can contribute to the top-k answers, and therefore q is removed from querySet (line 14). 
The value getThreshold(q) is the maximum tuple score obtainable in subsequent steps of the evaluation of q, computed as 
max{T1, . . . , Tm}, where Ti = min{score(r1

1), . . . , score(r1
i−1), score(rlast

i ), score(r1
i+1), . . . , score(r1

m)}, where r1
i is the first tuple 

of Ri , and rlast
i is the last scanned tuple of Ri . Let T be the maximum tuple score obtainable in subsequent steps of the 

evaluation of the whole query Q (X), computed by taking the maximum of the values provided by getThreshold(q) for every 
NCQ q in querySet. RankJoin-UNCQ halts when (a) the lowest score of top-k is greater than T , and k answers have been 
found, or (b) querySet becomes empty, i.e., no query is left to be evaluated. In every case, RankJoin-UNCQ returns the set 
top-k (line 15).

Function getTuples. The pseudocode for this subroutine is shown in Fig. 4; it deals with the progressive evaluation of an 
NCQ q, i.e., it progressively computes ans(q, KB), as formalized in Definition 3. At each invocation, it yields a set T S of pairs 
(t, p) such that (i) t is an instance of the free variables in X obtained from R1, . . . , Rm following the RankJoin strategy, and 
(ii) p is the computed score for t . As the first step, getTuples retrieves H1, . . . , Hm and It1, . . . , Itm with the corresponding 
values for q from the global variables. The while-loop in line 5 finds the next relation to scan: if relList(q) is not empty, 
then a relation currRel is randomly chosen from it; if this relation has already been fully scanned (line 8), then it is removed 
from relList(q), and the process is repeated until a relation that still has tuples to scan is found. If, however, all the relations 
have been entirely scanned, then all the possible join combinations have been tried, and no more tuples can be provided 
for the evaluation of q(X), thus getTuples returns the empty set (line 10). Otherwise, currRel holds the next relation Ri to 
scan; function getNext(Iti) fetches the pair (t, score(t)), where t is the next tuple in Ri that has not been scanned yet, and 
score(t) is the corresponding score for t in Ri ; as tuples in Ri are sorted in descending order relative to their scores, t has 
a score higher or equal than the scores of the tuples that were not chosen yet by the iterator in Ri . The pair (t, score(t))
provided by getNext(Iti) is added to Hi (line 13)—recall that Hi is the hash table associated with Ri , and join is invoked 
afterwards (line 14).

Function join. This function builds a set J of joined tuples resulting from joining tuple t with the tuples already in 
H1, . . . , Hi−1, Hi+1, . . . Hm , according to q; join effectively computes the join (Definition 2) in q for t with all the tuples 
from the other relations that have already been scanned.

Function computeScore. This function (Fig. 5, right), invoked on a set of joined tuples t̂ and an NCQ q(X), computes ŝ as in 
Definition 2 for each t̂ (line 15).

Procedure UpdateTS. For each of the obtained joined tuples t̂ , procedure UpdateTS is called (line 17 of getTuples). UpdateTS
in Fig. 5 (left) projects t̂ on the attributes provided by Att(X), which are the attributes of the relations of q(X) over which 
the variables in X are mapped to, yielding t . Next, UpdateTS checks whether t occurs in T S with a score p lower than ŝ: in 
this case, the score p of t in T S is updated with ŝ. In the case that t does not appear in T S , the pair (t, ̂s) is added to T S . 
In line 18, function getTuples returns set T S as output.

Procedure UpdateTopK. This procedure first checks if t is already in top-k, and, if so, then it updates the score of t in top-k, 
if necessary—it keeps the maximum score for t according to Definition 5. Otherwise, if top-k does not have k pairs yet, then 
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Procedure UpdateTS

Input: A pair (t̂, ̂s), a set T S of pairs (t, p).

1. t := project(t̂, Att(X));
2. if ((t, p) ∈ T S and ŝ ≥ p then
3. update p with ŝ;
4. if ((t, p) /∈ T S then
5. put (t, ̂s) in T S .

Function computeScore

Input: A set J of tuples t̂ = t1, . . . , tm | (t j , score(t j)) ∈ H j , a UNCQ q(X) =
∃YR1(Z1) ∧ · · · ∧ Rm(Zm) ∧ ¬Nm+1(Zm+1) ∧ · · · ∧ ¬Nm+n(Zm+n).

Output: A set J P of pairs (t̂, ̂s).

1. J P := ∅;
2. for each t̂ ∈ J do
3. discard := false;
4. ŝ := min(score(t j), . . . , score(tm));
5. for each N j do
6. Let q j(X) = ∃YR1(Z1) ∧ · · · ∧ Rm(Zm) ∧ N j(Z j);
7. If there exists tuple t j in N j such that the

projection of t1, . . . , tm, t j onto X is an
answer to q j then

8. discard = true; break
9. else ŝ := min{ŝ, 1 − score(a j)}, where a j is the

10. atom such that N j(a j) /∈ O ;
11. if discard = false add (t̂, ̂s) to J P ;
12. return J P .

Fig. 5. Updating T S with a new scored tuple (left), and computing the scores of joined tuples (right).

(t, p) is added to top-k, else if |top-k|=k, and p is greater than the minimum score of the tuples in top-k, then the tuple in 
top-k with the minimum score is replaced with (t, p).

The following theorem states that our algorithm is correct.

Theorem 1. Given a PrefDatalog+/– ontology KB and a UNCQ q(X) = ∨l
i=1 qi(X), RankJoin-UNCQ correctly computes a top-k answer 

to q(X).

Proof. All the relations in Pos(q) are assumed to be sorted by score. Let position(tuple, R) be the position of tuple in the 
relation R . The proof is by contradiction. Suppose the k-th tuple of the top-k list yielded by RankJoin-UNCQ is tk , with 
score gk . Assume there is a joined tuple t̂ of some qa(X), with a ∈ {1, . . . , l}, such that its score ŝ has ŝ > gk , and t̂ has 
not been processed by getTuples(qa(X)), thus (the projection of) t̂ does not belong to top-k. Let qa(X) be of the form 
∃YR1(Z1) ∧ · · · ∧ Rm(Zm) ∧ ¬Nm+1(Zm+1) ∧ · · · ∧ ¬Nm+n(Zm+n), and t̂1, . . . , ̂tm be the tuples of R1, . . . , Rm , respectively, 
whose join yields t̂ , and score(t̂1) . . . , score(t̂m) the scores of t̂1, . . . , ̂tm in R1, . . . , Rm , respectively. As RankJoin-UNCQ halted, 
gk ≥ T . This means that gk ≥ Ta , where Ta = getThreshold(qa) = max{T1, . . . , Tm}. Since, by hypothesis, ŝ > gk , it follows that 
ŝ > Ta , and thus ŝ must be greater than every threshold T j , with i ∈ {1, . . . , m}. Let (r1

i , score(r1
i )) and (rlast

i , score(rlast
i ))

be the first and the last scanned tuple of Ri along with their scores, respectively, with 1 ≤ i ≤ m, and consider any
Ti ∈ {T1, . . . , Tm}. By definition, Ti is equal to min{score(r1

1), . . . , score(rlast
i ), . . . , score(r1

m)}, and the score ŝ is computed as 
min{score(t̂1), . . . , score(t̂m), score(t̂m+1), . . . , score(t̂m+n)}. Since score(t̂i) ≤ score(r1

i ) for every i ∈ {1, . . . , m}, and score(t̂ j) ≤ 1
for every j ∈ m + {1, . . . , n}, it is easy to see that, in order for ŝ > Ti to hold, it must hold that score(t̂i) > score(rlast

i ). This 
in turn implies that position(t̂i, Ri) > position(rlast

i , Ri), as Ri is scanned in descending score order. By applying this reason-
ing to every Ti ∈ {T1, . . . , Tm} (as ŝ must be greater than every threshold Ti ), we have that score(t̂i) > score(rlast

i ) for every

i ∈ {1, . . . , m}, implying that position(t̂i, Ri) > position(rlast
i ) for every i ∈ {1, . . . , m}. This means that, since every relation 

is scanned in descending score order, every t̂i must have been returned by getNext(Iti) (see line 12 of Fig. 4) for every 
i ∈ {1, . . . , m}, then the joined tuple t̂ must have been produced by getTuples(qa), contradicting the initial assumption. �

The following example shows how RankJoin-UNCQ works.

Example 8. Consider again the NCQ q1(X1, X2)=∃Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2)) over the relations 
in Fig. 1, asking for the pairs of places X1 and foods X2 such that X2 is not served in X1; consider the score function 
scoreu1 , and assume that we are interested in a top-1 answer.

Since querySet contains only q1, chooseQuery always returns q1. InitStructures initializes relList (mapping q1 to 
[place, food]), hashTab (mapping q1 to the set of hash tables {Hplace, Hfood}; both are empty), and Its (mapping q1 to the 
set of iterators {Itplace, Itfood}, where Itplace and Itfood point to the tuples t11 and t1, respectively).

Fig. 6 shows each iteration of RankJoin-UNCQ, while Fig. 7 shows each corresponding call of getTuples within the iteration 
of RankJoin-UNCQ. The values in the rows of both tables show values of their variables after finishing each iteration and 
each function call, respectively.

In the first iteration, getTuples is called and returns the empty set, as (assuming place is chosen) only t11 is scanned, and 
no joins are produced yet. In the second call to getTuples, food is chosen, and t1 is scanned. The invocation of join in this 
case produces the joined tuple t̂ = t11, t1 = (p1, pizzeria, f1, pizza). As t15 = (p1, f1) is in serves, which matches the values 
for the variables X1 and X2 set by t̂ , t̂ is discarded and the empty set is returned.



362 B. Fazzinga et al. / International Journal of Approximate Reasoning 93 (2018) 354–371
querySet getTuples top-1 T = getThreshold(q1)

1 {q1} ∅ ∅ max{min{0.6,0.8},min{0.6,0.8}} = 0.6
2 {q1} ∅ ∅ max{min{0.6,0.8},min{0.6,0.8}} = 0.6
3 {q1} {((p2, f1),0.5)} {((p2, f1),0.5)} max{min{0.6,0.8},min{0.6,0.8}} = 0.6
4 {q1} {((p2, f2),0.6)} {((p2, f2),0.6)} max{min{0.6,0.8},min{0.6,0.7}} = 0.6

Fig. 6. Trace of RankJoin-UNCQ with query q1(X1, X2) = ∃Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2)) for user u1.

Ri Itplace , Itfood , Hplace , Hfood t̂, with (t̂, ŝ) ∈ J ŝ, with (t̂, ŝ) ∈ J TS

1 place t12, t1, {(t11,0.6)}, ∅ ∅ 0 ∅
2 food t12, t2, {(t11,0.6)}, {(t1,0.8)} {t̂ = t11, t1} 0 ∅
3 place t13, t2, {(t11,0.6), (t12,0.6)}, {(t1,0.8)} {t̂ = t12, t1} {min{0.6,0.8,0.5} = 0.5} {((p2, f1),0.5)}
4 food t13, t3, {(t11,0.6), (t12,0.6)}, {(t1,0.8), (t2,0.7)}, {(t̂1 = t11, t2), (t̂2 = t12, t2)} {min{0.6,0.7,0.7} = 0.6} {((p2, f2),0.6)}

Fig. 7. Trace of getTuples on each call for q1 for user u1.

In the third call to getTuples, place is chosen, and t12 is scanned. Then, join produces t̂ = t12, t1 = (p2, sushi_bar, f1, pizza). 
As no tuple in serves matches the values for the variables X1 and X2 set by t̂ , t̂ is not discarded, and its score ŝ is computed 
as min{0.6, 0.8, 0.5}= 0.5, as serves(p2, f1) is a non-entailed atom, whose score is 0.5. Then, UpdateTS projects t̂ onto Att(X)

yielding t = (p2, f1), which is added to T S with score 0.5 and returned. Then, RankJoin-UNCQ adds ((p2, f1), 0.5) to top-k, 
and getThreshold(q1) yields T = 0.6. Since lowerScore(top-k) = 0.5 is lower than 0.6, q1 is not removed from querySet, and 
the algorithm does not stop.

In the fourth call to getTuples, food is chosen, t2 is scanned, and join produces t̂1 = t11, t2 and t̂2 = t12, t2. As t14 =
(p1, f2) is in serves, which matches the values for the variables X1 and X2 set by t̂1, t̂1 is discarded. Tuple t̂2, instead, is 
maintained, and its score is computed as min{0.6, 0.7, 0.7}= 0.6, as serves(p2, f2) is a non-entailed atom, whose score is 
0.3. Function UpdateTS projects t̂2 onto Att(X) yielding t = (p2, f2), which is added to T S with score 0.6 and returned. 
After replacing ((p2, f1), 0.5) into top-k with ((p2, f2), 0.6) to top-k, RankJoin-UNCQ calls getThreshold(q1) that returns 0.6. 
Since lowerScore(top-k) is equal to 0.6, q1 is removed from querySet, and the algorithm stops, producing the top answer 
{((p2, f2), 0.6)}. �

5. Answering queries for groups

Group decision making [15] comes up in many scenarios in which important choices are made; for instance, consider a 
committee put together by a funding agency to decide how to select which research projects to fund. Here, each committee 
member submits their opinion on how the proposals should be ranked, and the committee wishes to reach a decision that 
adequately represents each individual member’s views. Some of the issues that can arise in this scenario are: Is it possible 
for members to strategically misrepresent their opinions in order to push their agenda? Can they make a fair decision in 
the presence of conflicting preferences?

One way of tackling these issues is via the top-k query answering mechanisms discussed in the previous sections—here, 
we explore different ways in which the questions raised above can be addressed. The central issue is thus the combination 
of individual preferences to produce a ranking of elements based on an aggregated view of the group. There are two main 
computational challenges in accomplishing this: (i) the fact that disagreement inevitably comes up and must be resolved in 
some principled manner, and (ii) tractability is even harder to accomplish compared to the single-user case (as it involves 
the additional aggregation of potentially contradicting preferences of a potentially large collection of users). To this end, in 
this section we extend the framework presented so far in the following ways:

• Allow the inclusion of a set of users and their respective score functions.
• Define two specific strategies to compute the aggregated view of the group; the first computes individual top-k answers 

for each user and then combines them into a single one representing the group, and the other performs the combination 
step first and then answers the top-k over the result.

• Explore different semantic properties that describe different aspects of fairness, as well as how results change in re-
sponse to changes in individual preferences.

Given a set of n users U = {u1, . . . un} and a ∈ HB� , we denote with scoreui (a) the score assigned by user ui to an atom a, 
and assume that this mapping is defined for all pairs of ground atoms entailed by the ontology and users in the group. Here, 
we naturally assume that one global Datalog+/– ontology is common to all users.

Example 9. In the relations in Fig. 1, the last three columns of each table specify the score function for three different 
users. For instance, for the relation food, user u1 assigns a score of 0.8 to food( f1, pizza), while users u2 and u3 assign it 0.3 
and 0.7, respectively. Now, consider the query q1(X1, X2) = ∃ Y1, Y2 (place(X1, Y1) ∧ ¬serves(X1, X2) ∧ food(X2, Y2))—the 
top-1 answer for u1 was computed in Example 8; but we would now like to know the top-1 answer considering also the 
scores from users u2 and u3. �
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Algorithm AggLast

Input: (i) Datalog+/– ontology O ;
(ii) set of users U = {u1, . . . , un}, where each ui has associated score function scoreui ;

(iii) UNCQ q(X) = ∨l
i=1 qi(X); (iv) integer k > 0; and (v) score aggregation operator ⊎.

Output: A top-k answer to q(X).

1. for every user ui ∈ U do
2. k-ansi := RankJoin-UNCQ((O , scoreui ), q(X), k);
3. Res := apply ⊎ to k-ans1, . . . , k-ansn;
4. return k highest-scoring elements in Res.

Fig. 8. Agg-Last top-k query answering.

As mentioned above, the main challenge in query answering relative to preferences of a group of users is that the user 
preference models may be in disagreement with each other. The study of preference aggregation strategies to address this 
problem in ontological query answering was first proposed in [6], where an operator is defined for the aggregation of n
individual strict partial orders (SPOs), each representing the preferences of an individual. The following definition is an 
adaptation of aggregation operators where the preference models are based on score functions.

Definition 6. Given a set R of tuples and n score functions scoreu1 , . . . , scoreun over the tuples in R , a score aggregation 
operator

⊎
(R, scoreu1 , . . . , scoreun ) yields a score function score∗ over the tuples in R .

These aggregation operators are quite general, asking only to satisfy the property that the resulting preference relation 
is also a strict weak order; depending on the application, other properties may be desirable, such as the additional ones 
studied in [6] for SPOs. For the particular setting of score-based preference functions, the problem of aggregating such 
functions is similar to that of rank fusion that we discussed as related work. In Section 6, we select some specific ranking 
aggregations from the literature and implement them in our framework.

In the rest of this section, we analyze two approaches to compute an answer to a top-k query for a set of users: 
aggregation-last and aggregation-first. Both strategies adapt techniques developed in [6] to the special case of score functions, 
and the general case of UNCQs—previous work focused on disjunctive atomic queries and preference relations expressed as 
SPOs.

5.1. Aggregation-last query answering

The first strategy that we discuss computes a top-k answer for each individual and then applies an aggregation operator 
to the results in order to obtain a single top-k answer. We begin by formalizing the notion of top-k aggregation-last answers. 
Given a Datalog+/– ontology O , a set of n users U = {u1, . . . , un} with score functions scoreu1 , . . . , scoreun , a UNCQ q(X) =
∨l

i=1 qi(X), and an aggregation operator 
⊎

, in the following, we denote with k-ansi the set ansk(q, (O , scoreui )), i.e., the 
top-k answers for user ui .

Note that k-ansi consists of at most k pairs of the form (t, scrt), where t ∈ D , and scrt is as in Definition 5. Intuitively, 
user ui is inducing a score-based preference relation to the tuples in D , where the score for a tuple not appearing in k-ansi
is zero; therefore, in the following definition, we use k-ansi to represent the set of top-k answers for user ui as well as to 
represent the score-based preference relation that it induces.

Definition 7 (Agg-Last top-k answers). Given a Datalog+/– ontology O , a set of n users U = {u1, . . . , un} with correspond-
ing score functions scoreu1 , . . . , scoreun , a UNCQ q(X) = ∨l

i=1 qi(X), and an aggregation operator 
⊎

, let A = {(t, scrt,ui ) |
(t, scrt,ui ) ∈

⋃
ui∈U k − ansi} and T U = {t | ∃(t, scr) ∈ A}. An Agg-last top-k answer for U is a set ansG-lastk(q, O , U) such 

that:

(i) ansG-lastk(q, O , U) ⊆ A,
(ii) for each (t, score∗(t)) ∈ ansG-lastk(q, O , U), we have score∗(t) ≥ score∗(t′) for every tuple t′ appearing in A but not in 

ansG-lastk(q, O , U), where score∗ = ⊎
(T U , k-ans1, . . . , k-ansn), and

(iii) |ansG-lastk(q, O , U)| = min(k, |T U |).

We now show how to compute Agg-Last top-k answers for a set of users by leveraging Algorithm RankJoin-UNCQ de-
scribed in Section 3. The main strategy works as follows: (i) for each user ui , compute the top-k answers to query q(X)

using Algorithm RankJoin-UNCQ; and (ii) aggregate the answers of all users into one top-k answer using a score aggrega-
tion operator 

⊎
. Clearly, in step (i), RankJoin-UNCQ could be replaced by any algorithm that computes top-k answers for 

preference-based Datalog+/– ontologies. However, all the results shown in this paper assume the use of Algorithm RankJoin-
UNCQ. Algorithm AggLast (cf. Fig. 8) performs this process.



364 B. Fazzinga et al. / International Journal of Approximate Reasoning 93 (2018) 354–371
Algorithm AggFirst

Input: (i) Datalog+/– ontology O ;
(ii) set of users U = {u1, . . . , un}, where each ui has associated score function scoreui ;

(iii) UNCQ q(X) = ∨l
i=1 qi(X); (iv) integer k > 0; and (v) score aggregation operator ⊎.

Output: A top-k answer to q(X).

1. Let R1, . . . , Rm be all relations that appear in q(X);
2. For each Ri do
3. Resi := ⊎(

Ri , scoreu1 , . . . , scoreun

)
;

4. score∗(t) := Resi(t) for every t ∈ Ri ;
5. return RankJoin-UNCQ((KB, score∗), q(X), k).

Fig. 9. Agg-First top-k query answering.

For the second step, in this work, we consider the following aggregation operators based on ranking aggregation methods
[16]: 

⊎
x with x∈{max, min, borda, sum, avg}. For every tuple t in R , operator 

⊎
max(R, score1, . . . , scoren) assigns to t

the maximum score among all scorei(t). Operators 
⊎

min , 
⊎

avg , and 
⊎

sum apply minimum, average, and sum, respectively. 
Clearly, 

⊎
max (resp., 

⊎
min) is equivalent to the max-based (resp., min-based) linear combinator mentioned in [16]. For ⊎

borda (Borda count in [16]), each user ranks their top-k answers. For each user, the top-ranked answer is given k points, 
the second-ranked one k − 1 points, and so on. Note that we first need to normalize the scores in each individual rank as 
shown in [16].

Example 10. Consider again query q1(X1, X2) from Example 9. First, the top-1 answer for each user is computed using 
RankJoin-UNCQ. We have then that the top-1 answer for u1 is k-ans1 ={((p1, f1), 0.6)} (as computed in Example 8); pos-
sible top-1 answers for u2 and u3 are k-ans2 ={((p1, f4), 0.5)} and k-ans3 ={((p1, f4), 0.7)}, respectively. The universe of 
elements in this case (i.e., the set T U in Definition 7) is {(p1, f1), (p1, f4)}. The operator 

⊎
max yields ((p1, f1), 0.6) and 

((p1, f4), 0.7); thus, the top-1 answer for the group is ((p1, f4), 0.7) using 
⊎

max . �

An alternative to the aggregation operator is to consider voting mechanisms from social choice (as proposed in [6]). 
For example, 

⊎
plurality can be used, which works as follows. First, compute the top-k answers for each user (a user’s top-k

choices are taken as their top-preferred items). Then, each items’ frequency for all the users is summed up, and the k items 
with the highest number of votes win. The final scores are 1 to the chosen tuples and 0 to the rest.

Example 11. If we use the operator 
⊎

plurality in Example 10, then (p1, f4) has two votes, and (p1, f1) has one vote; therefore, 
the same answer as before is obtained through plurality voting. �

The correctness of Algorithm AggLast in Fig. 8 is proved by the following proposition.

Proposition 1. Given a Datalog+/– ontology KB = (D, ∅), a set of users U , a UNCQ q(X) = ∨l
i=1 qi(X), and an aggregation operator ⊎

, Algorithm AggLast correctly computes an Agg-Last top-k answer for U .

5.2. Aggregation-first query answering

Our second proposed approach applies the aggregation operator to the input tables, effectively merging the users’ pref-
erences into a single score assignment. This can be seen as the construction of a single virtual user that aggregates the 
preferences of all the individuals from the group; the top-k answers are then computed over this new score assignment 
using the algorithm described in Section 3. We formalize this in the following definition.

Definition 8 (Agg-First top-k answers). Given a relational schema R and a Datalog+/– ontology O on R, a set of n users 
U ={u1, . . . , un} with score functions scoreu1 , . . . , scoreun , a UNCQ q(X)= ∨l

i=1 qi(X), and an aggregation operator 
⊎

, an 
Agg-First top-k answer for U is the set ansG-firstk(q, O , U)=ansk(q, KB′) where KB′ = (KB, score∗) is a preference-based 
Datalog+/– ontology and score∗ = ⊎

(R, scoreu1 , . . . , scoreun ) for every R ∈R.

Algorithm AggFirst (Fig. 9) implements Agg-First top-k answering using RankJoin-UNCQ (Fig. 2) to compute the top-k
answers to a UNCQ based on the aggregated preference relation. Analogously to AggLast (Fig. 8), the call to RankJoin-UNCQ
in step 5 can be replaced by any algorithm that computes the top-k answers for a preference-based Datalog+/– ontol-
ogy.

Example 12. Consider again the CQ q1(X1, X2) from Example 9. The first step in AggFirst is to aggregate the scores of the 
different users in every relation appearing in the query. In this case, we have relations food, place, and serves. The following 
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table summarizes the result of aggregating the individual scores determined by score functions scoreu1 , scoreu2 , and scoreu3

for each tuple in these relations. We assume the aggregation operator 
⊎

max as in Example 10.

food

tuple score∗

t4 0.9
t1 0.8
t2 0.7
t3 0.6
t5 0.5

serves

tuple score∗

t16 0.9
t14 0.7
t17 0.65
t15 0.6

place

tuple score∗

t11 0.8
t12 0.5
t13 0.2

After the aggregation step, Algorithm RankJoin-UNCQ is called for q1 as before, but the function score∗ is used instead. 
Note that Algorithm RankJoin-UNCQ assumes that the tables appearing in q1 are sorted by score∗ in descending order. The 
top-1 answer in this case is {((p1, f4), 0.8)}. �

Proposition 2. Given a Datalog+/– ontology KB = (D, ∅), a set of users U , a UNCQ q(X) = ∨l
i=1 qi(X), and an aggregation operator ⊎

, Algorithm AggFirst correctly computes an Agg-First top-k answer for U .

Note that, in certain cases, it may not be necessary to produce the aggregated scores for the entire tables used in the 
query; instead, we compute the required tuples on demand to avoid unnecessary computations. The specific strategy to 
accomplish this depends on the aggregation operator used, and may not be possible in general. One example of an operator 
for which relatively minor changes to our algorithm suffice to implement this optimization is 

⊎
max .

Worst case running times. The worst-case time complexity of our algorithms is as follows. Let u be the number of users, 
q be the number of disjuncts (NCQs) in the UNCQ input, r be the maximum number of positive relations in one NCQ, k be 
the number of answers returned, and nmax be the maximum number of tuples in any table.

In the worst case, RankJoin-UNCQ runs in time O (nmax ∗r ∗q), since for each disjunct in the input query and each positive 
relation (NCQ) in that disjunct, it must scan all tuples. AggFirst must first aggregate all scores and then answer the query; 
in the worst case, this is O (nmax ∗ r ∗ u + nmax ∗ r ∗ q). AggLast must first answer the query for each user, and then aggregate 
the individual top-k answers; in the worst case, this is O (u ∗ nmax ∗ r ∗ q + u ∗ k).

5.3. Semantic properties of aggregation-last top-k querying

An interesting line of research is the study of the different properties that are satisfied (or violated) by the different 
approaches that address top-k query answering. Several works in the literature study semantic properties for top-k answers 
over certain and uncertain data; among them, we refer the reader to [17,18]. As we intend to model the preference relation 
that represents the preferences of a group of individuals as a whole, we have focused instead on a set of properties that are 
based on the ones usually studied in social choice theory [19]; such properties were studied in [6] for strict partial orders 
(that, for their generality, also offer less guarantees). Nevertheless, it is important to note that most of the properties that 
can be found in [17,18] are subsumed and adapted for the group preference scenario.

An in-depth study of such properties is out of the scope of this paper; however, we present a brief discussion to show 
the kind of results that we have obtained so far and are pursuing further. The Monotonicity and Stability properties are 
adapted from our previous work on answering top-k queries over groups in a more general setting [6].

The following properties refer to the effects of improving and lowering the scores of tuples. We denote as Ansk(q, KB)

the set containing all the top-k answers ansk(q, KB).

Monotonicity 1: Given k > 0, let r ∈Ansk(q, KB) for U ={u1, . . . , un}, t ∈ r, and ui ∈U be such that scoreui (t) = v . If u′
i /∈ U is 

identical to ui except that scoreui (t) = v ′ with v ′ > v , then there exists r′ ∈Ansk(q, KB) for U ′ = {u1, . . . , ui−1, u′
i, ui+1, . . . , un}

such that t ∈ r′ .
Intuitively, this states that if a tuple t is in a top-k answer, it is still in a top-k answer if the score function of some user 

changes so that t ’s (and only its) score is increased.

Monotonicity 2: Given k > 0, let t be a tuple such that there is no r ∈ Ansk(q, KB) for U ={u1, . . . , un} with t ∈ r, and let 
ui ∈U be such that scoreui (t) = v . If u′

i /∈ U is identical to ui except that scoreui (t) = v ′ with v ′ < v , then there does not 
exist r′ ∈ Ansn(q, KB) for U ′ = {u1, . . . , ui−1, u′

i, ui+1, . . . , un} such that t ∈ r′ .
Conversely, Monotonicity 2 states that if a tuple t does not appear in any answer, it cannot appear in any answer if the 

score function of a user changes so that t ’s (and only its) score is decreased.

Faithfulness: Given k > 0, let a and b be two tuples such that for all u ∈ U ={u1, . . . , un} it holds that scoreu(a) > scoreu(b); 
then, there is no top-k answer r ∈Ansk(q, KB) for U such that pos(b, r) > pos(a, r).

This property, adapted from [20], states that if every user assigns a greater value to tuple a than tuple b, then a must 
appear before b in every possible top-k answer. The following proposition shows for which aggregation operators Algorithm
AggLast satisfies the above properties.



366 B. Fazzinga et al. / International Journal of Approximate Reasoning 93 (2018) 354–371
Proposition 3. Algorithm AggLast satisfies:

(1) Monotonicity 1 and 2, for operators 
⊎

x with x ∈ {plurality, max, sum, avg}; and
(2) Faithfulness for operators 

⊎
x with x ∈ {max, sum, avg}.

Proof (sketch). Monotonicity 1: Consider aggLast and 
⊎

plurality , and let k-ansi be top-k answers to q for each ui ; since only 
the score function for ui changes, then we can assume that the same other n − 1 answers are obtained when computing 
the top-k answer for each user in U ′ . Clearly, all atoms appearing in k-ansi maintain the same number of votes, including t; 
therefore, t remains in the top-k answer for U .

Consider AggLast and 
⊎

max , and let scrU (t) be the score for t in answer r; this score is computed as the maximum 
among all the scores assigned to t in all individual top-k answers. Then, as only the score of t changes in k-ans′i , we have 
that scrU ′ (t), the score for t in answer r′ , is greater than scrU (t); as the scores for the rest of the answers remain the same, 
t must remain within the top-k answer. An analogous argument holds for 

⊎
avg and 

⊎
sum .

Monotonicity 2: Consider again the argument for Monotonicity 1 and 
⊎

plurality; clearly, as t received no votes prior to the 
change in score, it will not receive any votes after, and thus cannot appear in any top-k answer. For 

⊎
max , 

⊎
avg , and 

⊎
sum , 

a similar argument can be made—if t did not influence the value of max, avg, or sum before the change to make the element 
appear in a top-k answer, it cannot do so after its score is lowered even further.

Faithfulness: First, we clarify that this property is not satisfied by 
⊎

plurality , because of the way votes are assigned: it does 
not matter that all users score element a higher than b—as long as both elements are in individual users’ top-k answers, 
they both receive one vote. Thus, ties in number of votes lead to the existence of top-k answers that exchange the positions 
of these elements.

For max, avg, and sum, a similar argument to the one used for Monotonicity can be applied; these functions enjoy the 
uniformity property, so if scoreui (a) > scoreui (b) for all ui ∈ U , then the aggregate function applied to each side preserve the 
relation. �
Comparison with previous work. It is interesting to contemplate the relationship between the semantic properties that 
hold in the more general models of [6] (see Fig. 6) and the score function-based ones in this paper. Of course, the positive 
results obtained there carry over to this setting; unfortunately, some of the negative results also carry over. One interesting 
property is Stability, which is included in [6] (see Fig. 6) as two separate properties, one in the case in which a new element 
is added and the other in which an existing element is removed; below, we reformulate the former for the present model; 
we use the notation KBadd to refer to the knowledge base that results from adding a new element c, and assume that all 
score functions are extended accordingly:

Stability-Add: For each top-k answer r ∈ Ansk(q, KB) for U ={u1, . . . , un}, there is a top-k answer r′ ∈Ansk(q, KBadd) such that 
either r = r′ or (i) r′ − r = {c} and (ii) let r = (a1, . . . , ak) and r′ = (b1, . . . , bk); for each pair bi, b j such that 1 ≤ i < j ≤ k
and bi = ai′ and b j = a j′ , it holds that i′ < j′ .

Essentially, the property ensures that if a new element is added, the result is either unaltered or the new element 
appears, and the relative order of all the rest stays the same. This property is not satisfied in the general SPO-based model, 
but one could hope that the added structure of scores would help (at least for some operators). Unfortunately, it is simple 
to construct counterexamples for the operators studied here. For 

⊎
plurality , this is accomplished by adding the element c in 

such a way that other elements are pushed out of the individual top-k answers, causing the number of votes to change so 
that the final order is altered. The same kind of counterexample is possible for the cases of avg and sum. For 

⊎
max , the 

same strategy leads to a counterexample for the property; for the property to be violated, there must exist two elements, 
a and b, such that they are swapped in the top-k answer after the addition of the new element. That is, scr(a) > scr(b) and 
scr′(b) > scr′(a), where scr(.) and scr′(.) denote the scores associated with the element in the answer prior to the addition 
and after, respectively. Suppose now that a loses its position (to c) in an individual top-k answer; if that was the score that 
determined scr(a), then clearly scr′(a) can be lower than scr′(b).

Other negative results explored in previous work still hold here, with the same counterexamples found for the more 
general model. These include the other version of the Stability property for Plurality, called S2 in [6] (where an element is 
removed), as well as those for Fairness (Unanimous Winner, both Stability properties, and Non-Dictatorship when k = 1). 
We refer the interested reader to [6] (see Appendix B.5) for the counterexamples.

The properties we discussed are most naturally formulated for the aggregation-last approach; for aggregation-first, the 
relationship between scores given to basic tuples by users and the final answers to queries is not as clear—we are currently 
investigating what properties can be used to compare these approaches in a principled manner.

6. Experimental evaluation

In this section, we report the results of evaluating our algorithms on real-world data, analyzing both the running time 
and the quality of their results.
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6.1. Implementation and hardware

We implemented the algorithms by extending the Datalog+/– query answering engine [9,10], which involved adding 
query answering with score-based preferences for a group of users. We implemented four algorithms for AggLast and two 
for AggFirst—the code and the dataset will be made available as open source. For AggLast, these algorithms are LastBorda, 
LastPlurality, LastHitMax, and LastHitMin, which use 

⊎
x with x among borda, plurality, max, and min, respectively. We use 

score normalization [16] for LastHitMax and LastHitMin, and Borda normalization [16] for Borda. To compute the final scores, 
we used linear combination: the sum of normalized Borda scores for Borda, and the sum of hits (the number of users that 
include an element in their individual result) multiplied by max (resp., min) of score normalizations for LastHitMax (resp., 
LastHitMin). For AggFirst, we implemented FirstAvg and FirstMax, which use 

⊎
x with x among avg and max, respectively.

The entire implementation was done in Java; all runs were done on an Intel Core i7 processor at 2.2 GHz and 8GB of 
RAM, under the MacOS X 10.6.8 OS and a Sun JVM Standard Edition with maximum heap size of 512 MB. To minimize 
experimental variation, all results are averages of three independent runs.

6.2. Experimental setup

Inputs to our system consist of tuples (q, O , U , k), where q is a query, O is the Datalog+/– ontology, U is a group 
preference model, and k is the number of query results.

Data. All runs were carried out using an ontology built on data from the Yelp Dataset Challenge [21], which contains 11,537
businesses in the Phoenix (USA) metropolitan area, 8,282 check-ins, 43,873 users, and 229,907 reviews—each business has 
one or more associated categories.

The Datalog+/– ontology was constructed as follows. We created seven different relations: place, placeType, cuisine, 
food, isPlaceType, servesCuisine, and servesFood; e.g., given the “sushi-bar”, “Asian”, and “sushi” categories for a business x, 
called name in city y, we have place(x, y, name), placeType(sushi-bar), cuisine(asian), food(sushi), isPlaceType(x, sushi-bar), 
servesCuisine(x, asian), and servesFood(x, sushi).

The set of dependencies is � = {isPlaceType(X, Y ) → placeType(Y ); servesCuisine(X, Y ) → cuisine(Y ); servesFood(X, Y ) →
food(Y ); isPlaceType(X, Y ) → ∃Z , T place(X, Z , T ); servesCuisine(X, Y ) → ∃Z , T place(X, Z , T ); servesFood(X, Y ) → ∃Z , T
place(X, Z , T )}.

User preferences. We used the preference dataset1 gathered in previous work [6], which consists of preferences for 49 users 
over cuisine, type of food, and type of place (breakfast, lunch, and dinner). Users entered their preferences as strict partial 
orders (represented as graphs) via a GUI. For each such graph G , we computed the layer corresponding to each vertex (the 
undominated nodes comprise layer 1, and so on). If the number of layers of G is n, and vertex v belongs to layer 	, then 
the score of v is computed as a random number in [1 − (	/n), 1 − (	 − 1/n)] (e.g., if the users specified that they prefer 
bagels over sushi, then the score of food(bagel) is higher than that of food(sushi)).

For each business, the Yelp dataset provides a numerical rating from 0 to 5. We used this information to compute 
the scores of tuples of the relation place as a random number in the interval [(r − σ)/(5 + σ), (r + σ)/(5 + σ)], where 
r is the rating, and σ is the associated standard deviation. To compute the scores for the ground atoms isPlaceType(p, t), 
servesCuisine(p, c), and servesFood(p, f ), we computed the maximum between the score of place(p, y, name) and the scores 
of placeType(t), cuisine(c), and food( f ), respectively.

Group definition. We used the same groups from [6]: 19 groups of 3 to 7 users. Given that there are three types of meals, 
this produced an overall number of 19 · 3 = 57 group choice scenarios.

Queries. We evaluated the following UNCQs:

q(X) = ∃F , C, T (q1(X, F ) ∨ q2(X, C) ∨ q3(X, T )),
q′(X) = ∃F , C, T (q4(X, F ) ∨ q5(X, C) ∨ q3(X, T )), and
q′′(X) = ∃F , C, T (q1(X, F ) ∨ q2(X, C) ∨ q6(X, T )), where
q1(P , F ) = food(F ) ∧ ¬servesFood(P , F ) ∧ place(P ),
q2(P , C) = servesCuisine(P , C) ∧ cuisine(C) ∧ place(P ),
q3(P , T ) = placeType(T ) ∧ isPlaceType(P , T ) ∧ place(P ),
q4(P , F ) = food(F ) ∧ servesFood(P , F ) ∧ place(P ),
q5(P , C) = ¬servesCuisine(P , C) ∧ cuisine(C) ∧ place(P ),
q6(P , T ) = placeType(T ) ∧ ¬isPlaceType(P , T ) ∧ place(P ).

These queries represent situations where groups wish to decide where to go for a meal. For instance, taking into account 
the score-based semantics, q requests places where preferred cuisines are served, or the place type is preferred, or the place 
does not serve a preferred food. All runs have 10 ≤ k ≤ 100, varied in steps of 10.

1 https://github.com/personalised-semantic-search/dataset_qualitative.

https://github.com/personalised-semantic-search/dataset_qualitative
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Fig. 10. Top left: Running time performance for the real-world Yelp Dataset Challenge (see above); Top right: Quality evaluation (Agreement); Bottom left:
Quality evaluation (other metrics); Bottom right: Comparison of methods.

6.3. Results

Performance evaluation. As performance metric, we use the time required to answer queries, varying k. Fig. 10 (top left) 
reports the results: our algorithms are very efficient; even the slowest ones return a top-k answer in less than 40 ms for 
high values of k, confirming the computational feasibility of our approach. Furthermore, FirstAvg is faster than the other 
methods for this dataset, especially at higher values of k. Note that the materialization is not considered here (it was done 
off-line); the performance of the materialization in different benchmarks has already been shown to be practical in terms 
of the time, size, and memory consumption [22].

Quality evaluation. We now discuss the results of the quality evaluation.

Evaluation metrics. We use quality measurements that are often applied in evaluating information retrieval and group rec-
ommender systems [23,24], namely, tuple agreement, Kendall tau distance, and Spearman’s footrule.

Given two top-k lists, tuple agreement is defined as the number of tuples that appear in both lists (ordering is not 
considered). To allow comparisons across different values of k, we normalize the tuple agreement and call this value Agree-
ment—higher is better, a value of 1 indicating lists with the same elements. The second measure is a variation of the Kendall 
tau distance for partial orders that computes the distance between two partial rankings based on the number of pairwise 
disagreements between them [23]—a disagreement receives a penalty of 1. In case the two top-k lists are permutations of 
each other, this is the number of exchanges required to convert one into the other. For cases where a pair (i, j) appears 
in one list but not in the other, it takes a parameter p indicating how pessimistic the metric should be (p = 1 is most 
pessimistic). The measure is normalized by the square of the length of the union of the two lists, and this value is called 
Kendallp—lower is better for Kendall. Finally, the third measure is a variation of Spearman’s footrule for partial orders that com-
putes the distance between two partial rankings using the difference of positions of elements of one list compared with the 
other [23]. Whereas Kendall counts number of swaps, this metric counts how far each element must be moved to reach the 
place occupied in the other list. This measure is normalized as before, and the result is called Spearman—lower is better for 
Spearman.

Question 1: Which aggregation method yields the best results? To answer this question, for each group, we computed a top-k
query answer rg , along with a top-k query answer ri for each user in the group. We then computed the value of each 
measure over rg and ri , and finally report the result of aggregating all such results. The choice of aggregation function is 
dependent on what is considered to be best: the value of the least satisfied user’s score (min for Agreement, and max for 
the others), the most satisfied user’s score (max for Agreement, and min for the others), the median satisfaction, or the 
mean satisfaction. We computed these four functions for the Agreement measure.

We carried out three different comparisons: overall, varying the value of k, and varying group size—for the first, we 
report six different measures, while for the other two, we focus on Agreement and Spearman.
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Fig. 11. Top left: Quality evaluation Agreement varying k; Top right: Quality evaluation Spearman varying k; Bottom left: Quality evaluation Agreement 
varying group size; Bottom right: Quality evaluation Spearman varying group size. Note that the ranges of values in the Y-axes are not equal—this was done 
to improve the readability of the graphs.

Overall comparison. Fig. 10 (top right) shows that on average AggFirst (FirstAvg and FirstMax) is better than AggLast (Last-
Borda, LastPlurality, LastHitMax, and LastHitMin). Since there are cases where some users did not have any of their items in 
the top-k of the group for any of the methods, the least satisfied users have Agreement = 0 for all methods (this is why least 
satisfied is not plotted). In case of LastBorda and LastPlurality, some users have all their items in the top-k in the group, 
while for other methods, this does not hold. For reasons of space, we only show the results for the average. Fig. 10 (bottom 
left) shows that LastHitMax is the best at keeping the ordering of the items in users’ top-k and the items in the group’s 
top-k. From this point of view, FirstAvg performs the worst.

Varying value of k. Fig. 11 (top) shows the results when varying k between 10 and 100—as before. We have results for the 
Agreement measure on the left and for Spearman on the right. We see that increasing the value of k affords an increase of 
performance for Plurality voting over both measures. For the rest of methods, we have not noticed any observation regarding 
the variation of k for either Agreement and Spearman.

Varying group size. Fig. 11 (bottom) shows the results when varying group size—we eliminated group sizes for which we 
did not have enough data. The results show that differently from the results in [6], where the larger the group, the more 
difficult to satisfy the user when k is fixed (since it is more likely that conflicting preferences exist), we cannot draw any 
such conclusions regarding our methods here.

Question 2: How different are the results produced by each aggregation method? Fig. 10 (bottom right) plots how different ap-
proaches compare when taken pairwise; “AggFirst” and “AggLast” are aggregations of methods computed as means over 
pairs (a1, a2), where a1 is an aggregation first method, and a2 is an aggregation last. We can see that AggFirst and AggLast 
are more similar when considering the right ordering than they are with respect to the Agreement measure. LastPlurality 
and LastBorda seem to include more elements in common and similar ordering in comparison with the AggFirst–AggLast 
pair and FirstMax–LastHitMax pair. Since the choice of the CQ and of the relation in the chooseRel subroutine is done ran-
domly in our implementation, this explains the fact that we do not observe high Agreement between methods and users: 
the top-k converges, but the list of elements that are higher or equal to the minimum score of top-k can be larger than k.

Finally, we ran two-tailed two-sample Student’s t-tests comparing all pairs of experiments reported in this section. All 
tests yielded p-values well below 0.001, which shows statistical significance, except for three cases: (i) “LastPlurality vs. 
User” / “Borda vs. User” for Agreement (p = 0.84) and Spearman (p = 0.01), (ii) “Borda vs. User” / “LastHitMin vs. User” for 
Spearman (p = 0.18) and Kendall-1 (p = 0.28), Kendall-0.5 (p = 0.56), and (iii) “LastHitMin vs. User” / “LastHitMax vs. User” 
for Agreement (p = 0.05), Spearman, Kendall-0.5 and Kendall-1 (p = 0.01 in all cases)—note that these higher p-values are 
expected, given the similarity of the results in those cases.
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7. Related work

Ranking queries have many applications in information systems: scores assigned to data can have many meanings, 
such as desirability to users, similarity to objects of interest, or quantifications of uncertainty associated with pieces of 
information—in all these cases, obtaining the top-k elements that satisfy a certain condition is a basic operation, and carry-
ing it out efficiently is thus of central interest. In databases, this was recognized over a decade ago with the incorporation of 
tuple ranking into the RDBMS at the same basic level as Boolean filtering is implemented [8,25]. This line of work builds on 
prior research on the basic problem of computing ranked answers to queries in relational databases [26–28]; for a survey 
of these topics see [29] and the more recent works of [30,31].

As our main interest in the problem arises from Semantic Web applications, we discuss approaches in the literature to 
adding preferences to ontology languages, of which there have only been a few. To our knowledge, the first such proposal 
was [32], where an extension to SPARQL is developed, so that users can add their preferences to queries via a PREFERRING
solution sequence modifier that supports both skyline semantics as well as soft constraints—in the latter, preference is given 
to answers that satisfy the constraints, but they can also be relaxed, if necessary. There have also been other approaches for 
preference-based querying in RDF graphs, such as [33–35]. Perhaps closest to our work is that of [36], which explores top-k
query answering over relational databases that are accessed via DLR-Lite ontologies (i.e., ontology-mediated access). The 
main differences with our approach lie in the query language (they consider only CQs, without negation) and the ontology 
language (guarded Datalog+/– subsumes the entire DL-Lite family of description logics). Moreover, their approach is based 
on query rewriting rather than database materialization. Finally, as mentioned in the introduction, PrefDatalog+/– [5] is 
also closely related; however, the general strict partial orders assumed in that work for representing preferences cause CQ 
answering to be �p

2 -complete—in this work, restricting preferences to arise from scores allows us to develop optimizations 
that result in tractable algorithms.

Another line of work that is relevant to ours is that of modeling group decisions; specifically, the development of both 
theoretical and practical approaches to solve the problem of choosing a set of elements in such a way that the preferences 
of a group of individuals are addressed as closely as possible. There are many fields that address this topic, such as mathe-
matics, economics, and sociology [37,38]. In social choice theory [39], the goal is to combine preferences to produce a new 
preference relation; methods range from those using score-based relations (e.g., approval voting) to others using more gen-
eral ones (e.g., ranked pairs)—one example is the work of [40], which studies possibility/impossibility results generalizing 
properties such as Arrow’s theorem to the case in which incomparable elements exist. Another highly relevant area is that 
of recommendation systems for groups of users [41,4], though these tools are less general in the sense that queries are not 
explicitly issued.

The problem of aggregating preferences for a group of users is similar to that of rank aggregation (or rank fusion) [42], for 
which there is a quite extensive literature given that several problems in Web applications can be reduced to this problem. In 
particular, much work has been done on meta-search, i.e., the combination of result lists returned by multiple search engines 
in response to a given query; in general, these individual results are sorted lists of elements (URLs) accompanied by a 
relevance score. In [16], several methods for rank aggregation are studied and experimentally compared for the meta-search 
problem, while [43] studies an alternative approach to rank aggregation based on decision rules identifying positive and 
negative reasons for judging whether an element should get a better rank than another (based on two basic principles: 
majority and respect of minorities). In a related approach from recommender systems, [44] introduces a “blend” operator 
that combines several recommendations consisting of scores assigned to tuples—this is accomplished via a method that is 
part of the input. Independently of the method used, generally, the first step is to normalize the scores assigned to the 
items over all the rankings, for which there are also several proposals in the literature, such as [16,45]. Recent approaches 
to rank aggregation include [46,47].

8. Conclusion

We have proposed an approach to top-k query answering under user preferences in Datalog+/– ontologies, where the 
queries are unions of conjunctive queries with safe negation, and the preferences are defined via numerical scores. To this 
end, we have generalized the previous RankJoin operator to our framework. Furthermore, we have explored the generaliza-
tion of the above approach to the preferences of a group of users. Finally, we have provided experimental results on the 
performance and quality of our algorithms.

One topic of ongoing and future work is to further experimentally evaluate the similarity of preference aggregations 
to human judgment in order to select the best suited ones for search and query answering in the Social Semantic Web. 
Another interesting topic for future research is to generalize this approach to ontologies with uncertainty.
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