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Abstract. Given a bounded selfadjoint operator a in a Hilbert space H, the
aim of this paper is to study the orbit of a, i.e., the set of operators which are
congruent to a. We establish some necessary and sufficient conditions for an
operator to be in the orbit of a. Also, the orbit of a selfadjoint operator with
closed range is provided with a structure of differential manifold.
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1. Introduction

Let L(H) be the algebra of linear bounded operators of a separable Hilbert spaceH
and GL(H) the group of invertible operators of L(H). Two operators a, b ∈ L(H)
are congruent if there exists g ∈ GL(H) such that b = gag∗. If a and b are positive,
then a and b are congruent if and only if their ranges R(a) and R(b) are unitarily
equivalent, i.e. there exists a unitary operator u such that R(b) = uR(a), see
[10]. In [11], it was proved that if a and b are invertible selfadjoint operators, b is
congruent to a if and only if the reflections of their polar decompositions belong to
the same unitary orbit. The purpose of this paper is to study the set of operators
which are congruent with a, when a is a given selfadjoint operator, not necessarily
invertible.

The congruence between selfadjoint operators defines a natural action of the
group GL(H) over the set L(H)s of selfadjoint operators given by Lga = gag∗ and
the set L(H)s is the (disjoint) union of the orbits of this action. In [8], Corach
et al. described the set GL(H)s, of selfadjoint invertible operators, as a reductive
homogeneous space of GL(H), with a canonical connection and a Finsler metric.
They proved that any pair of points a, b ∈ GL(H)s having the same unitary part
in the polar decomposition, can be joined by a geodesic. These geodesics are short
if measured with the (Finsler) metric. Observe that GL(H)s is the union of the



2 Guillermina Fongi and Alejandra Maestripieri

orbits of invertible selfadjoint operators. In particular, the orbit of the identity is
GL(H)+, the cone of positive invertible operators.

The study of the geometric structure of the set of selfadjoint operators, in
the non-invertible case, was continued in [4], [5], [7] and [11]. The set L(H)s can
be partitioned in certain classes, called Thompson components and on each com-
ponent a complete metric can be defined. In the positive case, this metric is known
as the Thompson metric, see [20]. It turns out that the component of a selfadjoint
closed range operator admits a structure of a homogeneous space, see [4], [5] and
[11]. In [7], the orbit Oa of a positive operator a with closed range was studied,
provided with a suitable metric d. It was proved that (Oa, d) is a fibre bundle and
the orbit was described as the union of certain Thompson components. Also, the
metric d coincides with the operator norm on each component and the differential
structure of each component is compatible with the fibre bundle structure of the
orbit Oa. Following this ideas, we study the differential structure of the orbit of a
selfadjoint operator with closed range.

The article is organized as follows. Section 2 contains a brief survey on con-
gruence and equivalence of operators. We also recall the notion of Thompson com-
ponent of a selfadjoint operator, defined in [11]. In Section 3, we characterize the
orbit of a positive operator as a union of certain Thompson components, more
precisely, Oa =

⋃
u∈U(H) Cuau∗ , where U(H) is the subgroup of GL(H) of uni-

tary operators. The orbit of a selfadjoint operator a is related to the positive
and negative parts of a: if a = a1 − a2 and b = b1 − b2 (with ai, bi positive and
a1a2 = b1b2 = 0) are the decompositions of a and b in their positive and negative
parts, we prove that if bi ∈ Oai

, i = 1, 2, and the nullspaces of a and b are uni-
tarily equivalent, then b ∈ Oa. Conversely, if a = va|a| and b = vb|b| are the polar
decompositions of a, b ∈ L(H)s, we show that if b ∈ Oa then there exists a unitary
operator u such that vb = uvau∗. In particular this condition is also necessary
when a has closed range. In fact, in this case, the orbit of a is characterized by the
dimension of the nullspace of a and the dimensions of the ranges of ai, i = 1, 2.
Finally, in Section 4 we study the differential structure of the orbit of a selfadjoint
operator a with closed range. We introduce the following metric on the orbit of a:
d(b, c) = (‖b−c‖2+‖pb−pc‖2)1/2, for b, c ∈ Oa, where pb and pc are the orthogonal
projections onto the ranges of b and c, respectively. (In fact, we consider the same
metric as in the positive case). With this new topology, (Oa, d) has a structure of
differential manifold; moreover (GL(H),Oa, πa) is a principal fibre bundle, where
πa(g) = Lga, for g ∈ GL(H). This structure is compatible with the structure of
homogeneous space of the Thompson components involved, because the metric d
coincides with the usual metric on each component. In fact, the fibre of b ∈ Oa,
by the map α : b → vb, is the Thompson component of b. Even if the map α
is not necessarily continuous with the operator norm (see for example [7]), it is
continuous if the metric d is considered in Oa and (Oa,UOva

, α) is a fibre bundle,
where UOva is the unitary orbit of va.
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2. Preliminaries

Let L(H) be the algebra of linear bounded operators of a separable Hilbert space
H. Throughout this paper we consider the following subsets of L(H): the set L(H)s

of selfadjoint operators, the cone L(H)+ of positive operators and the set CR(H) of
closed range operators. Let I be the subset of CR(H) of partial isometries, i.e., I =
{v ∈ L(H) : vv∗ is an orthogonal projection}. If GL(H) is the group of invertible
operators of L(H) and U(H) the subgroup of GL(H) of unitary operators, the set
of reflections is P = {v ∈ L(H) : v = v−1 = v∗}. If A ⊆ L(H), let As = A∩L(H)s.

Given a ∈ L(H), R(a) denotes the range of a, N(a) its nullspace, pa denotes
the orthogonal projection onto R(a) and a† the Moore-Penrose pseudoinverse of
a. If S is a closed subspace of H, pS denotes the orthogonal projection onto S.

If a ∈ L(H), we fix the following polar decomposition of a: a = va|a| where
|a| = (a∗a)1/2 is positive and va is a partial isometry from N(a)⊥ onto R(a) with
N(va) = N(a). If a is selfadjoint, the isometric part of the polar decomposition
can be defined to obtain a reflection: in this case R(a)⊥ = N(a) so that ua =
va + pN(a) ∈ P and a = ua|a| = |a|ua. Also, every a ∈ L(H)s admits a unique
positive orthogonal decomposition (p.o.d.) as a = a1 − a2, where a1, a2 ∈ L(H)+

and a1a2 = 0. In fact, it is easy to see that a1 = |a|+a
2 and a2 = |a|−a

2 . The operator
a1 is called the positive part of a, and −a2, the negative part.

2.1. Equivalence and congruence of operators

The following definitions and results about equivalence of operator ranges and
equivalence and congruence of operators can be found in [10].

Two operator ranges R and S are similar if there exists g ∈ GL(H) such
that R = g(S) and unitarily equivalent if g can be taken to be unitary. Operator
ranges are similar if and only if they are unitarily equivalent.

Two operators a, b ∈ L(H) are equivalent if there exist g, f ∈ GL(H) such
that b = gaf ; the operators a and b are congruent if there exists g ∈ GL(H) such
that b = gag∗.

Proposition 2.1. Normal operators are equivalent if and only if their ranges are
unitarily equivalent.

Theorem 2.2. Let a, b ∈ L(H)+, then the following conditions are equivalent:
1. a and b are equivalent,
2. a1/2 and b1/2 are equivalent,
3. a and b are congruent.

Remark 2.3. From Theorem 2.2, it follows that the ranges of two positive operators
a and b are unitarily equivalent if and only if the ranges of a1/2 and b1/2 are
unitarily equivalent. Also, it can be proved that if a, b ∈ L(H), then a and b are
equivalent if and only if a∗a and b∗b are congruent; or, equivalently, if |a| and |b|
are congruent. By Theorem 2.2, two positive operators are equivalent if and only if
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they are congruent. This is no longer true for selfadjoint operators: for example if
a ∈ L(H)s is not positive then a and |a| are equivalent but they are not congruent.

The following result about unitary congruence of projectors, is due to B.
Sz.-Nagy, see [16], [17]. An alternative proof can be found in [14].

Proposition 2.4. If p, q are two orthogonal projections satisfying that ||p− q|| < 1
then there exists u ∈ U(H) such that q = upu∗.

Remark 2.5. In [2], J. Avron, R. Seiler and B. Simon proved that given two or-
thogonal projections p, q with ||p − q|| < 1, then there exists v ∈ U(H) such that
q = vpv∗ and p = vqv∗.

2.2. Thompson components of selfadjoint operators

Consider the following equivalence relation in L(H)+: given a, b ∈ L(H)+, a ∼ b if
and only if there exist positive numbers α, β such that a ≤ αb and b ≤ βa, where
≤ is the partial order induced in L(H) by L(H)+. Therefore, L(H)+ is the (dis-
joint) union of equivalence classes, called Thompson components. Each component
admits a complete metric, known as the Thompson part metric. Given a ∈ L(H)+,
it holds that b ∈ Ca if and only if R(b1/2) = R(a1/2). The reader is referred to [4]
and [5] to find a complete exposition about the Thompson components of positive
operators.

In [11], the notion of Thompson component is extended to selfadjoint op-
erators. Consider a reflection v ∈ P, then the indefinite sesquilinear form given
by

〈x, y〉v = 〈vx, y〉, x, y ∈ H,

defines an order in L(H): if a, b ∈ L(H), then a ≤v b if and only if v(b− a) ≥ 0.
Given a, b ∈ L(H)s, with polar decompositions a = ua|a| and b = ub|b|, a ∼ b

if there exist α, β > 0 such that a ≤ua αb and b ≤ub
βb. It follows that ∼ is

an equivalence relationship. The Thompson component of a is the set Ca = {b ∈
L(H)s : R(|b|1/2) = R(|a|1/2) and ub = ua}. In particular, if a has closed range,
then Ca = {b ∈ CR(H)s : vb = va}.

The component of a ∈ L(H)s is homeomorphic to the product of two Thomp-
son components of positive operators, namely, Ca ' Ca1 ×Ca2 , where a = a1− a2

is the p.o.d. of a, see Theorem 5.1 of [11].

3. The orbit of a selfadjoint operator

In this section we study the orbit of congruence of a fixed selfadjoint operator a, i.e.,
the set of operators in L(H) which are congruent to a. This set was characterized
in the invertible case: two invertible selfadjoint operators are congruent if and
only if the ranges of their positive and negative parts have the same dimension; or
equivalently, the reflections of their polar decompositions are unitarily equivalent,
see [11].



Congruence of selfadjoint operators 5

Consider the following action of GL(H) over L(H)s,

L : GL(H)× L(H)s → L(H)s, Lga = gag∗, a ∈ L(H)s, g ∈ GL(H).

Given a ∈ L(H)s, the orbit of a corresponding to the action L is the set Oa

of operators which are congruent with a, i.e.

Oa = {gag∗ : g ∈ GL(H)}.
The next proposition is a rewriting of Proposition 2.1 and Theorem 2.2, and

provides a characterization of Oa, when a is positive.

Proposition 3.1. Consider a, b ∈ L(H)+; then the following conditions are equiva-
lent:

1. b ∈ Oa,
2. R(a) and R(b) are unitarily equivalent,
3. R(a1/2) and R(b1/2) are unitarily equivalent.

Proof. 1→2: Follows from Proposition 2.1.
2→3: Follows from Remark 2.3.
3→1: Suppose R(b1/2) = vR(a1/2) for some v ∈ U(H), then, by Proposition

2.1, a1/2 and b1/2 are equivalent. From Theorem 2.2, it follows that a and b are
congruent, or equivalently, b ∈ Oa. �

As a consequence of Proposition 3.1 we have the following results.

Corollary 3.2. Consider a, b ∈ L(H)+, then b ∈ Oa if and only if b1/2 ∈ Oa1/2 .

Proposition 3.3. Consider a, b ∈ L(H)+. If b ∈ Oa then bt ∈ Oat for t ∈ [0, 1].

Proof. To prove this assertion we use that given c, d ∈ L(H)+ such that if R(c) =
R(d) then R(ct) = R(dt), for t ∈ [0, 1]. In fact, if R(c) ⊆ R(d) then, by Dou-
glas Theorem (see [9]), there exists a constant λ > 0 such that c2 ≤ λ2d2. By
the Löwner-Heinz inequality, (see [19]), xt is operator monotone increasing for
t ∈ [0, 1], then c2t ≤ λ2td2t, so that R(ct) ⊆ R(dt). The other inclusion follows
similarly.

Suppose that b ∈ Oa, then, by Proposition 3.1, there exists u ∈ U(H) such
that R(b) = R(uau∗). Therefore, R(bt) = R((uau∗)t), for any t ∈ [0, 1]. Fi-
nally, applying Stone-Weierstrass theorem, it holds that (uau∗)t = uatu∗, so that
R(bt) = R(uatu∗), or equivalently, bt ∈ Oat . �

In particular, if a ∈ CR(H)+, then Oa = Oat for t ∈ [0, 1]. In fact, by
Theorem 2.7 of [5], R(a) = R(at). If b ∈ Oa then R(b) = uR(a) = uR(at), so that
b ∈ Oat . Hence Oa = Oat . More generally, it holds that if b ∈ Oa then f(b) ∈ Of(a)

for every f ∈ C(X) monotone increasing, with X a compact set wich contains the
spectrum of a.

The orbit of a can be seen as a union of Thompson components, as shows
the next corollary.
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Corollary 3.4. If a ∈ L(H)+, then Oa =
⋃

u∈U(H) Cuau∗ , where Cuau∗ is the
Thompson component of uau∗, for u ∈ U(H).

In what follows we study the orbit of a selfadjoint operator.

Proposition 3.5. Consider a, b ∈ L(H)s. If b ∈ Oa, then |b| ∈ O|a|.

Proof. If b ∈ Oa, then a and b are equivalent. By Remark 2.3, |a| and |b| are
congruent, or equivalently, |b| ∈ O|a|. �

Proposition 3.6. Consider a, b ∈ L(H)s with p.o.d. a = a1 − a2 and b = b1 − b2. If
bi ∈ Oai for i = 1, 2, and N(b) is unitarily equivalent to N(a), then b ∈ Oa.

Proof. Since N(b) and N(a) are unitarily equivalent, there exists u ∈ U(H) such
that N(b) = uN(a). By Proposition 3.1, there exist u1, u2 ∈ U(H) such that
R(b1/2

i ) = uiR(a1/2
i ), for i = 1, 2. Then b

1/2
i and uia

1/2
i u∗i have the same range

and nullspace, so that (see Corollary 1, [10]) there exists gi ∈ GL(H) such that
b
1/2
i = giuia

1/2
i u∗i , or b

1/2
i ui = giuia

1/2
i , i = 1, 2. Consider w = g1u1pa1 +g2u2pa2 +

u(1 − pa). Then w ∈ GL(H), in fact, it is easy to see that w−1 = u∗1g
−1
1 pb1 +

u∗2g
−1
2 pb2 +u∗(1−pb). On the other hand, waw∗ = w(a1−a2)w∗ = b

1/2
1 u1u

∗
1b

1/2
1 −

b
1/2
2 u2u

∗
2b

1/2
2 = b. Hence b ∈ Oa. �

Given v ∈ Is, denote by UOv the unitary orbit of v, i.e., the set UOv =
{uvu∗ : u ∈ U(H)}. The next theorem relates the orbit of a with the unitary
orbits of ua and va, where a ∈ L(H)s has polar decomposition a = ua|a| = va|a|
with ua ∈ P and va the partial isometry.

Theorem 3.7. Consider a, b ∈ L(H)s. If b ∈ Oa then
1. ub ∈ UOua

,
2. vb ∈ UOva .

In order to prove this theorem we need the following lemma, which is similar
to a result proved by S. Hassi, Z. Sebestyen and S. V. De Snoo, see [13]. We include
a proof which follows the ideas of the proof given by J. Antezana.

Lemma 3.8. Let a, b ∈ L(H)+ and h, g ∈ L(H) be operators such that bh = ga,
then there exists a unique s ∈ L(H) such that

b1/2s = ga1/2 and N(b) ⊆ N(s∗).

Moreover, if h, g ∈ GL(H) then there exists s′ ∈ GL(H) such that

b1/2s′ = ga1/2.

Proof. It is sufficient to prove the existence of s ∈ L(H) when g is a contraction.
If bh = ga, then

ga2g∗ = bhh∗b ≤ ‖h‖2b2.

Since f(t) = t2 is operator convex and f(0)=0, then, by Jensen‘s inequality
(see [12]), it follows that (gag∗)2 ≤ ga2g∗. Therefore gag∗ ≤ (ga2g∗)1/2 ≤ ‖h‖b,
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because g(t) = t1/2 is operator monotone increasing. Hence, by Douglas Theorem
(see [9]), there exists s ∈ L(H) such that b1/2s = ga1/2. The uniqueness of s follows
from the fact that N(b) ⊆ N(s∗).

Finally, if g, h ∈ GL(H), then h∗R(b) = R(a). Therefore, there exists u ∈
U(H) such that uR(b) = R(a) so that uN(b) = N(a). Since g−1b = ah−1, then
there exists a unique l ∈ L(H) such that g−1b1/2 = a1/2l. Therefore

l∗s∗(b1/2x) = l∗a1/2g∗x = b1/2(g∗)−1g∗x = b1/2x,

so that l∗s∗pb = pb. If we consider s∗′ = s∗pb + upN(b) and l∗′ = l∗pa + u∗pN(a), it
follows that l∗′s∗′ = l∗s∗pb + u∗upN(b) = 1. Similarly, s∗′l∗′ = 1 and s∗′ ∈ GL(H).
Also, it holds that s∗′b1/2 = a1/2g∗. �

Corollary 3.9. Let a, b ∈ L(H)+ and g ∈ L(H) be operators such that b†ga is well
defined and bounded, then (b1/2)†ga1/2 ∈ L(H).

Proof. If b†ga = h ∈ L(H) then R(pbga) ⊆ R(b) and bb†ga = bb†pbga = bh
so that pbga = bh because bb†x = x for every x ∈ R(b). Then, by Lemma 3.8,
there exists a unique s ∈ L(H) such that b1/2s = pbga1/2 and N(b) ⊆ N(s∗).
Therefore pbs = (b1/2)†pbga1/2 = (b1/2)†ga1/2. Since R(s) ⊆ R(b), it follows that
s = (b1/2)†ga1/2. �

Proof. (of Theorem 3.7) 1. Let a = αua and b = βub be the polar decompositions
of a and b. Observe that α and ua commute so that α1/2 and ua commute, and
the same holds for β and ub. Since b ∈ Oa, there exists g ∈ GL(H) such that
b = gag∗. Therefore, βub = gαuag∗ or βubg

∗−1ua = gα so that β†gα ∈ L(H).
Applying Corollary 3.9, if s = (β1/2)†gα1/2 ∈ L(H) then vbβ

1/2 = svaα1/2g∗,
so that β1/2vb = gα1/2vas∗ and then, vb = svas∗. Since b = gag∗, then N(a) =
g∗N(b), so that there exists u ∈ U(H) such that N(b) = uN(a). Observe that
s = pbspa. Consider s′ = spa + u(1 − pa), then s′ ∈ GL(H) (see Lemma 3.8)
and s′uas′∗ = svas∗pb + u(1 − pa)u∗(1 − pb) = ub. Finally, if s′ = w|s′| is the
polar decomposition of s′, with w unitary, it follows easily that wuaw∗ = ub, or
ub ∈ UOua

.
2. Consider w ∈ U(H) as in the proof of 1. Then w also satisfies that wvaw∗ =

vb. �

Remark 3.10. Consider a, b ∈ L(H)s with positive orthogonal decompositions a =
a1−a2 and b = b1−b2. If b ∈ Oa, it follows from from Theorem 3.7, that pb ∈ UOpa

and pai
∈ UOpai

, i = 1, 2.

When a ∈ L(H)s has closed range, it is possible to give a more accurate
characterization of Oa as show the following results.

Theorem 3.11. Consider a, b ∈ CR(H)s. Then b ∈ Oa if and only if vb ∈ UOva
.
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Proof. If vb ∈ UOva
then there exists u ∈ U(H) such that vb = uvau∗. Then

vb = upa1u
∗ − upa2u

∗ is the p.o.d. of vb, so that pbi = upaiu
∗, for i = 1, 2, and

pb = pb1 + pb2 = upau∗. Then, by Proposition 3.6, b ∈ Oa. The converse follows
by Theorem 3.7. �

For n, m1,m2 ∈ N ∪ {0,∞} such that n + m1 + m2 = dimH, define

An,m1,m2 = {b ∈ CR(H)s : dim N(b) = n, dim R(bi) = mi, i = 1, 2,

where b = b1 − b2 is the p.o.d. of b}.

Proposition 3.12. If a ∈ An,m1,m2 , then Oa = An,m1,m2 .

Proof. Let a = a1 − a2 be the p.o.d. of a. If b ∈ Oa then pb ∈ UOpa and pbi ∈
UOpai

, i = 1, 2, see Remark 3.10. Then, dim N(b) = dim N(a) = n, dim R(bi) =
dim R(ai) = mi, i = 1, 2, so that b ∈ An,m1,m2 .

Conversely, consider b ∈ An,m1,m2 . Then, since H = R(a1)⊕R(a2)⊕N(a) =
R(b1)⊕R(b2)⊕N(b), there exists u ∈ U(H) such that uN(a) = N(b) and uR(ai) =
R(bi), i = 1, 2. If q = upau∗ then q2 = q = q∗ and R(q) = uR(a) = R(b) so that
q = pb. Then pb ∈ UOpa . Similarly, it holds that pbi ∈ UOpai

, i = 1, 2. Then, by
Proposition 3.6, it follows that b ∈ Oa. �

Corollary 3.13. Let Bn,m1,m2 = Is ∩ An,m1,m2 . If v ∈ Bn,m1,m2 , then UOv =
Bn,m1,m2 .

The orbit of a ∈ CR(H)s can also be related to the orbits of the positive and
the negative parts of a.

Proposition 3.14. Let a ∈ CR(H)s with p.o.d. a = a1 − a2, then

Oa = {b1 − b2 : bi ∈ Oai
, i = 1, 2, pb1 + pb2 ∈ UOpa

}.

Proof. Consider b ∈ Oa with p.o.d. b = b1 − b2. By Remark 3.10, it holds that
pb = pb1 + pb2 ∈ UOpa and pbi ∈ UOpai

, i = 1, 2. Then Opbi
= Opai

, for i = 1, 2
so that, by Proposition 3.1, it follows that Oai

= Opai
and Obi

= Opbi
. Therefore

Oai = Obi , i = 1, 2.
Conversely, consider b = b1 − b2 such that bi ∈ Oai

, i = 1, 2, and pb1 + pb2 ∈
UOpa

. Therefore, there exists u ∈ U(H) such that pb1 + pb2 = upau∗, so that pb1 +
pb2 is an orthogonal projection. Then the ranges R(b1) and R(b2) are orthogonal,
so that b = b1 − b2 is the p.o.d. of b. Therefore pb = pb1 + pb2 ∈ UOpa . Since
bi ∈ Oai then pbi ∈ UOpai

. Then, by Proposition 3.6, it follows that b ∈ Oa. �

4. The differential geometry of the orbit of a closed range
selfadjoint operator

The purpose of this section is to study the differential structure of the set Oa,
when a ∈ L(H)s has closed range. Along this section we fix a ∈ CR(H)s with
p.o.d a = a1 − a2 and polar decomposition a = |a|va.
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Consider the following maps

πa : GL(H) → Oa, πa(g) = gag∗ and α : Oa → UOva
, α(b) = vb.

Proposition 4.1. Let a ∈ CR(H)s, then the fibre of va by α is the Thompson
component of a, i.e. α−1({va}) = Ca.

Proof. Consider b ∈ α−1({va}), then b ∈ Oa and vb = va. Therefore b ∈ Ca.
Conversely, if b ∈ Ca then vb = va and so vb ∈ UOva

. Hence, by Theorem 3.11,
b ∈ Oa. Since vb = va and b ∈ Oa, it holds that b ∈ α−1({va}). �

To provide Oa with a structure of differential manifold we need the mapping
πa : GL(H) → Oa, πa(g) = gag∗, to have local cross sections. But this may not
happen if we consider in Oa the topology given by the operator norm, see, for
example, Theorem 3.4 of [7]. Consider the following metric in Oa:

d(b, c) = (‖b− c‖2 + ‖pb − pc‖2)1/2.

Observe that d coincides with the usual metric in each Thompson component.
In [6], this metric was considered on the set CR(H) and it was proved that

the mapping µ : (CR(H), d) → (CR(H), ‖.‖), µ(b) = b† is continuous.

Proposition 4.2. The map α : (Oa, d) → (UOva , ‖.‖), α(b) = vb is continuous.

Proof. The continuity of α follows from the facts that vb = b†|b| and the maps µ :
(CR(H), d) → (Oa, ‖.‖), µ(b) = b† and |.| : (Oa, d) → (L(H)+, ‖.‖) are continuous,
see Theorem 4.2 of [6]. �

Corollary 4.3. The map pi : (Oa, d) → (UOpai
, ‖.‖), pi(b) = pbi is continuous, for

i = 1, 2, where b = b1 − b2 is the p.o.d. of b.

Proof. It holds that p : (Oa, d) → (UOpa , ‖.‖), p(b) = pb = bb† is continuous.
Therefore, by Proposition 4.2, it follows that p1 : (Oa, d) → (UOpa1

, ‖.‖) is con-
tinuous since p1(b) = pb1 = vb+pb

2 . In the same way, p2 is continuous. �

In order to prove the existence of local cross sections of π, we recall the
following result, see [14].

Lemma 4.4. Let p, q ∈ L(H) be orthogonal projections such that ‖p− q‖ < 1 and
consider h = 1− (p− q)2. Then h ∈ GL(H)+ and qh−1/2ph−1/2q = q.

Proof. h ∈ GL(H)+ because ‖p− q‖ < 1. It is easy to see that p and q commute
with h; in fact, hq = qh = qpq. Then p and q also commute with h−1/2 and
qh−1/2ph−1/2q = qpqh−1 = q. �

Theorem 4.5. The map πa : (GL(H), ‖.‖) → (Oa, d), πa(g) = gag∗ is continuous
and it admits continuous local cross sections.



10 Guillermina Fongi and Alejandra Maestripieri

Proof. It holds that pgag∗ depends continuously on g ∈ GL(H), since the orthog-
onal projection onto g(R(a)) is given by the formula

pgag∗ = pg(R(a)) = gpag−1(gpag−1)∗(1− (gpag−1 − (gpag−1)∗)2)−1,

see [1]. Also, gag∗ depends continuously on g ∈ GL(H). Then, it follows that
πa : (GL(H), ‖.‖) → (Oa, d) is continuous.

Let p : (Oa, d) → (UOpa , ‖.‖), p(b) = pb and pi : (Oa, d) → (UOpai
, ‖.‖),

pi(b) = pbi . Since p and pi are continuous there exists δ > 0 such that ||pb− pa|| <
1, ||pbi

− pai
|| < 1, i = 1, 2, if b ∈ Oa and d(b, a) < δ. Consider b ∈ Oa such

that d(b, a) < δ, then g = 1 − (pb − pa)2 ∈ GL(H)+ and gi = 1 − (pbi
− pai

)2 ∈
GL(H)+, i = 1, 2.

Define s(b) = b
1/2
1 g

−1/2
1 (a†1)

1/2−b
1/2
2 g

−1/2
2 (a†2)

1/2 +(1−pb)g−1/2(1−pa). It is
easy to see, applying Lemma 4.4, that s(b)−1 = a

1/2
1 g

−1/2
1 (b†1)

1/2−a
1/2
2 g

−1/2
2 (b†2)

1/2+
(1 − pa)g−1/2(1 − pb) so that s(b) ∈ GL(H). Also, by Lemma 4.4, it follows
that π(s(b)) = b. Then s is a continuous local cross section of π in a neigh-
bourhood of a. If c = gag∗, g ∈ GL(H), consider s′ = lg ◦ s ◦ Lg−1 , where
Lg : CR(H)s → Oa, Lg(b) = gbg∗ and lg : GL(H) → GL(H) is the left mul-
tiplication by g. It follows that s′ is a local section of π in a neighbourhood of
c. �

Observe that from the above proposition, it follows that Oa is open in
(L(H)s, d), so that it is also closed. Denote by Ia the isotropy group of a by
the action L, i.e. Ia = {g ∈ GL(H) : gag∗ = a}.

Corollary 4.6. Consider a ∈ CR(H)s, then the metric space (Oa, d) is homeomor-
phic to the quotient space GL(H)/Ia, where the quotient topology is considered.

It can be proved that Ia is a regular subgroup of GL(H), i.e., Ia is a Banach-
Lie group and (TIa)1 is a closed and complemented subspace of (TGL(H))1. Then
it follows that GL(H)/Ia has a structure of a differential manifold and, by the
above corollary, (Oa, d) is differentiable manifold. It also holds that (GL(H),Oa, πa)
is a principal fibre bundle with structural group Ia, see [15]. Then it is possible
to define a natural connection on Oa which induces the concept of parallel field
along a curve so that the notion of geodesic is defined. Also given X in the tangent
space of Oa on a, there exists a unique geodesic γ ⊆ Oa such that γ(0) = a and
γ̇(0) = X. The details follows as in the positive case, the reader can find them in
[7]. Finally, given b, c ∈ Ca ⊆ Oa, there exists a unique geodesic in Ca joining b
and c, namely, γb,c(t) = |b|1/2{(|b|1/2)†|c|(|b|1/2)†}t|b|1/2va, for t ∈ [0, 1], see [11].

In what follows we show that (Oa,UOva
, α) is a fibre bundle. We first prove

a technical result.

Lemma 4.7. Consider w ∈ Is. There exists 0 < δ < 1 such that if v ∈ Is and
||v−w|| < δ then ||pv−pw|| < 1 and ||pi−qi|| < 1, for i = 1, 2, where v = p1−p2

and w = q1 − q2.
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Proof. Since v → v2 is continuous, there exists δ > 0 such that ‖pv − pw‖ = ‖v2−
w2‖ < 1 if ‖v−w‖ < δ. Consider v ∈ Is with p.o.d. v = p1−p2. Since pv = p1 +p2

and pw = q1+q2, then ‖p1−q1‖ = 1
2‖v−w+pv−pw‖ ≤ 1

2 (‖v−w‖+‖pv−pw‖) < 1
if ‖v − w‖ < δ for δ small enough. Similarly for ‖p2 − q2‖. �

Remark 4.8. Consider a ∈ CR(H)s with polar decomposition a = |a|va. Observe
that Va = {v ∈ Is : ‖v − va‖ < δ} ⊆ UOva , with δ as in Lemma 4.7. In fact, by
Proposition 2.4 and Lemma 4.7, given v ∈ Va it follows that there exist u1, u2, u ∈
U(H) such that pi = uipai

u∗i , for i = 1, 2 and pv = upau∗, where v = p1 − p2. If
w = u1pa1 +u2pa2 +u(1−pa) then it is easy to see that w ∈ U(H) and wvaw∗ = v,
i.e. v ∈ UOva .

Proposition 4.9. For b ∈ Oa let Vb = {v ∈ Is : ‖v − vb‖ < δ} with δ as in Lemma
4.7. Then the d-open set α−1(Vb) is homeomorphic to the product Cb × Vb, where
Cb is the Thompson component of b.

Proof. Consider ei = 1 − (pi − pbi)
2, i = 1, 2 and e = 1 − (pv − pb)2, then ei, e ∈

GL(H)+, i = 1, 2. Define φ(v) = p1e
−1/2
1 pb1 + p2e

−1/2
2 pb2 + (1− pv)e−1/2(1− pb).

Applying Lemma 4.4, it follows that φ(v) ∈ U(H) and φ(v)vbφ(v)∗ = v.

Now define fb : Cb×Vb → α−1(Vb) such that fb(c, v) = φ(v)cφ(v)∗. The map
fb is well define. In fact, since c ∈ Cb ⊆ Ob = Oa then fb(c, v) = φ(v)cφ(v)∗ ∈ Oa.
On the other hand, since c ∈ Cb, φ(v) ∈ U(H) and φ(v)vbφ(v)∗ = v, then fb(c, v) =
φ(v)|c|φ(v)∗v. Therefore, since R(v) = φ(v)R(b) = φ(v)R(c) = R(fb(c, v)), we
get that vfb(c,v) = v. Then ‖vfb(c,v) − vb‖ = ‖v − vb‖ < δ since v ∈ Vb. Hence
fb(c, v) ∈ α−1(Vb).

Consider now h : α−1(Vb) → Cb × Vb such that h(x) = (φ(vx)∗xφ(vx), vx).
The map h is well defined. In fact, given x ∈ α−1(Vb), α(x) = vx ∈ Vb. Also, since
φ(vx)∗vxφ(vx) = vb, it holds that d = φ(vx)∗xφ(vx) = φ(vx)∗|x|φ(vx)vb. Then
vd = vb due to the fact that R(vb) = φ(vx)∗R(x) = R(d). Therefore, d ∈ Cb. Also,
(fb ◦ h)(x) = x and (h ◦ fb)(c, v) = (c, v), due to the fact that vfb(c,v) = v.

Since d(b, c) = (‖b−c‖2+‖pb−pc‖2)1/2 and pfb(c,v) = pv; to see that fb is con-
tinuous is sufficient to prove that (Is, ‖ ‖) → (L(H), ‖ ‖), v → φ(v) is continuous.
But, by Corollary 4.3, the maps (Is, ‖ ‖) → (L(H), ‖ ‖), v → pv and (Is, ‖ ‖) →
(L(H), ‖ ‖), v → pvi

, i = 1, 2 are continuous. Hence fb is continuous. By Proposition
4.2 and Corollary 4.3; it follows that the map (Oa, d) → (UOva

, ‖.‖), x → φ(vx)
is continuous. Hence h is continuous. �

Corollary 4.10. Consider a ∈ CR(H)s then, (Oa,UOva
, α) is a fibre bundle.
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