Characterization of unitary operators by elementary operators and unitarily invariant norms *

Cristian Conde

Abstract

In this work we characterize unitary operators via inequalities of elementary operators with unitarily invariant norms. ${ }^{1}$

1 Introduction

Let \mathscr{H} be a complex Hilbert space, and let $(B(\mathscr{H}),\|\cdot\|)$ the C^{*}-algebra of all bounded linear operators on \mathscr{H} with the usual norm. We denote by $G l(\mathscr{H})$ the group of invertible elements of $B(\mathscr{H}), U(\mathscr{H})$ the unitary operators and $G l_{s}(\mathscr{H})$ the set of all invertible and selfadjoint operators.

A linear operator $R: B(\mathscr{H}) \rightarrow B(\mathscr{H})$ defined by $R(X)=\sum_{i=1}^{n} A_{i} X B_{i}$, where $A_{i}, B_{i} \in$ $B(\mathscr{H})$, with $1 \leq i \leq n$, is called an elementary operator on $B(\mathscr{H})$; and we denote by $R=R_{\bar{A}, \bar{B}}$, where $\bar{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\bar{B}=\left(B_{1}, \ldots, B_{n}\right)$. This class of operators includes many important operators of $B(\mathscr{H})$ such as the inner derivation $\delta_{A}(X)=A X-X A$, the multiplication operator $M_{A, B}(X)=A X B$, the symmetrized two-sided multiplication $U_{A, B}(X)=A X B+B X A$ and the operator $V_{A, B}=A X B-B X A$. We denote by Φ_{S} the operator $U_{S, S^{-1}}$.

In [8], Nakamoto proved that a bounded linear operator A on \mathscr{H} is normal if and only if $\left\|\delta_{A}(X)\right\|_{2}=\left\|\delta_{A^{*}}(X)\right\|_{2}$ for all $X \in B_{2}(\mathscr{H})$ (Hilbert-Schmidt class). In [9], A. Seedik characterizes the operators S for which the Corach-Porta-Recht inequality ([4], [1]) holds, more precisely he proved that an invertible operator S is a non zero complex multiple of some selfadjoint operator if and only if $\left\|\Phi_{S}(X)\right\| \geq 2\|X\|$ for all $X \in B(\mathscr{H})$.

On the other hand, in [7], the authors ask whether the same characterization obtained on [9] is true for other unitarily invariant norms. They proved that S is necessarily a normal operator if $2\|X\|_{\mathcal{I}} \leq\left\|\Phi_{S}(X)\right\|_{\mathcal{I}}$ for all $X \in B(\mathscr{H})$, with rank one (Corollary 2.2). Furthermore, in this work Magajna et al. obtained that if \mathcal{I} a norm ideal and we denote by $\bar{A}=\left(t S, \frac{1}{t} S^{-1}\right)$ and $\bar{B}=\left(S^{-1}, S\right)$ for $t>0$, then

$$
\gamma S \in G l_{s}(\mathscr{H}), \lambda \in \mathbb{C}-\{0\} \text { if and only if } \inf _{t>0}\left\|R_{\bar{A}, \bar{B}}(X)\right\|_{\mathcal{I}} \geq 2\|X\|_{\mathcal{I}}
$$

for all $X \in \mathcal{I}$ of rank 1 .
In a recent work [11], A. Seedik obtains some characterizations of some subclasses of normal operators in $B(\mathscr{H})$ by inequalities or equalities (associated with elementary operators).

[^0]Motivated by these results, in [3] we characterized the normal invertible operators of $B(\mathscr{H})$ via unitarily invariant norms and elementary operators. The purpose of this work is to find the set for a given norm ideal \mathcal{I}

$$
E_{\mathcal{I}}=\left\{S \in G l(\mathscr{H}):\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}} \text { for every } X \in \mathcal{I}\right\} .
$$

By a result obtained in [3] this subset is contained in $N(\mathscr{H})=\left\{T \in B(\mathscr{H}): T T^{*}=\right.$ $\left.T^{*} T\right\}$.

2 Preliminaries

We recall that \mathcal{I} is a norm ideal of $B(\mathscr{H})$ if \mathcal{I} is a two-sided ideal of $B(\mathscr{H})$ and a Banach space with respect to the norm $\|\cdot\|_{\mathcal{I}}$ satisfying:

1. $\|X T Y\|_{\mathcal{I}} \leq\|X\|\|T\|_{\mathcal{I}}\|Y\|$ for $T \in \mathcal{I}$ and $X, Y \in B(\mathscr{H})$,
2. $\|X\|_{\mathcal{I}}=\|X\|$ if X is of rank one.

In particular, condition 1 . implies that the norm is unitarily invariant, $\left\|U X V^{*}\right\|_{\mathcal{I}}=\|X\|_{\mathcal{I}}$ for $X \in \mathcal{I}$ and any $U, V \in U(\mathscr{H})$. The most known examples of norm ideals of $B(\mathscr{H})$ are the so called p-Schatten class with $p \geq 1$ defined by

$$
B_{p}(\mathscr{H})=\left\{X \in B_{0}(\mathscr{H}):\left\{s_{j}(X)\right\} \in l^{p}\right\}
$$

where $\left\{s_{j}(X)\right\}$ denotes the sequence of singular values of X, rearranged such that $s_{1}(X) \geq$ $s_{2}(X) \geq \cdots$ with multiplicies counted, with norm given by $\|X\|_{p}=\left(\sum s_{j}(X)^{p}\right)^{1 / p}$ and $B_{0}(\mathscr{H})$ is the ideal of compact operators. When $p=\infty$, the norm $\|\cdot\|_{\infty}$ coincides with the usual norm $\|X\|=s_{1}(X)$. For a complete account of the theory of unitarily invariant norms the reader is referred to [5].

For sake of completness, we recall three statements that we will use in the following section. Given a norm ideal \mathcal{I} and a linear operator $P: \mathcal{I} \rightarrow \mathcal{I}$ we denote by

$$
\|P\|_{B(\mathcal{I})}=\sup \left\{\|P(X)\|_{\mathcal{I}}:\|X\|_{\mathcal{I}}=1\right\}
$$

Theorem 2.1. ([10], Theorem 2.1.)
Let $S \in B(\mathscr{H})$ be an invertible and selfadjoint operator and \mathcal{I} a norm ideal. Then we have the following inequality:

$$
\begin{equation*}
\left\|\Phi_{S}\right\|_{B(\mathcal{I})} \geq\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|} \tag{1}
\end{equation*}
$$

Lemma 2.2. ([11], Theorem 3.1.)
Let $S \in G l(\mathscr{H})$. Then $\|S\|\left\|S^{-1}\right\|=1$ if and only if $S=\|S\| V$, for some unitary operator V.

Theorem 2.3. ([3], Theorem 2.1.) Let $S \in G l(\mathscr{H})$ and \mathcal{I} a norm ideal. Then the following conditions are equivalent:

1. S is normal,
2. $\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}}=\left\|M_{S^{*}, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S^{*}}(X)\right\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
3. $\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}} \geq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
4. $\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}} \geq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$, with rank 1 .

Remark 2.4. Other characterization of normal invertible operators is given in the following statement.
Proposition 2.5. Let $S \in G l(\mathscr{H})$ and \mathcal{I} a norm ideal. Then the following conditions are equivalent:

1. S is normal,
2. $\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}} \leq\left\|M_{S^{*}, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S^{*}}(X)\right\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
3. $\left\|M_{S, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(X)\right\|_{\mathcal{I}} \leq\left\|M_{S^{*}, S^{-1}}(X)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S^{*}}(X)\right\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$, of rank 1.

Proof. The implication $1 \Rightarrow 2$ follows inmediately from Theorem 2.3 and $2 \Rightarrow 3$ is trivial. $3 \Rightarrow 1$ We consider rank one operators $X=x \otimes y \in \mathcal{I}$ with $x, y \in \mathscr{H}$, then it follows that the following inequality holds

$$
\left\|M_{S, S^{-1}}(x \otimes y)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S}(x \otimes y)\right\|_{\mathcal{I}} \leq\left\|M_{S^{*}, S^{-1}}(x \otimes y)\right\|_{\mathcal{I}}+\left\|M_{S^{-1}, S^{*}}(x \otimes y)\right\|_{\mathcal{I}}
$$

or equivalently,

$$
\left\|S(x \otimes y) S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1}(x \otimes y) S\right\|_{\mathcal{I}} \leq\left\|S^{*}(x \otimes y) S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1}(x \otimes y) S^{*}\right\|_{\mathcal{I}}
$$

It is easy to see that $A(u \otimes v) B=A u \otimes B^{*} v$ and $\|u \otimes v\|_{\mathcal{I}}=\|u \otimes v\|=\|u\|\|v\|$, for all $u, v \in \mathscr{H}$ and $A, B \in B(\mathscr{H})$. Then

$$
\begin{equation*}
\|S(x)\|\left\|\left(S^{-1}\right)^{*}(y)\right\|+\left\|S^{-1}(x)\right\|\left\|S^{*}(y)\right\| \leq\left\|S^{*}(x)\right\|\left\|\left(S^{-1}\right)^{*}(y)\right\|+\left\|S^{-1}(x)\right\|\|S(y)\| \tag{2}
\end{equation*}
$$

Assume that S is not a normal operator. Consequently there exist vector $x \in \mathscr{H},\|x\|=1$ such that $\|S x\|>\left\|S^{*} x\right\|$ (or $\|S x\|<\left\|S^{*} x\right\|$). It follows, from (2), that for all $y \in \mathscr{H}$ with $\|y\|=1,\|S y\|>\left\|S^{*} y\right\|$ (or $\|S y\|<\left\|S^{*} y\right\|$), so we have from (2) that
$0<\left(\|S x\|-\left\|S^{*} x\right\|\right) \leq\left(\|S y\|-\left\|S^{*} y\right\|\right)\left\|\left(S^{-1}\right)(x)\right\|\left\|\left(S^{*}\right)^{-1}(y)\right\|^{-1} \leq\left(\|S y\|-\left\|S^{*} y\right\|\right)\left\|S^{-1}\right\|\left\|S^{*}\right\|$.
Hence, for all $y \in \mathscr{H}$ with $\|y\|=1$

$$
\|S x\|+\left\|S^{-1}\right\|\|S\|\left\|S^{*} y\right\| \leq\left\|S^{*} x\right\|+\left\|S^{-1}\right\|\|S\|\|S y\|
$$

Thus $\|S x\|+\left\|S^{-1}\right\|\|S\|\left\|S^{*}\right\| \leq\left\|S^{*} x\right\|+\left\|S^{-1}\right\|\|S\|\|S\|$. It follows that $\|S x\| \leq\left\|S^{*} x\right\|$, which it is a contradiction. Therefore S is a normal operator.

In [6], Kittaneh obtained the generalization of the Corach-Porta-Recht inequality in any norm ideal \mathcal{I}. More precisely, for Hilbert-space operators T, R, X with T, R invertible operators and a unitarily invariant norm \mathcal{I}, the inequality

$$
\begin{equation*}
2\|X\|_{\mathcal{I}} \leq\left\|R^{*} X T^{-1}+R^{-1} X T^{*}\right\|_{\mathcal{I}} \tag{3}
\end{equation*}
$$

holds for all $X \in \mathcal{I}$.
In this work, we consider the polar decomposition of $S \in G l(\mathscr{H})$ given by $S=U|S|$ with $|S|=\left(S^{*} S\right)^{1 / 2}$ positive and $U \in U(\mathscr{H})$.

3 Main results

Proposition 3.1. If $S \in G l_{s}(\mathscr{H})$ and $\left\|\Phi_{S}(X)\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for all $X \in \mathcal{I}$, then $S=\|S\| V$ with $V \in U(\mathscr{H})$.

Proof. Since $\left\|\Phi_{S}(X)\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for all $X \in \mathcal{I}$, it follows that $\left\|\Phi_{S}\right\|_{B(\mathcal{I})} \leq 2$.
By (1) we have that $2 \geq\left\|\Phi_{S}\right\|_{B(\mathcal{I})} \geq\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|} \geq 2$.
From this we derive that $\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|}=2$, so it follows immediately that $\|S\|\left\|S^{-1}\right\|=1$. So from [11], Lemma 2 it turns out that $S=\|S\| V$ with V an unitary operator.

Now, we obtain a generalization of [11], Th. 8 .
Corollary 3.2. Let \mathcal{I} a norm ideal, then

$$
U_{s}(\mathscr{H})=\left\{S \in G l_{s}(\mathscr{H}):\|S\|=1 \text { and }\left\|\Phi_{S}(X)\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\}
$$

where $U_{s}(\mathscr{H})$ denotes the unitary selfadjoint operators in $B(\mathscr{H})$.
Proof. If $S \in U_{s}(\mathscr{H})$ then $S \in G l_{s}(H),\|S\|=1$ and for any $X \in \mathcal{I}$ we have

$$
\left\|\Phi_{S}(X)\right\|_{\mathcal{I}}=\left\|S X S^{-1}+S^{-1} X S\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}
$$

by the unitary invariance of the norm. Thus, the result follows immediately from Proposition 3.1.

In the previous statement, if we omit the hypothesis $\|S\|=1$ we obtain a characterization of $\mathbb{R}^{*} U_{s}(\mathscr{H})$, with $\mathbb{R}^{*}=\mathbb{R}-\{0\}$.

If $S=U|S| \in U(\mathscr{H})$ then necessarily $|S| \in U_{s}(\mathscr{H})$ and in consequence $|S|$ is characterized by the previous corollary. In the following result we prove that a condition which holds for the modules of S is a sufficient condition for determinate if S is an unitary operator in $B(\mathscr{H})$.
Theorem 3.3. Let \mathcal{I} a norm ideal then

$$
U(\mathscr{H})=\left\{S \in G l(\mathscr{H}):\|S\|=1, S=U|S| \text { and }\left\|\Phi_{|S|}(X)\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\}
$$

Proof. By the hypothesis, $\left\|\Phi_{|S|}\right\|_{B(\mathcal{I})} \leq 2$. By (1) we have the following lower bound for the operator $\Phi_{|S|}$,

$$
\left\|\Phi_{|S|}\right\|_{B(\mathcal{I})} \geq\||S|\|\left\||S|^{-1}\right\|+\frac{1}{\||S|\|\left\||S|^{-1}\right\|} \geq 2
$$

From this inequality and the condition obtained above, we get that

$$
\left\|\Phi_{|S|}\right\|_{B(\mathcal{I})}=\||S|\|\left\||S|^{-1}\right\|+\frac{1}{\||S|\|\left\||S|^{-1}\right\|}=\|S\|\left\|S^{-1}\right\|+\frac{1}{\|S\|\left\|S^{-1}\right\|}=2
$$

In other words, $\|S\|\left\|S^{-1}\right\|=1$. Then the result follows immediately from the Lemma 2.2.

On the other hand, if $S=U|S| \in U(\mathscr{H})$ then for any $X \in \mathcal{I}$ we may write $X=U^{*} Y$ with $Y \in \mathcal{I}$ and since $\|S\|=1$ we have that

$$
\left\|\Phi_{|S|}(X)\right\|_{\mathcal{I}}=\left\||S| U^{*} Y|S|^{-1}+|S|^{-1} U^{*} Y|S|\right\|_{\mathcal{I}}=\left\|S^{*} Y S^{-1}+S^{-1} Y S^{*}\right\|_{\mathcal{I}} \leq 2\|Y\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}} .
$$

This concludes the proof.

Remark 3.4. 1. The operator which characterize the unitary operators of $B(\mathscr{H})$ can be written as follows

$$
\tau_{S^{*}, S}=S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}=S X S^{-1}+\left(S^{-1}\right)^{*} X S^{*}=S X S^{-1}+\left(S X^{*} S^{-1}\right)^{*}
$$

in particular if X is a selfadjoint operator then

$$
S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}=2 \operatorname{Re}\left(S X S^{-1}\right)
$$

where $\operatorname{Re}(T)=\frac{1}{2}\left(T+T^{*}\right)$.
A natural question is if with the selfadjoint operators of \mathcal{I} we can describe all $U(\mathscr{H})$, more precisely

$$
U(\mathscr{H})=\left\{S \in G l(\mathscr{H}):\|S\|=1 \text { and }\left\|\operatorname{Re}\left(S X S^{-1}\right)\right\|_{\mathcal{I}} \leq\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}, X=X^{*}\right\} ?
$$

We give a particular example when \mathcal{I} is the 2-Schatten ideal. Every $X \in B(\mathscr{H})$ can be written as $X=\operatorname{Re}(X)+i \operatorname{Im}(X)$, where $\operatorname{Re}(X), \operatorname{Im}(X)$ are selfadjoint operators and

$$
\operatorname{Re}(X)=\frac{1}{2}\left(X+X^{*}\right) \quad \text { and } \quad \operatorname{Im}(X)=\frac{1}{2 i}\left(X-X^{*}\right)
$$

We call this the Cartesian decomposition of X.
In [2], Bhatia and Kittaneh prove sharp inequalities comparing the norm $\|X\|_{p}$ with $\left(\|\operatorname{Re}(X)\|_{p}^{2}+\|\operatorname{Im}(X)\|_{p}^{2}\right)$. More precisely, for $p=2$ we get

$$
\|\operatorname{Re}(X)\|_{2}^{2}+\|\operatorname{Im}(X)\|_{2}^{2}=\|X\|_{2}^{2}
$$

Theorem 3.5.

$U(\mathscr{H})=\left\{S \in G l(\mathscr{H}):\|S\|=1\right.$ and $\left\|\operatorname{Re}\left(S X S^{-1}\right)\right\|_{2} \leq\|X\|_{2}$ for all $\left.X \in B_{2}(\mathscr{H}), X=X^{*}\right\}$.
Proof. Let $Z=\operatorname{Re}(Z)+i \operatorname{Im}(Z) \in B_{2}(\mathscr{H})$ then

$$
\begin{aligned}
\left\|S Z S^{-1}+\left(S^{*}\right)^{-1} Z S^{*}\right\|_{2}^{2} & =\left\|S(\operatorname{Re}(Z)+i \operatorname{Im}(Z)) S^{-1}+\left(S^{*}\right)^{-1}(\operatorname{Re}(Z)+i \operatorname{Im}(Z)) S^{*}\right\|_{2}^{2} \\
& =\left\|2\left(\operatorname{Re}\left(\operatorname{Re}(Z) S^{-1}\right)+i \operatorname{Re}\left(\operatorname{SIm}(Z) S^{-1}\right)\right)\right\|_{2}^{2} \\
& =4\left\|\operatorname{Re}\left(\operatorname{SRe}(Z) S^{-1}\right)+i \operatorname{Re}\left(\operatorname{SIm}(Z) S^{-1}\right)\right\|_{2}^{2} \\
& =4\left(\left\|\operatorname{Re}\left(S \operatorname{Re}(Z) S^{-1}\right)\right\|_{2}^{2}+\left\|\operatorname{Re}\left(S \operatorname{Im}(Z) S^{-1}\right)\right\|_{2}^{2}\right) \\
& \leq 4\left(\|\operatorname{Re}(Z)\|_{2}^{2}+\|\operatorname{Im}(Z)\|_{2}^{2}\right)=4\|Z\|_{2}^{2}
\end{aligned}
$$

Since the norm of the operators $\Phi_{|S|}(X), S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}$ and $S^{*} Y S^{-1}+S^{-1} Y S^{*}$ are related via unitaries operators, more precisely for all $X \in \mathcal{I}$

$$
\left\|\Phi_{|S|}(X)\right\|_{\mathcal{I}}=\left\||S| X|S|^{-1}+|S|^{-1} X|S|\right\|_{\mathcal{I}}=\left\|S^{*}(U X) S^{-1}+S^{-1}(U X) S^{*}\right\|_{\mathcal{I}}
$$

and

$$
\left\|\Phi_{|S|}(X)\right\|_{\mathcal{I}}=\left\|U^{*}\left(S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right) U\right\|_{\mathcal{I}}=\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}}
$$

where $S=U|S|$, we obtain the following characterizations of $U(\mathscr{H})$.

Theorem 3.6. Let \mathcal{I} a norm ideal then

$$
\begin{aligned}
U(\mathscr{H}) & =\left\{S \in G l(\mathscr{H}):\|S\|=1 \text { and }\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\} \\
& =\left\{S \in G l(\mathscr{H}):\|S\|=1 \text { and }\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\} \\
& =\left\{S \in G l(\mathscr{H}):\|S\|=1 \text { and }\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\} \\
& =\left\{S \in G l(\mathscr{H}):\|S\|=1 \text { and }\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}} \text { for all } X \in \mathcal{I}\right\} .
\end{aligned}
$$

In particular, if $\mathcal{I}=B_{2}(\mathscr{H})$ we get
$U(\mathscr{H})=\left\{S \in G l(\mathscr{H}):\|S\|=1\right.$ and $\left\|\operatorname{Re}\left(S X S^{-1}\right)\right\|_{2}=\|X\|_{2}$ for all $\left.X \in B_{2}(\mathscr{H}), X=X^{*}\right\}$.

We observe that if $S=\lambda V$ with $V \in U(\mathscr{H})$ and $\lambda \in \mathbb{R}-\{0\}$, then for every $X \in \mathcal{I}$

$$
\begin{equation*}
\left\|S X S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1} X S\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}} \tag{4}
\end{equation*}
$$

Now motivated by the conclusion of Proposition 3.1 and the equality (4), we characterize the real multiples of some unitary operator.

Theorem 3.7. Let $S \in G l(\mathscr{H})$ and \mathcal{I} a norm ideal. Then the following conditions are equivalent:

1. $S=\lambda V$ with $\lambda \in \mathbb{R}^{*}$ and $V \in U(\mathscr{H})$,
2. $\left\|S X S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1} X S\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
3. $\left\|S^{*} X S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
4. $\left\|S^{*} X S^{-1}\right\|_{\mathcal{I}}+\left\|S^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
5. $\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
6. $\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
7. $\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}}=2$ for every $X \in \mathcal{I},\|X\|_{\mathcal{I}}=1$.
8. $\left\|S X S^{-1}\right\|_{\mathcal{I}}+\left\|\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
9. $\left\|S X S^{-1}\right\|_{\mathcal{I}}+\left\|\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
10. $\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}} \leq 2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
11. $\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}$ for every $X \in \mathcal{I}$,
12. $\left\|S X S^{-1}+\left(S^{*}\right)^{-1} X S^{*}\right\|_{\mathcal{I}}=2$ for every $X \in \mathcal{I},\|X\|_{\mathcal{I}}=1$.

Proof. The implications 1. \Rightarrow 2., 3. $\Rightarrow 4 ., 4 . \Rightarrow 5$. and $6 . \Rightarrow 7$. are trivial.
2. \Rightarrow 3. This implication is a consequence of the unitary invariance of the norm and the fact that S is a normal operator (see Th. 2.3).
$5 . \Rightarrow 6$. Let $X \in \mathcal{I}$ then

$$
2\|X\|_{\mathcal{I}} \geq\left\|S^{*} X S^{-1}+S^{-1} X S^{*}\right\|_{\mathcal{I}}=\left\|\Phi_{|S|}\left(U^{*} X\right)\right\|_{\mathcal{I}} \geq 2\left\|U^{*} X\right\|_{\mathcal{I}}=2\|X\|_{\mathcal{I}}
$$

in the last inequality we use (3).
7. $\Rightarrow 1$. By the hypothesis and the inequality (3) we get that $\left\|\Phi_{|S|}\right\|_{B(\mathcal{I})}=2$. In other words, $\|S\|\left\|S^{-1}\right\|=1$. Then the result follows immediately.

We actually showed that the first seven conditions are equivalent. With a similar argument (using (3)) we obtain that the conditions 2, 8, 9, 10, 11 and 12 are also equivalent and this concludes the proof

Remark 3.8. 1. This theorem is a generalization of [11], Th. 6.
2. If $\mathcal{I}=\mathcal{I}_{\phi}$ is a norm ideal associated with a ϕ regular symmetric norming function (we refer to [5] for details on norm ideals generated by a symmetric norming function), that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\xi_{n+1}, \xi_{n+2}, . .\right)=0 \tag{5}
\end{equation*}
$$

or the equivalent condition $\mathcal{I}_{\phi}^{(0)}=\mathcal{I}_{\phi}$ where $\mathcal{I}_{\phi}^{(0)}$ denotes the closure of th ideal of finite rank operators, $B_{0,0}(\mathscr{H})$, with respect to the norm $\|\cdot\|_{\mathcal{I}}$, then in the previous results we can relax the hypothesis for all $X \in B_{0,0}(\mathscr{H})$. For example, the ideal $B_{p}(\mathscr{H})$ with $1 \leq p \leq \infty$ satisfies the condition (5).

References

[1] E. Andruchow, G. Corach, D. Stojanoff, Geometric operator inequalities, Linear Algebra Appl. 258 (1997), 295-310.
[2] R. Bhatia, F. Kittaneh, Cartesian decompositions and Schatten norms, Linear Algebra Appl. 318 (2000), no. 1-3, 109-116.
[3] C. Conde, Normal operators and inequalities in norm ideals, Linear Algebra Appl. 431 (2009), 177-1777.
[4] G. Corach, H. Porta, L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990), 153-158.
[5] I. Gohberg, M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Vol. 18, Providence, R. I.,1969.
[6] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208/209 (1994), 19-28.
[7] B. Magajna, M. Petkovšek, A. Turns̆ek An operator inequality and selfadjointness, Linear Algebra Appl. 377 (2004), 181-194.
[8] R. Nakamoto, A characterization of normal operators using the Hilbert-Schmidt class, Proc. Amer. Math. Soc. 79 (1980), no. 2, 343-344.
[9] A. Seddik, Some results related to the Corach-Porta-Recht inequality, Proc. Amer. Math. Soc. 129 (2001), 3009-3015.
[10] A. Seddik, On some operator norm inequalities, Linear Algebra Appl. 389 (2004), 183-187.
[11] A. Seddik, On the injective norm and characterization of some subclasses of normal operators by inequalities or equalities, J. Math. Anal. Appl. 351 (2009), 277-284.

[^1]
[^0]: *2010 MSC. Primary 47A63; Secondary 47L20.
 ${ }^{1}$ Keywords and phrases: Unitary operators, norm ideal, Corach, Porta and Recht inequality

[^1]: Cristian Conde
 Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, (B1613GSX) Los Polvorines.
 Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 153° piso, (C1083ACA) Buenos Aires.
 Argentina
 e-mail: cconde@ungs.edu.ar

