Systematic position and cladistic analysis of Gyrasida Koch, a remarkable genus of Praocini (Coleoptera: Tenebrionidae) from Chile

GUSTAVO E. FLORES ${ }^{1}$ \& PEDRO VIDAL ${ }^{2}$
${ }^{1}$ Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA, CCT CONICET-Mendoza), Casilla de correo 507, 5500 Mendoza, Argentina. E-mail: gflores@mendoza-conicet.gov.ar
${ }^{2}$ Universidad Católica de Chile, Marcoleta 367, Santiago, Chile. E-mail: pvidalg@puc.cl
Corresponding author: Gustavo E. Flores. E-mail: gflores@mendoza-conicet.gov.ar

Abstract

Gyrasida Koch (Pimeliinae: Praocini), distributed in central Chile is elevated to generic status and transferred from Asidini to Praocini on the basis of constant tribal level characters. Prior to this study Gyrasida was considered a subgenus of the South African Afrasida Wilke. Character states of Gyrasida shared with the other genera of Praocini and not shared with genera of Asidini are discussed. A cladistic analysis of the six species of the genus is presented including: G. propensa (Wilke) (type species), G. lucianoi Flores \& Vidal, G. fernandoi Flores \& Vidal, G. tomasi Vidal, G. franciscae Vidal, and G. camilae Vidal. This article includes a redescription of the genus, habitus photographs, illustrations of external morphology and genitalic features, a cladogram, and a distribution map.

Key words: Tenebrionidae, Afrasida, Gyrasida, Chile, Asidini, Praocini

Introduction

The South African genus Afrasida was described by Wilke (1921) and assigned to the tribe Asidini. Within Afrasida, Wilke included eight known species (transferred from other genera) plus six new species, which he arranged in three subgenera: Afrasida (Afrasida), A. (Archasida) and A. (Asidomachla). One of the new species, Afrasida propensa Wilke, was described with only one specimen labeled as from Natal, South Africa, obtained from Kraatz's collection, and placed in the subgenus A. (Archasida) (Wilke 1921). Later, Wilke (1924) reviewed Afrasida describing some new species, transferring others and providing a key for the species.

Koch (1962) studied the genera of Asidini from Africa South of Sahara and Madagascar. He transferred the species of the subgenus Afrasida (Asidomachla) to the genus Machlomorpha Péringuey. At the same time he created a new monotypic subgenus of Afrasida which he named A. (Gyrasida) based on A. propensa (Koch 1962).

Specimens of Afrasida propensa were found in central Chile and identified as such by Wilke, Kulzer, and Kaszab in the $20^{\text {th }}$ century. During our extensive explorations in South America through the years we found different species of Afrasida (Gyrasida) in central Chile. According to a note written by Kulzer, the type of Afrasida propensa was thought to be lost and we could not establish which of these species was the originally described as A. propensa and which no yet described species were. During last years we were able to find the Wilke's type of Afrasida propensa in Museum für Naturkunde der Humboldt Universität, Berlin (Germany), establishing five new species for Chile which have been recently described (Vidal \& Flores 2007). Later, we requested some other known species of Afrasida and a systematic research was carried out to establish if Afrasida (Gyrasida) belongs to Asidini as described originally, as there were no other members of this tribe
described for South America west of the Andes mountains (Flores \& Pizarro-Araya 2006). Through a detailed discussion of the characters, we demonstrate that Afrasida (Gyrasida) propensa is not congeneric with the remaining species of Afrasida, that it is not Asidini, that it shares most of these characters with all or some genera of the South American tribe Praocini, and that they deserve recognition as a separate genus, Gyrasida Koch together with other five species recently described. The objectives of this study are to redescribe the genus Gyrasida, to establish a natural tribal placement of Gyrasida and to conduct a cladistic analysis of their species.

Materials and methods

Specimens were obtained from the following institutions: Instituto Argentino de Investigaciones de las Zonas Áridas, Mendoza, Argentina (IADIZA) (Sergio Roig-Juñent), Museo Nacional de Historia Natural, Santiago, Chile (MNNC) (Mario Elgueta), Pedro Vidal G.H., private collection, Santiago, Chile (PVGH), Transvaal Museum, Pretoria, South Africa (TMSA) (James Harrison), and Museum fur Naturkunde der Humboldt Universität, Berlin, Germany (MNHUB) (Manfred Uhlig, Bernd Jaeger).

All measurements were taken with a micrometer eyepiece. Body length was measured dorsally, along the midline, from anterior margin of labrum to elytral apex. For paraproct length/ coxite length we considered the ratio proposed by Doyen (1994); for basal lamina of tegmen length/ lateral styles length and median lobe length/ tegmen length, we considered the ratios proposed by Flores (1996). Dissection methods for genital structures are those used by Tschinkel \& Doyen (1980) and by Flores (1997) for internal skeletal anatomy. Drawings were made with a camera lucida adapted to a stereoscopic microscope. The entomofaunal regions considered in the distribution of the species are adopted from Peña (1966). The methodology of cladistic analysis herein applied is explained under the heading "Cladistic analysis".

Taxonomic Placement of Gyrasida

Gyrasida propensa (Fig. 1) was originally placed in the genus Afrasida (Wilke 1921), which belongs to the Asidini, a large tribe of Pimeliinae with more than 1,000 species distributed in North and South America, Africa south of Sahara, Madagascar, and the Mediterranean area (Koch 1955).

Koch (1962) created the monotypic subgenus Afrasida (Gyrasida) based on the species Afrasida propensa, previously placed in the subgenus A. (Archasida) by Wilke (1921). Koch stated: "it differs very sharply and probably generically from all other Afrasida by the rounded sides of pronotum and the middle of base of pronotum produced into an elongate, narrow, apically obtuse lobe projecting backwards on to the scutellum" (Koch 1962: 127).

We have studied the following characters within the species of Afrasida, some of which have been used to study the relationships between the tribes of Pimeliinae (Doyen 1994), to group together the South African Asidini (Koch 1955), and to define the tribe Praocini (Kulzer 1958; Flores 2001). We found that Afrasida (Gyrasida) propensa and the five recently described species (Vidal \& Flores 2007) share all of these characters with all or some genera of Praocini and not with the species of Afrasida. The species of Afrasida examined from TMSA are A. (Afrasida) caryophyllea (Wiedemann) (type species) and A. (Afrasida) turbida (Péringuey) (Fig. 2).

1 Length of antennomere 3: equal to length of antennomere 4 in Afrasida (Figs. 3-4); in Gyrasida and Praocini longer than antennomere 4 (Figs. 5-8).
2 Size of antennomere 11: very small, even rudimentary in Afrasida (Figs. 3-4); in Gyrasida and Praocini well developed, sometimes equal to or longer than antennomere 10 (Figs. 5-8).

3 Subgenal process (defined by Doyen 1994: 454): subadjacent with mentum in Afrasida (Fig. 9; Doyen 1994: Figs. 22-25); in Gyrasida and Praocini it is remote from mentum (Fig. 10; Doyen 1994: Fig. 21).
4 Maxilla, articulation of cardo: concealed in socket in submentum in Afrasida (Fig. 9); in Gyrasida and Praocini exposed laterad of submentum (Fig. 10).
5 Position of ligula: nearly or entirely concealed beneath mentum in Afrasida (Fig. 9); in Gyrasida and Praocini it is entirely exposed anterad mentum (Fig. 10), with the articulating membrane visible.
6 Ligula, relative size: very small, less than a quarter the size of mentum in Afrasida (Fig. 9); in Gyrasida and Praocini it is larger than half of mentum, sometimes equal to the size of mentum (Fig. 10).
7 Mesotrochantin: lacking a disctinct trochantin of mesocoxae in Afrasida species, as well as all the South African Asidini (Koch 1955); in Gyrasida and all Praocini it is well developed.
8 Mesepimeron: long, reaching the base of elytral epipleuron in Afrasida (Fig. 11), in Gyrasida and Praocini it is short, not reaching the base of elytral epipleuron (Fig. 12).
9 Metepisternum: broadened in Afrasida (Fig. 11); in Gyrasida and Praocini it is narrow (Fig. 12).
10 Metepimeron: transverse in Afrasida, separating the metacoxal cavities from the elytral epipleuron (Fig. 11); in Gyrasida and Praocini it is not evident, since the metacoxal cavities are very close to the elytral epipleuron (Fig. 12).
11 Distance between meso- and metacoxae: does not exceed half of metacoxal length in Afrasida (Fig. 11); in Gyrasida and Praocini it exceeds half or is equal to metacoxal length (Fig. 12).
We also studied these 11 characters in the two South American genera of Asidini: Cardigenius Solier and Scotinus Kirby. The genus Cardigenius is found in Uruguay and East Central Argentina, whereas Scotinus is endemic to Brazil (Gebien 1937).

FIGURES 1-2. Habitus in dorsal view. 1, Gyrasida propensa; 2, Afrasida turbida.
(3)

5

(6)

7

m

m

FIGURES 3-12. External structure. 3-8, Antennae, dorsal view. 3, Afrasida turbida; 4, A. caryophyllea; 5, Gyrasida fernandoi; 6, G. lucianoi; 7, G. franciscae; 8, Praocis rufipes. 9-10, Mouth parts, ventral view. 9, Afrasida turbida; 10, Gyrasida camilae. Abbreviations: 1, ligula, m, mentum, mp, maxillary palpus, s , socket in submentum, sp, subgenal process. 11-12, Mesothorax, metathorax and abdomen, ventral view. 11, Afrasida caryophyllea; 12, Gyrasida lucianoi. Abbreviations: ep, epipleuron, mes, mesepisternum, mep, mesepimeron, met, metepisternum, mtp, metepimeron, p , patches of brown setae behind metacoxae. Scale bars: 1 mm .

These two South American genera of Asidini differ from the South African ones in five of these 11 characters, namely: antennomere 3 is longer than antennomere 4 (Fig. 6), the subgenal process is remote from mentum (Fig. 10), the articulation of cardo of maxila is exposed laterad of submentum (Fig. 10), the ligula is entirely exposed anterad of mentum (Fig. 10) and the mesotrochantin is well developed.

The six characters shared by both South African and South American genera of Asidini (but not with Gyrasida) are: antennomere 11 rudimentary (Figs. 3-4), ligula very small, smaller than one quarter of size of mentum (Fig. 9), mesepimeron long, reaching the base of elytral epipleuron (Fig.11), metepisternum broadened (Fig. 11), metepimeron transverse, separating the metacoxal cavities from elytral margin (Fig.11) and distance between meso- and metacoxae not exceeding a half of metacoxal length (Fig. 11).

Gyrasida belongs to the Tenebrionidae subfamily Pimeliinae by lacking defensive glands, having the aedeagus rotated 180°, having the medial lobe dorsal to the tegmen and lacking external membranes between the abdominal sternites V and VI and VI and VII (Watt 1974, Doyen 1994).

In his cladistic analysis of Pimeliinae, Doyen (1994) found that all genera of Asidini (from South African, Madagascar, Mediterranean, North and South American regions) constitute a monophyletic group defined by six synapomorphies, five of which are not present in Gyrasida: bridge of tentorium absent or incomplete, antennae with ten segments plus the reduced eleventh antennomere, abdominal laterotergites extremely small, apicodorsal lobe of proctiger ending at coxite base, and baculus of proctiger extending proximad, equal to baculus of paraproct. Furthermore Doyen (1994) pointed out that the first two are synapomorphies unique to Asidini within the Pimeliinae.

Within Pimeliinae, Gyrasida must be placed within Asidine clade (Doyen 1994) by having multiple, long, slender spermathecal tubes which open as a fascicle into the base of the accesory gland duct or into the vagina near the duct (Fig. 17). Within this Asidine clade, Gyrasida belongs to the subclade of South American tribes Nycteliini, Physogasterini and Praocini by having metendosternites arms fused with mesocoxal inflexions (Vidal \& Flores 2007: Fig. 3). Gyrasida is placed in the tribe Praocini according to the definition of that tribe by Kulzer (1958) and Flores (2001), but the following three changes in that tribal concept should be mentioned: 1) some genera exhibit sexual dimorphism, such as Antofagapraocis Flores (Flores 2000a), Platesthes Waterhouse (Flores 2004), and Gyrasida (Vidal \& Flores 2007); 2) antennomere 11 can be longer than 10 and 3) the aedeagus exhibits diagnostic characters at generic level.

The most recent key provided for the genera of Praocini is that by Kulzer (1958), modified by Flores (2000a) at couplet 2 to key out Falsopraocis Kulzer together with Antofagapraocis and by Flores (2001) at couplet 2b to key out Praocidia Fairmaire and Pilobaloderes Kulzer, which follows in couplet 2c. Within the first modification, Gyrasida keys out at couplet 2a, which should be modified as follows:
2. Pronotum widest at or anterior of mid-point; anterior quarter of epipleuron twice as wide as posterior half2a

- Pronotum widest posterior of middle; anterior quarter of epipleuron three or four times as wide as posterior half 2 b
(follows in Flores 2001)
2a Profemora with a conspicuous, smooth, glabrous, and shiny longitudinal ridge on proximal half of anterior surface; anterior area of clypeus inclined downwards forming an angle; frons with two tranverse carinae forming an inverted " V ", covering dorsally the clypeal suture \qquad Gyrasida Koch
- Profemora lacking smooth, glabrous, and shiny longitudinal ridge on proximal half of anterior surface; anterior area of clypeus inclined straight; frons lacking transverse carinae forming an inverted "V" 2d
2d Clypeal suture as horizontal groove, clypeus lower than frons; pronotum widest at the mid point, anterior margin lacking edge, width of anterior margin exceeding width of posterior margin.. \qquad Falsopraocis Kulzer
- Clypeal suture as vertical depression, clypeus and frons at same level; pronotum widest before mid point, anterior margin with slender edge, width of anterior margin not exceeding width of posterior margin... Antofagapraocis Flores

Gyrasida Koch

Gyrasida Koch 1962: 127 (as a subgenus of Afrasida); Vidal \& Flores 2007: 409.

Species included. Gyrasida includes six species: G. propensa (Wilke) (type species), plus five species described by Vidal \& Flores (2007): G. lucianoi Flores \& Vidal, G. fernandoi Flores \& Vidal, G. tomasi Vidal, G. franciscae Vidal, and G. camilae Vidal. Key to species in Vidal \& Flores 2007: 415.

Diagnosis. Recognized among other Praocini by the following combination of characters: profemora with a conspicuous, smooth, glabrous, and shiny longitudinal ridge on proximal half of anterior surface; anterior area of clypeus inclined downwards forming an angle; clypeal suture as horizontal groove, clypeus lower than frons; frons with two transverse carinae forming an inverted " V ", covering dorsally the clypeal suture; maxillary palpi with last segment subcylindrical; antennomere 11 longer than 10 ; pronotum widest at the midpoint; central area of anterior margin of pronotum notched and broadened; elytron with a main paramedian carina; anterior quarter of epipleuron twice as wide as posterior half; sexual dimorphism: female with a central nippleshaped process on central area of metasternum, male lacking central process on central area of metasternum.

Redescription. Length $7.5-15.0 \mathrm{~mm}$; habitus oval, flattened or convex; body dark brown to black with antennae and legs dark brown to black.

Head. Hypognathous. Epipharynx with anterior margin dorsally exposed. Labrum with large punctures and setae, widest at the midpoint. Clypeus notched anteriorly, with deep and irregular punctures, with setae, and two lateral depressions; anterior area of clypeal surface inclined downwards forming an angle; clypeal suture wide, as horizontal groove divided centrally by a longitudinal depression going up towards frons; clypeus lower than frons. Frons pubescent, with two transverse carinae forming an inverted "V", covering dorsally the clypeal suture, with a longitudinal groove, and with two protuberances medial to eyes. Ligula sclerotized and ventrally exposed, exceeding half mentum area, subequal in width and size to mentum (Fig. 10); labial palps inserted at middle of ventral surface of ligula; base of mandible two times higher in respect to apex; maxillary palpi with last segment subcylindrical (Fig. 10). Eyes oval, not depressed by frontal proyection. Antennae short, reaching $1 / 3$ to $1 / 2$ of lateral margin of pronotal length; length of antennomere 11 longer than 10; antennomeres 9 and 10 with a unique semicircular terminal tomentose sensory patch.

Thorax. Pronotum with two kinds of setae, one stout, arising in spinae, dark brown, and other finer arising from slightly raised protuberances, golden or light brown; with large, irregular punctures and protuberances; anterior angles rounded; anterior margin with central area notched, broadened, lacking edge, without groove between anterior margin and disc, width of anterior margin not exceeding the width of posterior margin; lateral margin concave (Fig. 1), remote from disc, widest at the midpoint, with frequent stout setae and very few finer ones; posterior margin bisinuate, with a slightly marked median notch, of similar width to base of elytra, joined in central half to elytra; disc convex, with a longitudinal central groove wider in central area, with two smaller lateral depressions, with two or four large protuberances, and many small, irregular protuberances, sometimes confluent. Prosternum horizontal to discretely convex, with distinctive anterior margin projected anteriorly covering mouthparts ventrally. Proepisternum with setae and protuberances, without grooves. Prosternal apophysis subrectangular or rounded, expanded or not distally. Mesosternum inclined forward, separated from prosternum. Meso- and metepisternum with punctures, with rugose striae.

Elytron with dorsal surface arched, pubescent, without punctures, with many irregular protuberances, sometimes sharp or spine like; with a main carina paramedian, raised, with or without secondary lateral carina; suture slightly raised or not; posterior third with two protuberances continuous with main carina; dorsal surface with symmetrical rows of wrinkles and protuberances irregularly arranged pointing downwards between suture and main carina; lateral margin simple and sinuate; pseudopleuron with protuberances and setae, some of which arising from protuberances, without punctures; epipleuron conspicuous or not, with setae and protuberances, similar to pseudopleuron in texture, wider anteriorly, anterior quarter twice as wide as posterior half, anterior margin not reaching elytral humeri nor posterior pronotal angle, texture similar to that of elytron, and with a slight posterior longitudinal groove over its medial side related to ventrites 6 and 7 .

FIGURES 13-17. Male and female genitalia of Gyrasida spp. 13-16, Male genitalia in dorsal and ventral views. 13-14, G. franciscae; 15-16, G. camilae. Abbreviations: bl, basal lamina of tegmen, ls, lateral styles of tegmen, ml, median lobe. 17, Ovipositor (ventral view), spiculum and internal female reproductive tract of G. propensa. Abbreviations: c, coxite, o, oviduct, p, paraproct, s, spermatheca, sag, spermathecal accessory gland, sp, spiculum, v, vagina. Scale bars: 1 mm .

FIGURE 18. Geographical distribution of the six species of Gyrasida.
Venter. Distance between meso- and metacoxae exceeding half of metacoxal length (Fig. 12). Abdominal sterna with many setae and some spines and protuberances irregularly distributed.

Legs. Densely covered by setae, many of them arising from sharp spines. Profemora with a conspicuous, smooth, glabrous, and shiny longitudinal ridge on proximal half of anterior surface. Tibiae with multiple spines, external process of distal margin of protibiae of equal length of protarsomere $1+2$ combined.

Sexual dimorphism. Female with a nipple-shaped process on central area of metasternum, glabrous, shiny, pink to dark brown (Vidal \& Flores 2007: Fig. 2), male lacking central process on central area of metasternum.

Internal skeletal anatomy. Tentorium with medial straight bridge. Proendosternite joined to posterior part of procoxal cavities, with posterior arms short, directed posterad and broadened in posterior margin. Mesendosternite with horizontal arms short, with long, slender dorsal arms three times as long as horizontal arms, extended about half distance to tergum. Metendosternite (Vidal \& Flores 2007: Fig. 3) with arms long, fused with mesocoxal inflexions, extending beyond mesocoxal inflections about one third distance to tergum; width of stem equal to metacoxal width, length of stem exceeding width, and stem wider in upper than basal part. Elytralabdominal fusion accomplished by a ridge in the elytral epipleuron, which joins by a simple coaptation without interlocking with the abdominal sterna (Doyen 1994: Fig. 205).

Male genitalia (Figs. 13-16). Dorsal membrane of proctiger concave, with two sclerotized areas. Basal lamina of tegmen long ($\mathrm{B} / \mathrm{E}>1.0$). Lateral styles of tegmen distally separated, widest at base, with setae on lateral margin and ventral surface. Median lobe moderate ($0.75<\mathrm{L} / \mathrm{T} \leq 1.00$), sheath-shaped, with apex rounded, not sclerotized ventrally, half the width in respect to tegmen, of equal width throughout.

Female genitalia (Fig. 17). Spiculum with arms "V"-shaped. Coxites with short setae, basal lobe not extended over paraproct, baculi inclined 45°, midventral sclerite distally broadened. Paraprocts long ($2.0<\mathrm{P} / \mathrm{C} \leq$ 3.0), glabrous. Proctiger with apicodorsal lobe extending length of coxite and with dorsal baculus extending proximad much beyond paraproct baculus. Vagina saccate. Spermathecal accesory gland two times length of vagina, with duct annulate and thick. Spermatheca with three tubes or less, shorter than vagina, all similar in width and branching pattern. Substantial variation in female genitalia was not found between the species of Gyrasida.

Geographic distribution. The species of Gyrasida occur in central Chile, in regions IV, V, VI, VII, VIII, and Metropolitan, from parallel 32° South to parallel 38° South (Fig. 18).

Habitat. The distribution range of the genus is from sea level to an altitude of 2000 meters. Its species occur in plain and mountain arid and semiarid environments of entomofaunal regions Coquimban Desert, Central Valley, Central Coastal Cordillera, and Northern Valdivian Forest (Peña 1966).

Biology. Members of this genus live in leaf litter, under small logs and branches, always covered by the shadow of trees, usually well away from the sunlight. They are not found where the forest has been destroyed. Adults are nocturnal, and feed on plant debris. Copulating specimens have been observed to spend several hours coupled. Females lay their eggs by burying them in moist soil.

Cladistic analysis of Gyrasida

Methods. Outgroups. Character polarity was determined by the outgroup comparison method (Nixon \& Carpenter 1993). Outgroups were used to provide a root for the cladogram and to test the monophyly of Gyrasida, not to explore the sister group relationships of Gyrasida. Since no phylogeny for the genera of Praocini was available, the chosen outgroups within Praocini were the genera Praocis Eschscholtz, Platesthes Waterhouse, Falsopraocis Kulzer, Antofagapraocis Flores, and Platyholmus Solier. The present analysis is based on 11 terminal units: six species of Gyrasida plus the following outgroup species: Praocis rufipes Eschscholtz (type species), Platesthes similis Kulzer, Falsopraocis ricardae (Solier) (type species), Antofagapraocis subnudus Flores, and Platyholmus uspallatensis Fairmaire.

Characters. We used 90 characters (Appendix 1) of which 78 are derived from the external morphology, 10 from male genitalia, and 2 from female genitalia. The distribution of states among the terminal taxa is indicated in the data matrix (Appendix 2). For basal lamina/lateral styles of tegmen length (character 81), we considered the ratio proposed by Flores (1996), and for paraproct length/ coxite length (character 90), we considered the ratio proposed by Doyen (1994). Multistate characters 12, 13, 15, 18, 24, 25, 27, 30, 31, 33, 36, $37,38,48,59,60,62,71,79,83,84,86,87$, and 88 were treated as non-additive because it was not possible to
make a correlation between apomorphic states. Multistate characters 66 and 75 were ordered as a logical sequence. For the different states exhibited by the main carinae (characters 48-51), the absence of carinae was coded only once in the character 48 to avoid repeat this state four times and the consequently heavily weighting of this character state. In characters 49-51 the absence of carinae was coded as non comparable (-) for the species Praocis rufipes, Antofagapraocis subnudus, and Platyholmus uspallatensis.

Procedure. The data matrix (Appendix 2) was analyzed with Nona version 2.0 (Goloboff 1993), applying the command sequence hold 10,000 ; hold/100; mult* 100, and max*. The consistency and retention indices (Farris 1989) were calculated excluding autapomorphies (characters 19, 20, 26, 39, 44, 46, 52, 54, 70, and 76) because they inflate consistency index and do not support groups of taxa (Forey et al. 1992). Clados version 1.8.1 (Nixon 1993) was employed for examination of character distribution and to print the cladogram.

FIGURE 19. Cladogram showing relationships of species of Gyrasida. Black squares: non-homoplasious apomorphies; dotted squares: homoplasies.

Results and discussion. The analysis of the data matrix (Appendix 2) produced one most parsimonious cladogram 187 steps long, with a consistency index (CI) of 0.60 and a retention index (RI) of 0.68 (Fig. 19). The monophyly of Gyrasida is established by the following 20 synapomorphies (Fig. 19), of which 19 are from external morphology: character states $6.1,7.1,8.1,9.1,12.2,14.1,15.1,24.1,25.2,27.1,28.1,30.2$, 34.1, $38.2,41.1,47.1,48.2,57.1,71.1$, and one from male genitalia: apex of median lobe rounded, not sclerotized ventrally (87.2). Examination of the external morphology of species from all the remaining genera of Praocini (sensu Kulzer 1958; Flores 2000b, 2001, 2004; Flores \& Chani-Posse 2005) not used as outgroups in this analysis, revealed that the character states clypeus with medial area raised (7.1), clypeus with two medial depressions (9.1), frons with two transverse carinae (with two states within Gyrasida, 12.2 and 12.1), frons with two protuberances medial to eyes (with two states within Gyrasida, 15.1 and 15.2), pronotum with stout setae arising from spinae (with two states within Gyrasida, 24.1 and 24.2), lateral margin of pronotum with frequent stout setae (30.2), pronotum with two lateral depressions to groove (with two states within Gyrasida, 38.2 and 38.1), metasternum of female with a central nipple-shaped process (47.1), lateral margin of elytra sinuate (57.1), and profemora with a longitudinal ridge on proximal half of anterior surface (with two states within Gyrasida, 71.1 and 71.2) are unique to Gyrasida within Praocini. The character states clypeus with anterior area inclined downwards (6.1) and pronotum with raising anterior of disc (34.1) are shared with the species of Calymmophorus Solier; lateral depressions present in anterior area of clypeus (8.1) is shared with the monotypic genus Asidelia Fairmaire and some species of Praocis (Filotarsus) Solier; frons with longitudinal groove (14.1) is shared with the monotypic genus Neopraocis Kulzer; pronotum with frequent finer setae arising from protuberances (25.2) is shared with the monotypic genus Eutelocera Solier and the species of Thylacoderes Solier; pro-
notum with depression formed by anterior angle and anterior margin (with two states within Gyrasida, 27.1 and 27.2), is shared with the species of Calymmophorus and Neopraocis; anterior margin of pronotum notched (28.1) is shared with the species of Eutelocera and Neopraocis; prosternum covering mouth parts ventrally (41.1) is shared with the species of Calymmophorus and Thylacoderes, and elytron with one main carina (48.1) is shared with the monotypic genera Neopraocis and Pilobaloderes Kulzer, both species of Praocidia Fairmaire, and some species of Praocis (Hemipraocis) Kulzer.

The species of Gyrasida are grouped in two clades, one includes three species in the sequence (G. tomasi, (G. camilae, G. fernandoi)) and the other clade is formed by three species in the sequence (G. franciscae (G. lucianoi, G. propensa)) (Fig. 19).

Acknowledgements

We gratefully acknowledge curators for the loan of material, Darren A. Pollock (Editor Tenebrionoidea) and two reviewers (Patrice Bouchard and Dariusz Iwan) for suggestions for improving this paper; Sergio Roig Juñent for the use of NONA, Kevin C. Nixon for the use of Clados, Richard von Bejsak for providing helpful information about the location of the type of Wilke, and Claudia Vergara for help in preparation of artwork. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and a re-entry grant of the Antorchas Foundation, Argentina (GEF).

References

Doyen, J.T. (1994) Cladistic relationships among Pimeliinae Tenebrionidae (Coleoptera). Journal of the New York Entomological Society, 101 (4), 443-514.
Farris, J.S. (1989) The retention index and the rescaled consistency index. Cladistics, 5, 417-419.
Flores, G.E. (1996) Estudio comparativo de las estructuras genitales en la tribu Nycteliini (Coleoptera: Tenebrionidae). Revista de la Sociedad Entomológica Argentina, 55, 33-48.
Flores, G.E. (1997) Revisión de la tribu Nycteliini (Coleoptera: Tenebrionidae). Revista de la Sociedad Entomológica Argentina, 56, 1-19.
Flores, G.E. (2000a) Systematics of the Andean genera Falsopraocis Kulzer and Antofagapraocis gen. n. (Coleoptera: Tenebrionidae), with descriptions of two new species. Journal of the New York Entomological Society, 108 (1-2), 5275.

Flores, G.E. (2000b) Systematic revision of the Argentinean genus Thylacoderes Solier (Coleoptera: Tenebrionidae), with descriptions of two new species. Journal of the New York Entomological Society, 108 (1-2), 76-94.
Flores, G.E. (2001) Taxonomic placement of the Andean genera Praocidia Fairmaire and Pilobaloderes Kulzer (Coleoptera: Tenebrionidae: Praocini). Journal of the New York Entomological Society, 109 (1), 171-178.
Flores, G.E. (2004) Systematic revision and cladistic analysis of the Patagonian genus Platesthes (Coleoptera: Tenebrionidae). European Journal of Entomology, 101(4), 591-608.
Flores, G.E. \& Chani-Posse, M. (2005) Patagonopraocis, a new genus of Praocini from Patagonia (Coleoptera: Tenebrionidae). Annales Zoologici, 55 (4), 575-581.
Flores, G.E. \& Pizarro-Araya, J. (2006) The Andes mountain range uplift as a vicariant event in the Pimeliinae (Coleoptera: Tenebrionidae) in southern South America. Cahiers scientifiques (Muséum d'Histoire naturelle, Lyon), 10, 95-102.
Forey, P.L., Humphries, C.J., Kitching, I.J., Scotland, R.W., Siebert, D.J. \& Williams, D.M. (1992) Cladistics: a practical course in systematics. Oxford University Press, Oxford, 191 pp.
Gebien, H. (1937) Katalog der Tenebrioniden. Teil I. Pubblicazioni del Museo Entomologico Pietro Rossi, Duino 2, 505883.

Goloboff, P.A. (1993) NONA version 2.0. A tree searching program. MS-Dos program and documentation, distributed by the author. Tucumán, Argentina.
Koch, C. (1955) Monograph of the Tenebrionidae of Southern Africa. Vol. I. Tentyriinae, Molurini.-Trachynotina: Somaticus Hope. Transvaal Museum, Pretoria, xi + 242 pp.
Koch, C. (1962) Analysis of the Madagascan components of the subfamily Tentyriinae (Tenebrionidae, Coleoptera) with
revisions of the generic systematics of the Asidiini from Africa South of the Sahara and the African, Asiatic and Palaeartic Epitragina of Tentyriina. Mémoires de l'Institut Scientifique de Madagascar, Série E, Tome 13, 1-145.
Kulzer, H. (1958) Monographie der südamerikanischen Tribus Praocini (Col.) (16 Beitrag zur Kenntnis der Tenebrioniden). Entomologische Arbeiten aus dem Museum G. Frey, 9, 1-105.
Nixon, K.C. (1993) Clados version 1.8.1 IBM PC-compatible character analysis program. Published by the author, Cornell University, Ithaca, New York.
Nixon, K.C. \& Carpenter, J.M. (1993) On outgroups. Cladistics, 9, 413-426.
Peña, L.E. (1966) A preliminary attempt to divide Chile into entomofaunal regions, based on the Tenebrionidae (Coleoptera). Postilla, 97, 1-17.
Tschinkel, W.R. \& Doyen, J.T. (1980) Comparative anatomy of the defensive glands, ovipositors and female genital tubes of tenebrionid beetles (Coleoptera). International Journal of Insect Morphology and Embryology, 9, 321-368.
Vidal, P. \& Flores, G.E. (2007) Revisión del género Gyrasida Koch, 1962, con descripción de cinco especies nuevas (Coleoptera: Tenebrionidae). In: Vidal, P. \& Guerrero, M., Los Tenebriónidos de Chile. Ediciones Universidad Católica de Chile, Santiago, pp. 409-430.
Watt, J.C. (1974) A revised subfamily classification of Tenebrionidae (Coleoptera). New Zealand Journal of Zoology, 1 (4), 381-452.

Wilke, S. (1921) Beiträge zur Systematik and geographischen Verbreitung ungeflügelter Tenebrioniden (Unterfamilie Asidinae). Archiv für Naturgeschicte, 87, series A 12, 248312.
Wilke, S. (1924) Der südafrikanische Formenkreis der Asidinen (Col. Teneb.). Deutsche Entomologische Zeitschrift, 1924, 517-549.

Appendix 1. Characters and character states used in the cladistic analysis of Gyrasida ($0=$ plesiomorphic; 1, 2, $3=$ apomorphic)

Characters

Head

1. Head, position
2. Labrum, anterior margin
3. Labrum, setae
4. Clypeus, setae
5. Clypeus, punctures
6. Clypeus, anterior area
7. Clypeus, medial area
8. Clypeus, lateral depressions in anterior area
9. Clypeus, medial depressions
10. Clypeus, anterolateral margin
11. Clypeal suture
12. Frontal transverse carinae
13. Frontal transverse carinae
14. Frontal longitudinal groove
15. Frontal protuberances medial to eyes
16. Maxillary palpus, last segment
17. Groove between eyes and frons
18. Antennal length
19. Antennomere 3, length
20. Long setae on antennomeres

9,10 , and 11
21. Short setae on antennomeres

9,10 , and 11
22. Antennomere 10, width

Character states

Prognathus (0); hypognathus (1).
Notched in central area (0); slightly notched in central area (1).
On all entire surface (0); only on distal margin (1).
Uniform (0); more frequent in posterior 2/3 (1).
Small and shallow (0); large and deep (1).
Straight (0); inclined downwards (1).
Not raised (0); raised (1).
Absent (0); present (1).
Absent (0); present (1).
Not pronounced (0); pronounced (1).
Vertical (0); horizontal (1).
Absent (0); present, not prominent (1); present, prominent (2).
Absent (0); present, of similar height along its entire surface (1); present, higher medially (2).
Absent (0); present (1).
Absent (0); present, of equal height or lower than
eyes (1); present, higher than eyes (2).
Axe-shaped (0); subcylindrical (1).
Absent (0); present (1).
Reaching the half of lateral margin of pronotum (0); reaching $1 / 3$ of lateral margin of pronotum (1); reaching $3 / 4$ of lateral margin of pronotum (2); reaching posterior margin of pronotum (3).
Not exceeding length of $4+5(0)$; exceeding length of $4+5(1)$.
Abundant (0); sparse (1).
Sparse (0); abundant (1).
Width equal to length or exceeding length (0); length exceeding width (1).

23. Antennomere 11, width

Pronotum

24. Stout setae arising from spinae

25 . Finer setae arising from protuberances
26. Squamous setae
27. Depression formed by anterior angle and anterior margin
28. Anterior margin
29. Lateral margin
30. Lateral margin
31. Widest
32. Posterior angles
33. Posterior margin
34. Raising anterior of disc
35. Raising posterior of disc
36. Longitudinal medial groove
37. Lateral protuberances to groove
38. Lateral depressions to groove

Proepisternum
39. Surface

Prosternum

40. Anterior margin
41. Arrangement
42. Distance between anterior margin and procoxae
43. Apophysis

Meso- and metathorax
44. Mesosternum
45. Mesosternum, finer setae
46. Mesosternum
47. Metasternum of female

Elytra
48. Main carinae
49. Main carinae
50. Main carinae
51. Main carinae
52. Secondary lateral carina
53. Suture
54. Suture
55. Lateral margin
56. Lateral margin
57. Lateral margin
58. Lateral margin, posterior part
59. Pseudopleuron, protuberances
60. Epipleuron

Not exceeding width of $10(0)$; equal to width of $10(1)$.

Absent (0); present, frequent (1); present, sparse (2).
Absent (0); present, sparse (1); present, frequent (2).

Absent (0); present (1).
Absent (0); present, shallow (1); present, deep (2).

Continuous (0); notched (1).
Remote from disc (0); contiguous with disc (1).
Lacking setae (0); with frequent finer setae (1); with frequent stout setae (2).
Behind midpoint (0); at the midpoint (1); before midpoint (2).
Not overlapping elytral humeri (0); projecting backward over elytral humeri (1).

Bisinuate (0); concave (1); straight (2).
Absent (0); present (1).
Absent (0); present (1).
Absent (0); present, incomplete (1); present, complete (2).
Absent (0); present, merging together (1); present, not merging together (2). Absent (0); present, shallow (1); present, deep (2).

Lacking squamous setae (0); with squamous setae (1).

Rounded, not raised (0); sharp, raised (1).
Not overlapping mouth parts ventrally (0); covering mouth parts ventrally (1).
Shorter than procoxal length (0); longer than procoxal
length (1).
Lacking central groove (0); with central groove (1).

Higher than metasternum (0); of equal height to metasternum (1).
On all entire surface (0); on anterior half (1).
Lacking squamous setae (0); with squamous setae on posterior half (1).
Smooth (0); with a central nipple-shaped process (Vidal \& Flores 2007: Fig. 2) (1).

Absent (0); two (1); one (2).
Complete (0); incomplete (1).
Thin (0); thick (1).
Straight (0); sinuate (1).
Absent (0); present (1).
Not raised (0); raised (1).
Thin (0); thick (1).
Rounded (0); prominent (1).
Thin (0); thick (1).
Straight (0); sinuate (1).
V-shaped (0); parallel to suture (1).
Absent (0); present, not grouped (1); present, grouped (2).
Conspicuous throughout (0); conspicuous only in anterior half (1); not conspicuous (2); conspicuous in posterior 4/5 (3).
61. Epipleuron
62. Epipleuron
63. Epipleuron, texture
64. Epipleuron, anterior margin
65. Epipleuron, anterior margin
66. Epipleuron, anterior quarter
67. Epipleuron surface

Abdominal sternum 3
68. Two patches of brown setae
behind metacoxae

Legs

69. Ventral surface of trochanters
70. Femora
71. Ridge on profemora
72. Mesofemora, posterior surface
73. Metafemora, posterior surface
74. Protibiae, distal margin
75. Protibiae, width of distal margin
76. Apical process of distal margin of protibiae
77. Apical process of distal margin of protibiae
78. Setae on ventral surface of tarsi

Male genitalia

79. Rods of sternum IX
80. Distance between rods of sternum IX
81. Length basal lamina/ lateral styles of tegmen
82. Lateral styles of tegmen, apex
83. Lateral styles of tegmen
84. Lateral styles of tegmen
85. Lateral styles of tegmen
86. Setae of lateral styles of tegmen
87. Setae of lateral styles of tegmen
88. Apex of median lobe

Not broadened posteriorly in relation to ventrite 7 (0); broadened posteriorly in relation to ventrite 7 (1).
With setae on all entire surface (0); glabrous on anterior part (1); glabrous (2).

Different than that of elytra (0); similar to that of elytra (1).
Not reaching elytral humeri (0); reaching elytral humeri (1).
Reaching posterior angle of pronotum (0); not reaching posterior angle of pronotum (1).
Four times as wide as posterior half (0); three times as wide as posterior half (1); twice as wide as posterior half (2).

With protuberances (0); punctate (1).

Absent (0); present (Fig. 12) (1).

With brush-like pubescence (0); with uniform pubescence (1).
Lacking wooly setae (0); with wooly setae (Vidal \& Flores 2007: Fig. 9) (1). Absent (0); present, on upper half of proximal anterior surface (1); present, on entire proximal anterior surface (2).
Glabrous (0); with setae (1).
Glabrous (0); with setae (1).
U-shaped (0); straight (1).
Exceeding $1 / 3$ protibial length, but not exceeding half protibial length (0); equal to $1 / 3$ protibial length (1); equal to $1 / 4$ protibial length (2).
Rounded (0); acute (1).
Exceeding length of protarsomere 1 (0); equal or not exceeding length of protarsomere 1 (1).
Sparse (0); with a tuft of golden setae (1).
"V"-shaped (0); close at basal third (Flores 1996: Fig. 33) (1); close at basal half (2).
Not exceeding width of aedeagus (0); exceeding width of
aedeagus (1).
Long (B/E > 1.00) (Fig. 16) (0); short (B/E ≤ 1.00) (1).

Narrow (0); wider (1).
Widest at base (Fig. 16) (0); widest at base and mid point (1); widest at distal third (2).
Ventrally concave (0); ventrally bisinuate (1); ventrally triangular (2).
Not overlapping dorsally median lobe (0); projecting dorsally over median lobe (1).
On ventral surface and lateral margins (Fig. 16) (0); only on lateral margins (1); on ventral surface, lateral margins, and dorsal surface (2).

On distal $1 / 5$ (Fig. 14) (0); on distal half (1); on distal third (Fig. 16) (2).
Acute, sclerotized ventrally (0); rounded, sclerotized ventrally (1); rounded, not sclerotized ventrally (Figs. 14, 16) (2).

With setae (0); glabrous (1).
Long (2,0 < P/C $\leq 3,0)($ Fig. 17) (0); very long (P/C > 3,0) (Flores 1996: Fig. 1) (1).
APPENDIX 2. Data matrix of species of Gyrasida plus the outgroups Praocis, Antofagapraocis, Platyhomus, Falsopraocis, and Platesthes. 0-3= character states; a, polymorphy, $\mathrm{a}=0 / 1 ;-=$ non comparable.

Taxa	Characters	
	11	1455555555556666666666777777777788888888889
	1234567890123456789012345678901234567890	12345678901234567890123456789012345678901234567890
Pra	000000000000000000001000000	0000000-- -000000010 000000000001100000000000000000
Platesthes	00000000000000000000001000000001200000	00000001000000100003001111101000002010100100020111
Platyholmus	1000000000100001130011101000100010000000	$000100000-$ - 000010010000101000001102010101121010111
Falsopraocis	000000000010000112001010000011102000000	00000001010000010010000112000001112000100111110110
Antofagapra.	0000000000000001020010100000102110000000	$000000000-$ - 000010000020102100001111000111002110100
G. tomasi	1111111110121111110000112011021001111200	111001012000100101112101012011111101000010002000210
G. camilae	1111111111122111110000022011021001122200	11101012010000111110001012011020000000200001002210
G. fernandoi	1100111111111121110110022021021101111201	11011012010011011122001012011010010000200001002210
G. franciscae	1100111110121111111000112011021101121201	101000120010101110101110120010 11a0100110 0101100210
G. lucianoi	1000011110112111100001112111021001021111	110101112101000011120011012011011001101100101100210
G. propensa	1100111111112111110000122021021001022201	10101012001010101011011012011010001001010101100210

