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In this work a method for mixed-state model motion texture segmentation and parameter estimation is
presented. We use the Expectation Maximization algorithm for mixture parameter estimation, introduc-
ing the Gibbs distribution for moving points, excluding zero discrete component associated with no
motion regions. We use then the a posteriori probabilities to generate an alternative field to segment
the textures according to its statistical parameters.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Image processing is commonly intended to obtain information
that allows to take a decision without any human intervention,
even when dealing with misinterpretations inherent to automated
understanding or classification. When we apply a process to a real
world image or an image sequence it is not always wanted that
automated systems behave as human beings do, but perhaps take
advantage of its precision and integration capabilities to make it
behave better. We are particularly interested in motion textures
obtained from certain sequences of images, which depict not only
spatial but also time-spatial information. Motion textures are char-
acterized by the presence of diffused motion distributed over a
portion of the image. Here the pixel motion value represents a mo-
tion interaction measure of an interacting physical particle. This dif-
fers from the usual understanding of motion in images where each
pixel has associated the velocity measure of the motion of rigid
objects (e.g., car, ball, etc.). The motion textures are also related
to dynamic textures (Doretto et al., 2003a). For a brief survey about
classifications of different kinds of motion see Chetverikov and
Peteri (2005).

Owing to the textured characteristic of the data we use a prob-
abilistic framework. It is then, the first aim of this work to provide
a probabilistic model that characterizes the data with its particular
ll rights reserved.
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complexity and being simple enough to avoid inefficient and
expensive computations. The behaviour of the motion textures is
related to a particular type of random variables taking continuous
and discrete values, i.e. a mixed-state random variable. This can be
seen as a mixture of a probability density function and a discrete
probability mass. This mixed-state nature is present in motion tex-
tures due to the presence of repetitive values e.g., the motion of the
background or large objects. However, the task of distinguishing
between the different properties of these motion textures when
they are diffused, as well as the estimation of the several parame-
ters involved by the model, is still considerably difficult. The mo-
tion textures are a representation of the interaction between
particles, making the Markov Random Fields (MRF) a reasonable
choice for that model (Chandler, 1987). A complete theoretical
analysis about the use of a MRF for mixed-states random variables
(Mixed States-Markov Random Fields) can be found in (Cernuschi-
Fías, 2007 and Crivelli et al., 2007). Some related works on
mixed-state texture segmentation can be found in (Crivelli et al.,
2006b and Crivelli et al., 2006a) (see below). In the recent work
(Crivelli et al., 2010) the conditional KullbackLeibler divergence be-
tween mixed-states distributions was used to introduce a motion
texture tracking strategy. See also Crivelli et al. (2007, 2010) for
additional applications of this model.

The problem of pixel classification previously mentioned, is in
image processing commonly referred to as segmentation. More pre-
cisely, when we talk about image segmentation we refer to the par-
titioning of the image into different regions generally associated to
different objects. The segmentation of textures (not necessarily ob-
tained from motion) is in general more complicated (Doretto et al.,
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2003b) than segmentation of rigid objects images because the
common characteristics we look for in each texture are given as
a statistical relation between points. Moreover, different motion
textures could not be necessarily associated to different objects,
and motion textures do not have to be neither connected nor
piecewise continuous. In addition the same ‘object’ may show very
different local motion characteristics at different places. Recipro-
cally, two different objects may have similar local motion
characteristics.

The problem of motion texture segmentation has been dealt, in
the context of mixed-states random processes, from different ap-
proaches. Different techniques (Crivelli et al., 2007) have also been
applied for segmentation. In (Crivelli et al., 2006a,b) a parametric
mixed model (auto-model Bouthemy et al., 2005) is implemented
and the segmentation is achieved as a maximum a posteriori
(MAP) estimation for the label field of the sites. Whereas in (Crivelli
et al., 2006b) the segmentation was obtained using a graph-cut en-
ergy optimization method. In (Crivelli et al., 2006a) it was carried
out by simulated annealing. Mixed states random fields and motion
textures have also been used (Crivelli et al., 2008) for recognition of
dynamic video and background reconstruction.

Here, we use a parametric probabilistic model to represent the
interactions between the sites in the textures. When we try to car-
ry out the segmentation through the identification of the different
patterns, based on the parameters of the model, we need to previ-
ously estimate those parameters. However, to do a proper estima-
tion of the parameters, we should know to which class each site
belongs, meaning that we need to previously perform the segmen-
tation. Consequently, we fall in a circular problem.

We propose to use the iterative procedure Expectation Maximi-
zation (EM) to deal with the problem of simultaneous segmenta-
tion and parameter estimation. This algorithm was developed by
Dempser et al. (1977) and has been used for dealing with a variety
of problems in topics including: imaging (Fossati et al., 2008), med-
ical imaging (Raheja et al., 1999), language processing (Wen et al.,
2007), machine learning (Bailey and Elkan, 1995), etc.

The strength of the EM relies on the assumption that the samples
are drawn according to a marginal of the joint distribution of the
samples and the hidden variables. Thus, it can be proved (Neal and
Hinton, 1998) that the algorithm aims to minimize the cost of
‘explaining’ the samples set with a wrong hidden variables
distribution.

In this way, together with the proposed probabilistic model for
the motion textures and the EM algorithm we present a method
that achieves the segmentation and the parameter estimation of
these textures, simultaneously. Whereas the previously cited
works (Crivelli et al., 2006a,b, 2007, 2010) deal with complex mod-
els, here we use a simpler model with very intuitive parameters
that allows to focus on the problem of segmentation. In this way,
we replace the computing complexity of assuming non-condi-
tional-independence by adding an agglomerating field to the mod-
el. This makes easier the task of introducing any available a priori
knowledge about the dispersion of the texture, one may have. In
(Liang et al., 1994, Zhang et al., 2001) similar approaches were pre-
sented using EM for segmentation of MRF image models, where the
assumption of piecewise contiguity plays a fundamental role. It
should be strengthened that piecewise contiguity is not usually va-
lid for motion textures and that the method presented here does
not require that condition.
2. Motion measurement texture

A video sequence can be thought as a frame sequence indexed
in time and space. The motion is given by the intensity changes
at each site from one frame to the other. If we measure the inten-
sity variation between frames at each site and build a map with
this information obtain the motion map. This map shows at given
position the influence, not only from the motion of the seen ob-
jects, but also from the intensity gradient at that site and its corre-
sponding variation in time. Therefore, there are several different
ways to build that motion map with different characteristics. Here,
we follow (Crivelli et al., 2006a,b) and also the related previous
work (Bouthemy et al., 2005), where the vectorial expression for
the normal flow as a local motion measurement is considered.
Let Ii(ui, t) is the scalar intensity at the point indexed by i with coor-
dinates ui at a time t. The temporal variation of the intensity for
this pixel must be null according to Horn and Schunck (1981).
Then,

dIiðui; tÞ
dt

¼ @Iiðui; tÞ
@t

þ rui
Iiðui; tÞ;

dui

dt

� �
¼ 0; ð1Þ

where rui
Iiðui; tÞ and dui

dt are the spatial intensity gradient and the
vector velocity at the pixel ui respectively, and where h � , � i denotes
the inner product. From the previous equation, the velocity projec-
tion in the direction of the intensity gradient, is given equivalently
by,

xi ¼
dui

dt
; J i

� �
J i ¼ �

@Iiðui; tÞ
@t

J i; ð2Þ

where the normalized intensity gradient has been defined as,

J i ¼
rui

Iiðui; tÞ
krui

Iiðui; tÞk
: ð3Þ

Taking a weighted average over a small set of pointsW i around the
pixel ui to avoid noisy measurements, we define

~xiðW i; tÞ¼:
P

uj2Wi
xjkruj

Ijðuj; tÞk2P
uj2Wi
kruj

Ijðuj; tÞk2 : ð4Þ

The weights are given by the squared norm of the gradient at each
point, since larger gradients usually give us more information than
smaller ones. Additionally, a constant in the denominator is added
in practice to avoid null gradients (Crivelli et al., 2006a). Therefore,
as the averaged observable velocity is in the direction of the inten-
sity gradient, its expression can be written as,

~xo
i ðW i; tÞ ¼ ~xiðW i; tÞ; J ih i: ð5Þ

As we said before, we are interested in a class of motion character-
istic of large sets of interacting particles, where the motion is homo-
geneous both in time and space. Such is the case of trees or grass
blown by wind (sample sequence I, Fig. 2(a)), steam, smoke, water
running (sample sequence II, Fig. 2(b)), crowds of people, etc.

This motion variety usually does not show a one-to-one corre-
spondence between pixels and the ‘physical particles’, moreover,
we commonly have the interaction of several particles represented
(averaged) by a single pixel.

The motion measure in a pixel can be as diverse as the factors
having influence on it, such as the gradient direction, how the mo-
tion is projected on it or the motion of its neighbors. Hence, the
moving points behave as a random variable with a continuous dis-
tribution showing dependence on its neighbors. On the other hand,
all the no moving points Fig. 1 have null motion value and therefore
they can be associated to a discrete distribution.

2.1. A Gibbs distribution model for the moving points

Once the motion texture has been obtained using (5) from the se-
quence of frames, the resulting field (i.e. the sample set) has to be
segmented without supervision. With this in mind, a probabilistic
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Fig. 1. Typical histogram for the pixel value on motion textures.
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model for the resulting texture is introduced to relate the segmenta-
tion of the texture with the estimation of its parameters.

Let eX be the random field (namely the motion texture) resulting
after applying (5) to the sequence of images, and let X ¼ fX igi¼1���n
be the subset of eX containing the sites that have non-null motion
(moving points). Now, as usual (Besag, 1974) we assume a locally
dependent model for the conditional distribution of the moving
points. Therefore, the conditional density function for a moving
point depends only on its neighborhood,

pX i jXnfX igðxiÞ ¼ pX i jN i
ðxiÞ 8xi 2 X ; ð6Þ

where N i ¼ fX jgj2N i
denotes the subset of X whose points are

neighbors of the moving point X i.
As the purpose is to use a simple model, the estimation of the

parameters for the moving points is done separately from the no
moving points. Otherwise, the strong influence of the discrete mass
(no moving points) would introduce a very strong bias, resulting in
undesirable results, see Appendix. By avoiding the discrete compo-
nent the resulting sample set has as many ‘spatial holes’ as no mov-
ing points there are in the original texture. Lets see how the spatial
information excluded will be filled and how to deal with the mov-
ing points neighboring the ‘holes’. For the sake of clarity, we first
explain the adopted model.

Here we use a Gibbs distributions to write (6) taking in account
the interaction between moving points in the texture,

pXjN ðxijN i; wÞ ¼
1
Zi
� e�Uiðxi jfxjgj2N i

;wÞ
; ð7Þ

where the normalizing factor Zi can be written as,

Zi ¼
X

xi

e
�Ui xi jfxjgj2N i

;w

� �
: ð8Þ

The functions Ui and Zi are usually called energy function and par-
tition function, respectively (Chandler, 1987).

As in (Crivelli et al., 2006a,b) it seems reasonable to suppose
Gaussianity for conditional densities. Then, we simplify the analy-
sis by writing,

UiðxiÞ ¼
XM

m¼1

f 2
m xi; xmðN iÞð Þ � gm xmðN iÞð Þ; ð9Þ

where fm and gm are two functions related to the neighbors of xi, and
some parameters w to be described below, and fm is also a function
of xi. Note that m is indexing the M possible vectors fxmðN iÞgm¼1���M
whose elements are neighbors of xi. Here, for the sake of simplicity,
gm will be a positive function and fm will be a linear function of xi

and its neighbors depicted by the vector xmðN iÞ.
We suppose that there are more than one texture class, mean-

ing that each point can follow different distributions. This property
is denoted by xi 2Xj where Xj is a motion texture class. Then from
(7) and (9), assuming functional independence between classes for
the parameters wj, we can write the conditional density for xi, gi-
ven that belongs to the texture class Xj,

pXjN xijN i; xi 2 Xj;wj

� �
¼
YM
m¼1

e�
1
2f 2

m xi ;xmðN iÞ;wjð Þgm xmðN iÞ;wjð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

gm xmðN iÞ;wjð Þ
q : ð10Þ

Here, we propose the following specific model because it is accurate
enough for the data we are dealing with, and it is simple and flex-
ible with respect to we need to do,

pXjN xijN i; xi 2 Xj;wj

� �
¼
Y

m2Mi

ffiffiffiffiffiffiffiffi
gm;j

2p

r
e�

1
2 xi�xT

m �am;jð Þ2gm;j : ð11Þ

Thus, each vector am,j relates the influence of each neighbor-group
on the mean of the distribution for xi, depending on the neighbor-
group index m and the texture class j. Since gm,j is considered here
as a constant for each pair m, j it can be placed into the parameter
set wj as well as am,j.

A pseudo-likelihood approximation is used to estimate the
parameters of the model as the interaction between the neighbors
prevents us from writing the true likelihood in a convenient man-
ner. It would be also possible to separate the points and neighbors
into two disjoint sets and then write the true likelihood as the
product of the conditional probabilities, however this would result
in a loss of precision on the estimation owing to the loss of sample
data. A discussion about this problem can be found in (Besag, 1974,
1975, where it is proposed to write the pseudo-likelihood for the
texture under the assumption of conditionally independent sam-
ples. Under this assumption we can now write the pseudo-likeli-
hood approximation of the likelihood for any subset of points
belonging to the class Xj as,

p AjN A;A � Xj; wj

� �
¼
Y
xi2A

pXjN xijN i; xi 2 Xj; wj

� �
: ð12Þ

Hence, considering xi 2Xj as a hidden variable,
we would be able to apply the EM algorithm for segmentation

and parameter estimation if we were able to assume piecewise
contiguity (similar to Liang et al., 1994). However, as we are not
taking into account the no moving points for the estimation, wide
empty spaces between little moving regions are allowed.

Even when it can be thought that this represents a minor prob-
lem, the disintegration of the regions may result in a poor estima-
tion of the parameters. Then, using small neighborhoods (with a
few parameters) results insufficient to distinguish between similar
textures. On the other hand, by using a strategy that increases the
neighborhood size as much as necessary, the result becomes tex-
ture-dependent, because for more spaced moving regions bigger
neighborhoods would be necessary. We solve this problem by
introducing a new field Zjjfxi 2 Xj;ig8xi2eX representing the

smoothed or diffused a posteriori probability for the region belong-
ing to each texture class. Therefore propose the following model,

pXZjN xi; zijN i; xi 2 Xj
� �

¼ pXjN xijN i; xi 2 Xj
� �

� pZðzijxi 2 XjÞ; ð13Þ

where pXjN is as in (11) and pZ follows a beta distribution, that is,

pZðzijxi 2 XjÞ ¼
za�1

i � ð1� ziÞb�1

Bða;bÞ : ð14Þ

The parameter b must be equal to one and a grater than one in
order to make pZ an increasing function of zi given xi 2Xj. We then
obtain a reasonable model where, given that xi 2Xj, the variable Z
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is more probably to be close to one. Thus Z ¼ fZi ¼ ½Zi;1 � � � Zi;c�Tg is
a vector field where each Zi has c components for c motion texture
classes, and the sum over the components is one.

3. Using Expectation Maximization for segmentation and
parameter estimation

As said before, we propose to use the EM algorithm (Dempser
et al., 1977; Xu and Jordan, 1996) to segment and estimate the
parameters for (10) assuming c classes of textures. Given a sample
set, the EM algorithm assumes that it follows a marginal distribu-
tion of a joint distribution of the samples and hidden variables.
Where the hidden (or unknown) variables are related to the sam-
ples that ‘cannot be sampled’. As can be seen in (Neal and Hinton,
1998), the EM algorithm can be thought as a method to minimize
the cost of ‘understanding’ the sample set with a wrong assump-
tion over the distribution of the hidden random variables, i.e. the
cross-entropy of the joint samples-hidden variables. In this work
we want to ‘understand’ the texture sample set given by model,
finding as well as possible, the class assignation for the sites (the
segmentation).

Therefore, EM seems a reasonable method for improving itera-
tively the estimation of the parameters of the model, and at the
same time improve the segmentation.

The class estimation problem (or segmentation) over the tex-
ture sample set, can be seen as a mixture distribution with param-
eter px2Xc

for x. With this in mind, from the previous section, the
parameters of the model are,

w¼ fam;1; . . . ;am;c; gm;1; . . . ;gm;cgm¼f1���Mg; px2X1
; . . . ;px2Xc

;a1; . . . ;ac

n o
ð15Þ

From the standard EM theory we obtain the following expression to
maximize with respect to w for the mixture distribution parameter
estimation (Duda et al., 2000),

Qðw;/Þ ¼
XN

k¼1

Xc

j¼1

p xk 2 Xjjxk; zk; /j

� �
� ln pXZjN ðxk; zkjN k; xk 2 Xj;/j; wjÞ � px2Xj

� �
; ð16Þ

and the additional constraint,Xc

j¼1

px2Xj
¼ 1 8x 2 X : ð17Þ

The parameter set / is fixed from the previous EM iteration.
Therefore, by maximizing (16) using Lagrange multipliers we

obtain closed expressions for both am, gm and also probability
px2Xj

for a site i to belong to a class labeled j. This results in,
Fig. 2. Images from two different vid
am;i ¼
PN

k¼1pðxk 2 Xijxk; zk; /Þ � xk � xm;kPN
k¼1pðxk 2 Xijxk; zk; /Þ � xm;kxT

m;k

;

gm;i ¼
PN

k¼1pðxk 2 Xijxk; zk; /ÞPN
k¼1pðxk 2 Xijxk; zk; /Þf 2

mðxk;aiÞ
;

ai ¼ max
�
PN

k¼1pðxk 2 Xijxk; zk; /ÞPN
k¼1pðxk 2 Xijxk; zk; /Þ lnðzkÞ

;1

( )
;

px2Xi
¼ 1

N

XN

k¼1
pðxk 2 Xijxk; zk; /Þ;

where p(xk 2Xijxk,zk;/) is calculated using (13). Here, xm;k ¼ xmðN kÞ
in order to simplify the notation. It should be noted that there is a
constraint over ai for the purpose of making beta an increasing func-
tion over the interval zk 2 [0,1], this is a P 1. For faster convergence
we can constrain ai to be greater than two, obtaining a beta function
which is increasing and also concave.

After each EM iteration new parameters estimation are ob-
tained. With these parameters we can calculate the new a posteri-
ori probabilities for each site and for each class. Then, the Z field is
obtained from the smoothing of the estimation of this a posteriori
probabilities, behaving as a cohesive parameter for each algorithm
iteration. This procedure allows to calculate the segmentation over
the whole set of samples eX , as it is explained in the next section.
Note that although a more complex model could be used for Z,
as the no-moving points may not have statistical properties to take
advantage, it would be unlikely to gain benefits in the estimation
process. Moreover, the computation of Z on each step would be
considerably more complex.

3.1. Segmentation and estimation problem

As has been noticed, the idea behind applying the EM algorithm
is not only to achieve the parameter estimation but also to obtain
the a posteriori probabilities, i.e. p(xk 2Xijxk,zk;/). These can be
interpreted as a measure of the degree of membership to the ith
motion textures class for the kth site. With this in mind we can
use the a posteriori probabilities to make a pre-segmentation of
the motion texture, generating a statistical similarity map from
which we can obtain information for the segmentation step.

In conventional intensity textures we usually have several large
almost-stationary connected regions, for example, the still images
Fig. 2(a) and (b). However, when we deal motion textures we have
a very dispersed texture among a large quantity of zeroes (no mov-
ing points). This can be noticed in Fig. 3(a) and (b) and is high-
lighted in Figs. 4(b) and 5(b). This means that we have an
important amount of moving points having no-moving neighbors.
In practice this would disturb the model (11) behavior and would
eo sequences used for the tests.
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also ill-pose many single-step agglomeration terms that usually
work well with intensity textures segmentation This happens as
the no moving points belonging to the neighborhood of a site have
very different statistics to the rest of the moving points (see Appen-
dix). We handled this problem by removing this points from the
estimation step. In practice, when the moving points are very dis-
persed and an eight neighbors scheme is used, too many points
are lost in the assumption of a set without no-moving points nor
no-moving neighbors. Then, accepting points that have no-moving
points as, at most half of its neighbors, shows satisfactory results
in most of the cases.

As the whole texture needs to be segmented, the segmentation
cannot be accomplished from p(xk 2Xij/) as it would be expected,
since it is not defined on the no-moving points. Instead, it is ob-
tained by thresholding the resulting (smooth) Z field. This can be
seen in Figs. 4(a) and 5(a).
Fig. 3. The a posteriori probability map for 20 iterations of the algorithm. In (a) the Left Tr
(b) the River, the Bushes and no motion pixels are classified as white, gray and black, res

Fig. 4. Final segmentation for the sequence ‘two trees being blown by the wind’ (Fig.

Fig. 5. Final segmentation (a) for the sequence ‘river running and bushes moved by the
supervision.)
4. Experimental results

In practice noisy measurements are obtained if some trunca-
tions are not applied in the calculation of (5) (see Fig. 1). This
may produce an unexpected behaviour of the EM algorithm, ap-
plied to the model (11), when an independent term is added to
fm, i.e., xm ¼ 1; x1

m; . . . ; xl
m

	 

. Then, we assume no global motion is

present and so xm ¼ x1
m; . . . ; xl

m

	 

. This does not imply an important

loss of generality as there exist many techniques for its estimation
and removal, see (Wang and Wang, 1997) for example.

For the initialization of the EM algorithm p(xk 2Xijxk) was ini-
tialized randomly according to a zero-one uniform distribution,
and normalized to meet

P
ipðxk 2 XijxkÞ ¼ 1. This choice may result

in a slow speed of convergence of the algorithm, however, the ini-
tialization of / requires previous knowledge of the parameters,
owing to the wide possible values depending on the texture and
ee(I) pixels are classified as white, the Right Tree(I) as gray, and no motion as black. In
pectively.

2(a), done exclusively from its motion texture field and without any supervision.)

wind’ (Fig. 2(b). It is done exclusively from its motion texture field and without any



Table 1
Parameters aj,m for the sequences I and II.

Class a1 a2 a3 a4

Left Tree (I) 1.0244 0.9936 1.0853 0.9482
Right Tree (I) 0.6780 0.6736 0.6428 0.5982
River (II) 0.3497 0.3320 0.7883 0.7994
Bushes (II) 0.4727 0.4598 0.5585 0.5301

Class a5 a6 a7 a8

Left Tree (I) 0.8903 1.0323 1.0078 0.9256
Right Tree (I) 0.4682 0.5045 0.5411 0.5052
River (II) 0.3229 0.3269 0.3153 0.3417
Bushes (II) 0.2358 0.2714 0.3741 0.3657

Table 2
Parameters gj,m for the sequences I and II.

Class g1 g2 g3 g4

Left Tree (I) 32.5273 33.0725 28.4778 26.9319
Right Tree (I) 2.9366 2.8623 2.6966 2.5016
River (II) 1.3120 1.3010 2.7194 2.7698
Bushes (II) 3.9437 3.8928 4.3543 4.2087

Class g5 g6 g7 g8

Left Tree (I) 8.3550 8.7467 10.2006 10.1727
Right Tree (I) 2.0646 2.1481 2.2278 2.1600
River (II) 1.2838 1.2835 1.2790 1.2935
Bushes (II) 3.2847 3.3337 3.5282 3.5225

Table 3
Priors and a for the sequences I (estimated a) and II (fixed a)

Class a px2X

Left Tree (I) 1.3245 0.4093
Right Tree (I) 1.3469 0.5907
River (II) 6 0.6743
Bushes (II) 6 0.3257
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model. Moreover, a wrong initialization of / usually becomes into
undesirable results.

As can be seen in Fig. 3(a) and (b), if the segmentation is per-
formed directly from the a posteriori probability map, it would
arise the problem of the missing information of the no-moving
points. If an agglomerating field is not included, reaching satisfac-
tory results just from the parameter estimation would turn out to
be almost impossible.
Fig. 6. A synthetic two-class texture of 200 � 400 pixels generated according to the mode
distributed randomly as small blobs. In (a), (b) and (c) are shown the pattern used for the m
zeroes are superimposed to the segmentation to show their relation with the misclassifi
Here we used an eight neighbors scheme numbered from one
to eight as: north, south, west, east, south–east, north–west,
south–west and north-east respectively. Then, from the estimated
parameters and the segmentation the following can be observed.
On River(II) from Tables 1 and 2 it can be noticed that the points
are more correlated (higher aj,m and gj,m) to its horizontal neigh-
bors. On Left Tree(I) higher values of the first four components of
g indicate that an even motion is being observed. Some erroneous
class assignment can be observed on the segmentation, in the
top-left quadrant of Fig. 4(a) and in the top-right quadrant of
Fig. 5(a), due to the fact that not much information available in
the regions with not much motion (highlighted in Figs. 4(b) and
5(b)).

To make a comparison, we can see that similar segmentation re-
sults are achieved in (Crivelli et al., 2006b) for the sequence (I),
were the segmentation is obtained using a different model
(mixed-state auto-model) and the MAP optimization is done
through a graphical method (graph-cut). It should be noticed that
the model used here is much simpler than the one used in (Crivelli
et al., 2006b).

The method shows a weakness when a texture is too dispersed
i.e., has large zero regions with very little neighborhoods with mo-
tion. In this case the best experimental results have been achieved
forcing a to be between 5 and 7 (see Table 3). For these values of a,
the beta distribution is concave enough to make the better samples
(those samples which have more certainty) to have more weight
during the estimations. Then the ‘‘class frontier’’ on Z between re-
gions is more defined and convergence is faster, see Fig. 3(b) and
Fig. 5(a).

However, fixing the parameter a has to be done with care be-
cause too much sharpened beta distributions may cause the first
guess to be strong enough to avoid proper a priori probabilities esti-
mation. For the first iteration it seems convenient to make a close
to one in order to let the X field lead the EM to early convergence.
For some motion textures, having primarily zeroes with little mo-
tion regions, the resolution used for the measurements becomes
important owing to the significance of the neighborhood informa-
tion related to each moving point.

In the example shown in Fig. 6, a texture was generated syn-
thetically using a Metropolis sampler (Geman et al., 1984; Metrop-
olis et al., 1953). The parameters that maximize the likelihood for
each texture are given in Table 4(a). For the synthesis and the esti-
mation, a four neighbors model (N–S–E–W) was used. Two classes
of textures were generated and combined (see Fig. 6(a)) to form the
200 � 400 two-class texture Fig. 6(b). Then, near 23000 (�30%) of
l given in (7) with parameters given in Table 4(a). About 30% of the samples are zero,
ixture, the resulting texture and the resulting segmentation, respectively. In (d) the

ed sites.



Table 4
In (a) the ML parameters for each textures class are given, and in (b) the parameters
estimated simultaneously with the segmentation are shown in Fig. 6(c).

a1 a2 g1 g2 p

(a) Parameters of each texture class
Class1 0.49 0.12 2.23 0.27 0.5
Class1 0.49 0.11 1.97 0.40 0.54

(b) Resulting estimated parameters
Class2 0.5 0.5 3.18 3.18 0.5
Class2 0.50 0.50 1.85 1.78 0.45

Table A.5
Discrete component in a simple example. A N = 10000 sample
vector is generated according to parameters form (a) and then
about 500 samples are set as zero. In (b) the parameters used in
Table A.6 are shown.

Class1 Class2

(a) Parameters used in sample generation N = 1e + 4
l �1 1
r 0.5 0.2
a 0.2 0.2
p 0.5 0.5
xk ? 0 �500

(b) Some parameters that increases the likelihood
l 0 0
r 1e�20 1.2
a 0.2 0.2
p 0.4 0.6

Table A.6
Discrete component in a simple example.

Parameters used Log-likelihood
original sample

Log-likelihood
modified sample

Table A.5(a) �209 �1200

Table A.5(b) �6000 +15000
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the pixels were set to zero. In order to be more realistic the zeroes
were introduced as 1000 blobs of random size, in such a way that
the average blob size is 5 � 5 pixels. The estimation converged in
approximately 20 iterations reaching the segmentation shown in
Fig. 6(c) with parameters given in Table 4(b). Some differences ap-
pear in the gk parameters but it is not large if they are seen in terms
Fig. A.7. A sample vector of N = 10000 points is generated according to the causal mo
randomly as bursts. In Fig. A.7(a) the modified histogram is shown and the class2 ML-es
of the standard deviation (i.e. for the class2

ffiffiffiffi
1

ĝ1

q
¼ 0:56 vs. 0.73). In

(d) the zeroes are superimposed to the final segmentation to show
the effect of large zero regions. As the algorithm does not have a
global view of the texture shape, some regions with large quantity
of zeroes, mainly in the boundaries between textures, may be mis-
classified as they may belong to any of the classes.

5. Conclusion

We have explained briefly the motion texture measurement
and its mixed-state nature. Then, we proceeded to suggest a model
that allows the parameter estimation with simultaneous segmen-
tation through using EM-based algorithm. Because a classic ap-
proach (12) does not work owing to the mixed nature of the
textures, we have introduced a new field(13) taking advantage of
the EM functional structure. We also proposed an easy way for a
problem-independent initialization of the algorithm.
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Appendix A. The discrete component effect in a simple example

Here, the effect of a discrete component in the sample distribu-
tion is shown for the ML estimation of a simple model. A one-
dimensional causal model is used for this illustrative example,
avoiding the need to estimate the likelihood, since it can be calcu-
lated exactly for any given sample set.

The following distribution gives the dependence of each sample
from the previous sample,

p xkjxk�1; fa;l;rgð Þ ¼ e�
1
2

xk�axk�1�l
rð Þ2ffiffiffiffiffiffiffi

2p
p

r
: ðA:1Þ

Then the mixture for the typical two-classes problem is,

pðxkjxk�1Þ ¼ p1p xkjxk�1;w1ð Þ þ ð1� p1Þp xkjxk�1;w2ð Þ; ðA:2Þ

where the parameter vectors, wj = {aj,lj,rj}, are as usual. Then,
assuming p(x0) known, the likelihood for the sample set can be
written as,
del (A.2) with parameters given in Table A.5(a). About 500 zeroes are introduced
timated has been overlapped.



A. Mailing, B. Cernuschi-Frías / Pattern Recognition Letters 32 (2011) 1982–1989 1989
pðXÞ ¼ pðx0Þ
YN

k¼1

pðxkjxk�1Þ ðA:3Þ

In this way, though different, the model can be thought as a simpler
case of the model proposed in Section 2.1.

Next, a sample set is drawn according to (A.2) using the param-
eters given in Table A.5(a), and then, some samples (we used about
5% but could be less) are changed to zero. This is done randomly, in
such a way that some of them appear consecutively. So that, some
little neighborhoods of zero-valued samples play the role of no-
moving points in the textures, as they usually do not appear iso-
lated. This example, is intended to give an insight of the problem
that the discrete component causes in the ML-estimation. With
this in mind, given that K samples are zero-valued and l1 = 0, it
is easy to show that the log-likelihood becomes, (see Table A.6)

lðw1;w2Þ �
X

xk ;xk�1 – 0

log pðxkjxk�1Þ

þ
X

xk¼xk�1¼0

log
p1ffiffiffiffiffiffiffi

2p
p

r1
þ ð1� p1Þpð0j0;w2Þ

� �
ðA:4Þ

�
X

xk ;xk�1 – 0

log pðxkjxk�1Þ � K logr1; ðA:5Þ

for r1 sufficiently small. Thus, by choosing w2 such that the summa-
tion of logp(xkjxk�1) is not too small, we can make �Klogr1 to be as
large as we want (see Fig. A.7(b)).
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