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Abstract

In this work we characterize unitary operators via inequalities of elementary operators
with unitarily invariant norms.1

1 Introduction
Let H be a complex Hilbert space, and let (B(H ), ‖.‖) the C∗-algebra of all bounded linear
operators on H with the usual norm. We denote by Gl(H ) the group of invertible elements
of B(H ), U(H ) the unitary operators and Gls(H ) the set of all invertible and selfadjoint
operators.

A linear operator R : B(H )→ B(H ) defined by R(X) =
∑n
i=1AiXBi, where Ai, Bi ∈

B(H ), with 1 ≤ i ≤ n, is called an elementary operator on B(H ); and we denote by
R = RA,B , where A = (A1, ..., An) and B = (B1, ..., Bn). This class of operators in-
cludes many important operators of B(H ) such as the inner derivation δA(X) = AX−XA,
the multiplication operator MA,B(X) = AXB, the symmetrized two-sided multiplication
UA,B(X) = AXB + BXA and the operator VA,B = AXB − BXA. We denote by ΦS the
operator US,S−1 .

In [8], Nakamoto proved that a bounded linear operator A on H is normal if and only
if ‖δA(X)‖2 = ‖δA∗(X)‖2 for all X ∈ B2(H ) (Hilbert-Schmidt class). In [9], A. Seedik
characterizes the operators S for which the Corach-Porta-Recht inequality ([4], [1]) holds,
more precisely he proved that an invertible operator S is a non zero complex multiple of
some selfadjoint operator if and only if ‖ΦS(X)‖ ≥ 2‖X‖ for all X ∈ B(H ).

On the other hand, in [7], the authors ask whether the same characterization obtained
on [9] is true for other unitarily invariant norms. They proved that S is necessarily a
normal operator if 2‖X‖I ≤ ‖ΦS(X)‖I for all X ∈ B(H ), with rank one (Corollary 2.2).
Furthermore, in this work Magajna et al. obtained that if I a norm ideal and we denote by
A = (tS, 1tS

−1) and B = (S−1, S) for t > 0, then

γS ∈ Gls(H ), λ ∈ C− {0} if and only if inf
t>0
‖RA,B(X)‖I ≥ 2‖X‖I

for all X ∈ I of rank 1.
In a recent work [11], A. Seedik obtains some characterizations of some subclasses of nor-

mal operators in B(H ) by inequalities or equalities (associated with elementary operators).
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Motivated by these results, in [3] we characterized the normal invertible operators of
B(H ) via unitarily invariant norms and elementary operators. The purpose of this work is
to find the set for a given norm ideal I

EI = {S ∈ Gl(H ) : ‖MS,S−1(X)‖I + ‖MS−1,S(X)‖I = 2‖X‖I for every X ∈ I}.

By a result obtained in [3] this subset is contained in N(H ) = {T ∈ B(H ) : TT ∗ =
T ∗T}.

2 Preliminaries
We recall that I is a norm ideal of B(H ) if I is a two-sided ideal of B(H ) and a Banach
space with respect to the norm ‖.‖I satisfying:

1. ‖XTY ‖I ≤ ‖X‖‖T‖I‖Y ‖ for T ∈ I and X,Y ∈ B(H ),

2. ‖X‖I = ‖X‖ if X is of rank one.

In particular, condition 1. implies that the norm is unitarily invariant, ‖UXV ∗‖I = ‖X‖I
for X ∈ I and any U, V ∈ U(H ). The most known examples of norm ideals of B(H ) are
the so called p-Schatten class with p ≥ 1 defined by

Bp(H ) = {X ∈ B0(H ) : {sj(X)} ∈ lp},

where {sj(X)} denotes the sequence of singular values of X, rearranged such that s1(X) ≥
s2(X) ≥ · · · with multiplicies counted, with norm given by ‖X‖p = (

∑
sj(X)p)1/p and

B0(H ) is the ideal of compact operators. When p = ∞, the norm ‖.‖∞ coincides with the
usual norm ‖X‖ = s1(X). For a complete account of the theory of unitarily invariant norms
the reader is referred to [5].

For sake of completness, we recall three statements that we will use in the following
section. Given a norm ideal I and a linear operator P : I → I we denote by

‖P‖B(I) = sup{‖P (X)‖I : ‖X‖I = 1}.

Theorem 2.1. ([10], Theorem 2.1.)
Let S ∈ B(H ) be an invertible and selfadjoint operator and I a norm ideal. Then we have
the following inequality:

‖ΦS‖B(I) ≥ ‖S‖‖S−1‖+
1

‖S‖‖S−1‖
. (1)

Lemma 2.2. ([11], Theorem 3.1.)
Let S ∈ Gl(H ). Then ‖S‖‖S−1‖ = 1 if and only if S = ‖S‖V , for some unitary operator
V .

Theorem 2.3. ([3], Theorem 2.1.) Let S ∈ Gl(H ) and I a norm ideal. Then the following
conditions are equivalent:

1. S is normal,

2. ‖MS,S−1(X)‖I+‖MS−1,S(X)‖I = ‖MS∗,S−1(X)‖I+‖MS−1,S∗(X)‖I for every X ∈ I,
3. ‖MS,S−1(X)‖I + ‖MS−1,S(X)‖I ≥ 2‖X‖I for every X ∈ I,
4. ‖MS,S−1(X)‖I + ‖MS−1,S(X)‖I ≥ 2‖X‖I for every X ∈ I, with rank 1.
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Remark 2.4. Other characterization of normal invertible operators is given in the following
statement.

Proposition 2.5. Let S ∈ Gl(H ) and I a norm ideal. Then the following conditions are
equivalent:

1. S is normal,

2. ‖MS,S−1(X)‖I+‖MS−1,S(X)‖I ≤ ‖MS∗,S−1(X)‖I+‖MS−1,S∗(X)‖I for every X ∈ I,
3. ‖MS,S−1(X)‖I+‖MS−1,S(X)‖I ≤ ‖MS∗,S−1(X)‖I+‖MS−1,S∗(X)‖I for every X ∈ I,

of rank 1.

Proof. The implication 1 ⇒ 2 follows inmediately from Theorem 2.3 and 2 ⇒ 3 is trivial.
3 ⇒ 1 We consider rank one operators X = x ⊗ y ∈ I with x, y ∈ H , then it follows that
the following inequality holds

‖MS,S−1(x⊗ y)‖I + ‖MS−1,S(x⊗ y)‖I ≤ ‖MS∗,S−1(x⊗ y)‖I + ‖MS−1,S∗(x⊗ y)‖I

or equivalently,

‖S(x⊗ y)S−1‖I + ‖S−1(x⊗ y)S‖I ≤ ‖S∗(x⊗ y)S−1‖I + ‖S−1(x⊗ y)S∗‖I .

It is easy to see that A(u ⊗ v)B = Au ⊗ B∗v and ‖u ⊗ v‖I = ‖u ⊗ v‖ = ‖u‖‖v‖, for all
u, v ∈H and A,B ∈ B(H ). Then

‖S(x)‖‖(S−1)∗(y)‖+ ‖S−1(x)‖‖S∗(y)‖ ≤ ‖S∗(x)‖‖(S−1)∗(y)‖+ ‖S−1(x)‖‖S(y)‖. (2)

Assume that S is not a normal operator. Consequently there exist vector x ∈ H , ‖x‖ = 1
such that ‖Sx‖ > ‖S∗x‖ (or ‖Sx‖ < ‖S∗x‖). It follows, from (2), that for all y ∈ H with
‖y‖ = 1, ‖Sy‖ > ‖S∗y‖ (or ‖Sy‖ < ‖S∗y‖), so we have from (2) that

0 < (‖Sx‖−‖S∗x‖) ≤ (‖Sy‖−‖S∗y‖)‖(S−1)(x)‖‖(S∗)−1(y)‖−1 ≤ (‖Sy‖−‖S∗y‖)‖S−1‖‖S∗‖.

Hence, for all y ∈H with ‖y‖ = 1

‖Sx‖+ ‖S−1‖‖S‖‖S∗y‖ ≤ ‖S∗x‖+ ‖S−1‖‖S‖‖Sy‖

Thus ‖Sx‖+ ‖S−1‖‖S‖‖S∗‖ ≤ ‖S∗x‖+ ‖S−1‖‖S‖‖S‖. It follows that ‖Sx‖ ≤ ‖S∗x‖, which
it is a contradiction. Therefore S is a normal operator.

In [6], Kittaneh obtained the generalization of the Corach-Porta-Recht inequality in any
norm ideal I. More precisely, for Hilbert-space operators T,R,X with T,R invertible oper-
ators and a unitarily invariant norm I, the inequality

2‖X‖I ≤ ‖R∗XT−1 +R−1XT ∗‖I , (3)

holds for all X ∈ I.
In this work, we consider the polar decomposition of S ∈ Gl(H ) given by S = U |S| with

|S| = (S∗S)1/2 positive and U ∈ U(H ) .
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3 Main results
Proposition 3.1. If S ∈ Gls(H ) and ‖ΦS(X)‖I ≤ 2‖X‖I for all X ∈ I, then S = ‖S‖V
with V ∈ U(H ).

Proof. Since ‖ΦS(X)‖I ≤ 2‖X‖I for all X ∈ I, it follows that ‖ΦS‖B(I) ≤ 2.
By (1) we have that 2 ≥ ‖ΦS‖B(I) ≥ ‖S‖‖S−1‖+ 1

‖S‖‖S−1‖ ≥ 2.
From this we derive that ‖S‖‖S−1‖ + 1

‖S‖‖S−1‖ = 2, so it follows immediately that
‖S‖‖S−1‖ = 1. So from [11] , Lemma 2 it turns out that S = ‖S‖V with V an unitary
operator.

Now, we obtain a generalization of [11], Th. 8.

Corollary 3.2. Let I a norm ideal, then

Us(H ) = {S ∈ Gls(H ) : ‖S‖ = 1 and ‖ΦS(X)‖I ≤ 2‖X‖I for allX ∈ I}.

where Us(H ) denotes the unitary selfadjoint operators in B(H ).

Proof. If S ∈ Us(H ) then S ∈ Gls(H), ‖S‖ = 1 and for any X ∈ I we have

‖ΦS(X)‖I = ‖SXS−1 + S−1XS‖I ≤ 2‖X‖I ,

by the unitary invariance of the norm. Thus, the result follows immediately from Proposition
3.1.

In the previous statement, if we omit the hypothesis ‖S‖ = 1 we obtain a characterization
of R∗Us(H ), with R∗ = R− {0}.

If S = U |S| ∈ U(H ) then necessarily |S| ∈ Us(H ) and in consequence |S| is character-
ized by the previous corollary. In the following result we prove that a condition which holds
for the modules of S is a sufficient condition for determinate if S is an unitary operator in
B(H ).

Theorem 3.3. Let I a norm ideal then

U(H ) = {S ∈ Gl(H ) : ‖S‖ = 1, S = U |S| and ‖Φ|S|(X)‖I ≤ 2‖X‖I for allX ∈ I}.

Proof. By the hypothesis, ‖Φ|S|‖B(I) ≤ 2. By (1) we have the following lower bound for the
operator Φ|S|,

‖Φ|S|‖B(I) ≥ ‖ |S| ‖ ‖ |S|−1 ‖+
1

‖ |S| ‖ ‖ |S|−1 ‖
≥ 2.

From this inequality and the condition obtained above, we get that

‖Φ|S|‖B(I) = ‖ |S| ‖ ‖ |S|−1 ‖+
1

‖ |S| ‖ ‖ |S|−1 ‖
= ‖S‖‖S−1‖+

1

‖S‖‖S−1‖
= 2.

In other words, ‖S‖‖S−1‖ = 1. Then the result follows immediately from the Lemma
2.2.

On the other hand, if S = U |S| ∈ U(H ) then for any X ∈ I we may write X = U∗Y
with Y ∈ I and since ‖S‖ = 1 we have that

‖Φ|S|(X)‖I = ‖|S|U∗Y |S|−1 + |S|−1U∗Y |S|‖I = ‖S∗Y S−1 +S−1Y S∗‖I ≤ 2‖Y ‖I = 2‖X‖I .

This concludes the proof.
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Remark 3.4. 1. The operator which characterize the unitary operators of B(H ) can be
written as follows

τS∗,S = SXS−1 + (S∗)−1XS∗ = SXS−1 + (S−1)∗XS∗ = SXS−1 + (SX∗S−1)∗

in particular if X is a selfadjoint operator then

SXS−1 + (S∗)−1XS∗ = 2Re(SXS−1),

where Re(T ) = 1
2 (T + T ∗).

A natural question is if with the selfadjoint operators of I we can describe all U(H ),
more precisely

U(H ) = {S ∈ Gl(H ) : ‖S‖ = 1 and ‖Re(SXS−1)‖I ≤ ‖X‖I for allX ∈ I, X = X∗}?

We give a particular example when I is the 2-Schatten ideal. Every X ∈ B(H ) can be
written as X = Re(X) + iIm(X), where Re(X), Im(X) are selfadjoint operators and

Re(X) =
1

2
(X +X∗) and Im(X) =

1

2i
(X −X∗).

We call this the Cartesian decomposition of X.
In [2], Bhatia and Kittaneh prove sharp inequalities comparing the norm ‖X‖p with

(‖Re(X)‖2p + ‖Im(X)‖2p). More precisely, for p = 2 we get

‖Re(X)‖22 + ‖Im(X)‖22 = ‖X‖22.

Theorem 3.5.

U(H ) = {S ∈ Gl(H ) : ‖S‖ = 1 and ‖Re(SXS−1)‖2 ≤ ‖X‖2 for all X ∈ B2(H ), X = X∗}.

Proof. Let Z = Re(Z) + iIm(Z) ∈ B2(H ) then

‖SZS−1 + (S∗)−1ZS∗‖22 = ‖S(Re(Z) + iIm(Z))S−1 + (S∗)−1(Re(Z) + iIm(Z))S∗‖22
= ‖2(Re(SRe(Z)S−1) + iRe(SIm(Z)S−1))‖22
= 4‖Re(SRe(Z)S−1) + iRe(SIm(Z)S−1)‖22
= 4(‖Re(SRe(Z)S−1)‖22 + ‖Re(SIm(Z)S−1)‖22)

≤ 4(‖Re(Z)‖22 + ‖Im(Z)‖22) = 4‖Z‖22.

Since the norm of the operators Φ|S|(X), SXS−1 + (S∗)−1XS∗ and S∗Y S−1 + S−1Y S∗

are related via unitaries operators, more precisely for all X ∈ I

‖Φ|S|(X)‖I = ‖|S|X|S|−1 + |S|−1X|S|‖I = ‖S∗(UX)S−1 + S−1(UX)S∗‖I
and

‖Φ|S|(X)‖I = ‖U∗(SXS−1 + (S∗)−1XS∗)U‖I = ‖SXS−1 + (S∗)−1XS∗‖I
where S = U |S|, we obtain the following characterizations of U(H ).
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Theorem 3.6. Let I a norm ideal then

U(H ) = {S ∈ Gl(H ) : ‖S‖ = 1 and ‖S∗XS−1 + S−1XS∗‖I ≤ 2‖X‖I for allX ∈ I}
= {S ∈ Gl(H ) : ‖S‖ = 1 and ‖SXS−1 + (S∗)−1XS∗‖I ≤ 2‖X‖I for allX ∈ I}
= {S ∈ Gl(H ) : ‖S‖ = 1 and ‖S∗XS−1 + S−1XS∗‖I = 2‖X‖I for allX ∈ I}
= {S ∈ Gl(H ) : ‖S‖ = 1 and ‖SXS−1 + (S∗)−1XS∗‖I = 2‖X‖I for allX ∈ I}.

In particular, if I = B2(H ) we get

U(H ) = {S ∈ Gl(H ) : ‖S‖ = 1 and ‖Re(SXS−1)‖2 = ‖X‖2 for all X ∈ B2(H ), X = X∗}.

We observe that if S = λV with V ∈ U(H ) and λ ∈ R− {0}, then for every X ∈ I

‖SXS−1‖I + ‖S−1XS‖I = 2‖X‖I . (4)

Now motivated by the conclusion of Proposition 3.1 and the equality (4), we characterize
the real multiples of some unitary operator.

Theorem 3.7. Let S ∈ Gl(H ) and I a norm ideal. Then the following conditions are
equivalent:

1. S = λV with λ ∈ R∗ and V ∈ U(H ),

2. ‖SXS−1‖I + ‖S−1XS‖I = 2‖X‖I for every X ∈ I,
3. ‖S∗XS−1‖I + ‖S−1XS∗‖I = 2‖X‖I for every X ∈ I,
4. ‖S∗XS−1‖I + ‖S−1XS∗‖I ≤ 2‖X‖I for every X ∈ I,
5. ‖S∗XS−1 + S−1XS∗‖I ≤ 2‖X‖I for every X ∈ I,
6. ‖S∗XS−1 + S−1XS∗‖I = 2‖X‖I for every X ∈ I,
7. ‖S∗XS−1 + S−1XS∗‖I = 2 for every X ∈ I, ‖X‖I = 1.

8. ‖SXS−1‖I + ‖(S∗)−1XS∗‖I = 2‖X‖I for every X ∈ I,
9. ‖SXS−1‖I + ‖(S∗)−1XS∗‖I ≤ 2‖X‖I for every X ∈ I,

10. ‖SXS−1 + (S∗)−1XS∗‖I ≤ 2‖X‖I for every X ∈ I,
11. ‖SXS−1 + (S∗)−1XS∗‖I = 2‖X‖I for every X ∈ I,
12. ‖SXS−1 + (S∗)−1XS∗‖I = 2 for every X ∈ I, ‖X‖I = 1.

Proof. The implications 1 .⇒ 2 ., 3 .⇒ 4 ., 4 .⇒ 5 . and 6 .⇒ 7 . are trivial.
2 .⇒ 3 . This implication is a consequence of the unitary invariance of the norm and the

fact that S is a normal operator (see Th. 2.3).
5 .⇒ 6 . Let X ∈ I then

2‖X‖I ≥ ‖S∗XS−1 + S−1XS∗‖I = ‖Φ|S|(U∗X)‖I ≥ 2‖U∗X‖I = 2‖X‖I ,

in the last inequality we use (3).
7 .⇒ 1 . By the hypothesis and the inequality (3) we get that ‖Φ|S|‖B(I) = 2. In other

words, ‖S‖‖S−1‖ = 1. Then the result follows immediately.
We actually showed that the first seven conditions are equivalent. With a similar argu-

ment (using (3)) we obtain that the conditions 2 , 8 , 9 , 10 , 11 and 12 are also equivalent and
this concludes the proof
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Remark 3.8. 1. This theorem is a generalization of [11], Th. 6.

2. If I = Iφ is a norm ideal associated with a φ regular symmetric norming function (we
refer to [5] for details on norm ideals generated by a symmetric norming function), that
is

lim
n→∞

φ(ξn+1, ξn+2, ..) = 0, (5)

or the equivalent condition I(0)φ = Iφ where I(0)φ denotes the closure of th ideal of finite
rank operators, B0,0(H ), with respect to the norm ‖.‖I , then in the previous results
we can relax the hypothesis for all X ∈ B0,0(H ). For example, the ideal Bp(H ) with
1 ≤ p ≤ ∞ satisfies the condition (5).
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