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Abstract

Given a linear bounded selfadjoint operator a on a complex separa-
ble Hilbert space H, we study the decompositions of a as a difference of
two positive operators whose ranges satisfy an angle condition. These de-
compositions are related to the canonical decompositions of the indefinite
metric space (H, 〈 , 〉a), associated to a. As an application, we characterize
the orbit of congruence of a in terms of its positive decompositions.
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1 Introduction

Consider L(H) the algebra of linear bounded operators of a complex separable
Hilbert space H. Denote by GL(H) the group of invertible operators of L(H).
It is well known that a selfadjoint operator a ∈ L(H) can be written as a
difference of two positive operators with orthogonal ranges and these operators
are uniquely determined by a. The main purpose of this article is to study
alternative decompositions of a selfadjoint operator a as a difference of two
positive operators whose ranges are not necessarily orthogonal, but satisfy an
angle condition.
On the other hand, each selfadjoint operator a defines an indefinite inner product
on H, given by

〈x, y〉a = 〈ax, y〉, for x, y ∈ H.

If a is also invertible, then (H, 〈 , 〉a) is a Krein space and the canonical de-
compositions of this space, as a direct orthogonal sum of an a-positive and
an a-negative subspaces are described, for example, in the classical books by
J. Bognar [3] and T. Ya. Azizov and I.S. Iokhvidov [2]. More generally, for
any selfadjoint operator a ∈ L(H), every canonical decomposition of (H, 〈 , 〉a)
(in this case, as the sum of three subspaces, an a-positive, an a-negative and the
nullspace of a), determines an a-selfadjoint oblique projection with a-nonnegative
range and a-nonpositive nullspace, or equivalently, an a-positive reflection. We
study the relationship between the positive decompositions of a and the canon-
ical decompositions of the indefinite inner product space (H, 〈 , 〉a). We prove
that there is a one to one correspondence between the positive decompositions
of a and the a-positive reflections, when a is injective.
As an application, we study the orbit of congruence of a selfadjoint operator
a, i.e., the set Oa = {gag∗ : g ∈ GL(H)}. If a has closed range, it is possible
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to provide Oa with a structure of differentiable manifold; see [7], [5] and [11].
Moreover, it holds that (GL(H),Oa, πa) is a fibre bundle, where πa(g) = gag∗,
for g ∈ GL(H). In this paper we characterize the orbit of a in terms of the
positive decompositions of a. When a has closed range, we show that the set
of positive decompositions of a is parametrized by the elements of the isotropy
group of a, i.e., the set Ia = {g ∈ GL(H) : gag∗ = a}.

The article is organized as follows: Section 2 contains some basic results about
angles between closed subspaces and a brief survey about equivalence and con-
gruence of operators. In Section 3, we collect some definitions and properties of
the indefinite metric space (H, 〈 , 〉a), for a selfadjoint operator a. Section 4 is
devoted to study decompositions of a selfadjoint operator a as a difference of two
positive operator such that the minimal angle of their ranges is positive. Any
of these decompositions will be called a positive decomposition. We relate the
positive decompositions of a to the canonical decompositions of the indefinite
metric space (H, 〈, 〉a). More precisely, we prove that given a positive decompo-
sition of a, there is an associated a-positive reflection. Conversely, an a-positive
reflection determines a positive decomposition of a. If a is injective, we show
that there is a bijection between the positive decompositions of a and the set
of a-selfadjoint projections with a-positive range and a-negative nullspace. We
prove that every positive decomposition of a induces a “pseudo polar decom-
position” of a: i.e. a factorization of a as a = αw, where α is positive and w
is an (a-positive) reflection. If a = ua|a| is the polar decomposition of a, the
a-positive reflections w are those of the form w = uad, where d is |a|-positive (in
fact, this turns out to be the polar decomposition of w in the space (H, 〈, 〉|a|)).
Finally, if a is injective, given two canonical decompositions of (H, 〈, 〉a), we
prove that the a-positive subspaces and the a-negative subspaces have the same
dimension, respectively. In the last section, we characterize the set of congru-
ence of a fixed selfadjoint operator a. It is known that two positive operators
are congruent if and only if their ranges are unitarily equivalent. We generalize
this fact for selfadjoint operators, by means of their positive decompositions.
Also, if a = a1 − a2 is the positive orthogonal decomposition of a and g ∈ Ia,
it holds that a = ga1g

∗ − ga2g
∗ is a positive decomposition of a. When a has

closed range, we show that all the positive decompositions of a can be written
as a = ga1g

∗ − ga2g
∗, for some g ∈ Ia.

2 Preliminaries

Let L(H) be the algebra of linear bounded operators of a complex separable
Hilbert space H, GL(H) the group of invertible operators of L(H) and U the
subgroup of GL(H) of unitary operators. Denote by L(H)s the set of selfadjoint
operators and L(H)+ the cone of positive operators. An operator v ∈ L(H) is
a reflection if v = v−1 and v is symmetry if it is a selfadjoint reflection.
Given M and N two closed subspaces of H, then M+̇N denotes the direct
sum of M and N , and M⊕N the orthogonal sum. If M+̇N = H, we denote
by pM//N the oblique projection with range M and nullspace N and pM =
pM//M⊥ . Let Q = {q ∈ L(H), q2 = q} be the set of oblique projections. For
every a ∈ L(H), R(a) denotes the range of a, N(a) its nullspace and pa = p

R(a)
.
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If a ∈ L(H), we fix the following polar decomposition of a: a = va|a| where
|a| = (a∗a)1/2 is positive and va is a partial isometry from N(a)⊥ onto R(a)
with nullspace N(va) = N(a). If a is selfadjoint, the isometric part of the polar
decomposition can be defined to obtain a symmetry: in this case R(a)⊥ = N(a)
so that ua = va + pN(a) is a symmetry and a = ua|a| = |a|ua.

The following result due to R. G. Douglas [9], characterizes the operator ranges
inclusion:

Theorem 2.1 Consider a, b ∈ L(H). Then R(a) ⊆ R(b) if and only if a = bc,
for some c ∈ L(H).

Given M and N two closed subspaces of H, the angle or Friedrichs angle be-
tween M and N is the angle α(M,N ) ∈ [0, π/2] whose cosine is given by

c(M,N ) = sup{|〈x, y〉| : x ∈M∩(M∩N )⊥, ‖x‖ ≤ 1, y ∈ N∩(M∩N )⊥, ‖y‖ ≤ 1}.

The minimal angle or Dixmier angle betweenM andN is the angle α0(M,N ) ∈
[0, π/2] whose cosine is given by

c0(M,N ) = sup{|〈x, y〉| : x ∈M, ‖x‖ ≤ 1, x ∈ N , ‖y‖ ≤ 1}.

Observe that 0 ≤ c(M,N ) ≤ c0(M,N ) ≤ 1.
The next results about angles can be found in [8]:

Theorem 2.2 The following statements are equivalent:

1. c0(M,N ) < 1,

2. M∩N = {0} and M+N is closed.

Theorem 2.3 The following statements are equivalent:

1. c(M,N ) < 1,

2. M+N is closed,

3. M⊥ +N⊥ is closed.

Two operator ranges R and S are similar if there exists g ∈ GL(H) such that
R = g(S) and unitarily equivalent if g can be taken to be unitary. Operator
ranges are similar if and only if they are unitarily equivalent.
The operators a, b ∈ L(H) are equivalent if there exist g, f ∈ GL(H) such that
b = gaf ; the operators a and b are congruent if there exists g ∈ GL(H) such
that b = gag∗.

Proposition 2.4 Normal operators are equivalent if and only if their ranges
are unitarily equivalent.

Proposition 2.5 Let a, b ∈ L(H)+, then a and b are equivalent if and only if
a and b are congruent.

See [10] for the proofs of these facts.
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3 The indefinite metric associated to a selfad-
joint operator

Along this paper, we consider a fixed a ∈ L(H)s and the indefinite metric on H
induced by a, given by

〈x, y〉a = 〈ax, y〉, x, y ∈ H.

In the following paragraphs, we recall some notions of indefinite inner product
spaces. We refer to the classical books of J. Bognar [3] and T.Ya. Azizov and
I. S. Iokhvidov [2], for all basic facts of indefinite inner product spaces.
An element x ∈ H is a-positive, a-negative or a-neutral, respect to the indefinite
metric 〈 , 〉a, if 〈x, x〉a > 0, 〈x, x〉a < 0 or 〈x, x〉a = 0 respectively. The element x
is called a-nonnegative (respectively a-nonpositive), if x is a-positive or a-neutral
(respectively a-negative or a-neutral). A subspace S of H is called a-positive,
a-negative or a-neutral if each non zero element of S is a-positive, a-negative or
a-neutral, respectively.

Given c ∈ L(H), an operator d ∈ L(H) is an a-adjoint of c if 〈cx, y〉a = 〈x, dy〉a
for all x, y ∈ H; or equivalently ac = d∗a. Observe that an operator c may admit
many, only one or no a-adjoint, depending on whether the equation c∗a = ah
has many, only one or no solution, respectively. By Douglas’ Theorem, this
equation has a solution if and only if R(c∗a) ⊆ R(a). The operator c ∈ L(H)
is a-selfadjoint if ac = c∗a and it is a-positive if 〈cx, x〉a ≥ 0 for all x ∈ H, or
equivalently, ac ∈ L(H)+.
The operator c is an a-expansion (respectively, a-contraction) if 〈cx, cx〉a ≥〈x, x〉a
(respectively, 〈cx, cx〉a ≤ 〈x, x〉a); or equivalently c∗ac ≥ a (respectively, c∗ac ≤
a).

Given x, y ∈ H, then x and y are a-orthogonal if 〈x, y〉a = 0. In this case, we
write x ⊥a y. Given a subspace S of H, the a-orthogonal subspace of S respect
to the indefinite metric is the set

S⊥a = {x ∈ H : 〈x, y〉a = 0, ∀y ∈ S}.

It is easy to see that S⊥a = a−1(S⊥) = a(S)⊥. Observe that S ∩ S⊥a is not
necessarily zero. If S1,S2 ⊆ S, then S1 ⊕a S2 = S denotes S1 + S2 = S,
S1 ∩ S2 = {0} and 〈x, y〉a = 0 for all x ∈ S1, y ∈ S2.
Observe that if q ∈ Q, then q is a-selfadjoint if and only if R(q) and N(q) are
a-orthogonal.

A canonical decomposition of (H, 〈 , 〉a) is a decomposition of H as a direct sum

H = N(a)⊕a S+ ⊕a S−, (1)

where S+ is an a-positive closed subspace of H and S− is an a-negative closed
subspace ofH. In particular, if a ∈ L(H)s is injective, a canonical decomposition
of H is a decomposition of H as a direct sum H = S⊕aS⊥a , where S is a closed
subspace of H such that S is a-positive and S⊥a is a-negative. In this case, each
canonical decomposition defines the projection q = PS//S⊥a , or equivalently, the
reflection w = 2q − 1. Observe that q is a-selfadjoint, R(q) = S is a-positive
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and N(q) = S⊥a is a-negative. Conversely, every q ∈ Q, a-selfadjoint, such that
R(q) is a-positive and N(q) is a-negative, defines a canonical decomposition of
(H, 〈 , 〉a).
S. Hassi and K. Nörstrom proved that given q ∈ Q, q is an a-expansion (a-
contraction) if and only if q is a-selfadjoint and N(q) is a-nonpositive (a-
nonnegative); [13, Proposition 5].
The following lemma characterizes those reflections associated to canonical de-
compositions; [15, Lemma 5.6]:

Lemma 3.1 Let q ∈ Q. Then, q is a-selfadjoint, R(q) is a-nonnegative and
N(q) is a-nonpositive if and only if the reflection w = 2q − 1 is a-positive.

Proof. If q is an a-selfadjoint projection then aq = q∗aq, so that if w = 2q − 1
and x ∈ H,

〈wx, x 〉a = 〈 qx, qx 〉a − 〈 (1− q)x, (1− q)x 〉a ≥ 0, (2)

because R(q) is a-nonnegative and N(q) is a-nonpositive. Thus, w is a-positive.
Conversely, if w is a-positive then w is a-selfadjoint. Therefore, q = w+1

2 is
a-selfadjoint. By (2), if x ∈ R(q), then 〈 qx, qx 〉a = 〈wx, x 〉a ≥ 0; so that R(q)
is a-nonnegative. In a similar way, N(q) is a-nonpositive.

When a is positive, the indefinite form 〈 , 〉a defines a semi-inner product on H,
and the associated semi-norm, ‖ ‖a, is given by

‖x‖a = 〈x, x〉1/2
a = ‖a1/2x‖, x ∈ H.

The quotient space (H/N(a), ‖| |‖a) is a normed space, where ‖| |‖a is the
associated quotient norm and ‖|x|‖a = ‖x‖a, where x = x+N(a), x ∈ H. Since
(H/N(a), ‖| |‖a) is not necessarily complete, denote by Ha the completion of
(H/N(a), ‖| |‖a). Denote by Π : H → Ha the quotient map. In the context of
[4], the pair (Ha,Π) is called a Hilbert space induced by a.
In particular, if a is injective, the indefinite form 〈 , 〉a defines an inner product
on H. In particular, if a ∈ GL(H)+, then (H, 〈 , 〉a) is a Hilbert space and the
norms ‖ ‖ and ‖ ‖a are equivalent.

Remark 3.2 The operator c ∈ L(H) admits an |a|-adjoint if and only if c
admits an a-adjoint. In fact, |a|c = f |a| if and only if ac = uaf |a| = uafuaa,
where f ∈ L(H).

For c ∈ L(H), such that c admits an a-adjoint, define c the associated operator
to c on H/N(a) by cx̄ = cx. Observe that c is well defined: if x, y ∈ x, then
cx = cy, or equivalently, if x − y ∈ N(a) then c(x − y) ∈ N(a). In fact, since
ac = d∗a for some d ∈ L(H), then c(N(a)) ⊆ N(a).

Proposition 3.3 If c ∈ L(H) admits an a-adjoint, then c, the associated op-
erator on H/N(a), is well defined and admits a unique bounded extension to
H|a|.

Proof. Since c admits an a-adjoint, then by Remark 3.2, c admits an |a|-adjoint.
As we prove above, in this case, c is well defined on H/N(a). From |a|c =
uad
∗ua|a| and [14, Theorem 5.1], there exists h ∈ L(H) such that |a|1/2c =
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h|a|1/2. Since ‖|cx̄‖||a| = ‖cx‖|a| = ‖|a|1/2cx‖ = ‖h|a|1/2x‖ ≤ ‖h‖‖|x‖||a| and
H/N(a) is dense in H|a|, then c admits a unique bounded extension to H|a|.

The above result is similar to [4, Theorem 3.1]. See also [1, Proposition 1.2].

Notice that the a-adjoint of c ∈ L(H) is unique on H|a|, as expected, since H|a|
is a Hilbert space. In fact, given d, h ∈ L(H) such that ac = d∗a = h∗a, then
ad = ah. Therefore, R(d− h) ⊆ N(a), so that h = d.

4 Positive decompositions

In this section we study the decompositions of a selfadjoint operator a as a
suitable (in some sense we will establish) difference of two positive operators
and the relation of these decompositions with the canonical decompositions of
the space (H, 〈 , 〉a), defined in (1).

Definition 4.1 Given c1, c2 ∈ L(H)+, then a = c1 − c2 is a positive decompo-
sition of a if c0(R(c1), R(c2)) < 1.

It is well known that every a ∈ L(H)s admits a unique positive decomposition
a = a1 − a2 such that the ranges of a1 and a2 are orthogonal, or equivalently,
such that c0(R(a1), R(a2)) = 0. In fact, consider a1 = |a|+a

2 and a2 = |a|−a
2 .

This decomposition will be called the positive orthogonal decomposition (p.o.d.).
In this case, the operator a1 is the positive part of a, and −a2 its negative part.

By theorems 2.2 and 2.3, the condition c0(R(c1), R(c2)) < 1 is equivalent to
c(N(c1), N(c2)) < 1 and R(c1) ∩ R(c2) = {0}. If a = c1 − c2 is a positive
decomposition of a, then N(c1) + N(c2) is closed and N(c1) ∩ N(c2) = N(a).
Also (N(c1) +N(c2))⊥ = R(c1) ∩R(c2) = {0}, then N(c1) +N(c2) = H.

Lemma 4.2 Consider a = c1 − c2 with c1, c2 ∈ L(H)+. Then a = c1 − c2 is
a positive decomposition of a if and only if R(c1)+̇R(c2) = R(a). In this case,
R(a) = R(c1)+̇R(c2). In particular, R(a) is closed if and only if R(ci) is closed,
for i = 1, 2.

Proof. By definition, a = c1 − c2 is a positive decomposition of a if and only
if c0(R(c1), R(c2)) < 1. Then, by Theorem 2.2, R(c1) ∩ R(c2) = {0} and
R(c1)+̇R(c2) is closed. Observe that (R(c1)+̇R(c2))⊥ = N(c1)∩N(c2) = N(a).
Therefore, R(c1)+̇R(c2) = R(a). The converse follows by Theorem 2.2.
Suppose that c0(R(c1), R(c2)) < 1, then R(c2) ⊕ N(a) is closed and H =
R(c1)+̇R(c2)+̇N(a). Consider the oblique projection p1 = p

R(c1)//R(c2)⊕N(a)
∈

L(H), then p1a = c1 = ap∗1 so that R(c1) ⊆ R(a). In the same way, R(c2) ⊆
R(a). Hence R(c1)+̇R(c2) ⊆ R(a). But from a = c1 − c2, it follows that
R(a) ⊆ R(c1) +R(c2).

Remark 4.3 If a = c1 − c2 is a positive decomposition of a, denote by p1 =
p

R(c1)//R(c2)⊕N(a)
and p2 = p

R(c2)//R(c1)⊕N(a)
. Since p1p2 = p2p1 = 0 then

p1 + p2 ∈ Q and R(p1 + p2) = R(c1)+̇R(c2) = R(a). Also N(p1 + p2) =
N(p1) ∩N(p2) = N(a). Therefore p1 + p2 = pa.
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From now on, given a = c1 − c2 a positive decomposition of a, we consider

q = p∗1 with p1 = p
R(c1)//R(c2)⊕N(a)

and w = 2q − 1. (3)

Note that q = p
N(c2)∩R(a)//N(c1)

∈ Q and w is a symmetry. The next theorem
shows the relation between positive decompositions and a-positive reflections.

Theorem 4.4 If a = c1−c2 is a positive decomposition of a, then w = 2q−1 is
a-positive. Conversely, given an a-positive reflection w, consider q = w+1

2 ∈ Q,
c1 = aq and c2 = a(q − 1), then a = c1 − c2 is a positive decomposition of a.

Proof. Suppose that a = c1 − c2 is a positive decomposition of a and let q = p∗1
as in (3). Then aq = c1 = q∗a, so that q is a-selfadjoint. If x ∈ R(q), then
〈x, x〉a = 〈aqx, x〉 = 〈c1x, x〉 ≥ 0, because c1 is positive; so that R(q) is a-
nonnegative. In a similar way, N(q) is a-nonpositive, because a(1 − q) = −c2.
By Lemma 3.1, w = 2q − 1 is a-positive.
Conversely, let w be an a-positive reflection and consider q = w+1

2 , c1 = aq
and c2 = a(q − 1), then a = c1 − c2. Note that c1, c2 ∈ L(H)+: in fact, if
x ∈ H, 〈c1x, x〉 = 〈aqx, qx + (1 − q)x〉 = 〈aqx, qx〉 ≥ 0, because, by Lemma
3.1, R(q) is a-nonnegative. Similarly for c2. Observe that R(c1) ⊆ R(q∗) and
R(c2) ⊆ N(q∗), since c1 = q∗a and c2 = (q∗−1)a. Therefore, c0(R(c1), R(c2)) ≤
c0(R(q∗), N(q∗)) < 1; so that a = c1 − c2 is a positive decomposition of a.

In particular, if a is injective, we obtain the following correspondence. In case
a is not injective, we can consider the operator ã = a|

R(a)
∈ L(R(a)).

Corollary 4.5 Consider a injective. For a = c1 − c2 a positive decomposition
of a, define φ(c1, c2) = 2pN(c2)//N(c1) − 1. Then φ is a bijection from the set of
positive decompositions of a onto the set of a-positive reflections.

Proof. Let a = c1 − c2 be a positive decomposition of a and let q = φ(c1, c2) =
2pN(c2)//N(c1) − 1. By Theorem 4.4, φ(c1, c2) is an a-positive reflection. To
see that φ is a bijection, consider w an a-positive reflection. Define ϕ(w) =
(a(w+1

2 ), a(w−1
2 )). By Theorem 4.4, if c1 = a(w+1

2 ) and c2 = a(w−1
2 ), then

a = c1 − c2 is a positive decomposition of a. Let q = w+1
2 , then φ(ϕ(w)) =

φ(aq, a(q − 1)) = w, since N(a(q − 1)) = N(q − 1) = R(q) and N(aq) = N(q)
because a is injective. Moreover, if a = c1 − c2 is a positive decomposition of
a, then ϕ(φ(c1, c2)) = (apN(c2)//N(c1), a(pN(c2)//N(c1)−1)) = (c1, c2). Therefore
ϕ = φ−1.

Under the hypothesis of the above corollary, let q = pN(c2)//N(c1). By Theorem
4.4 and Lemma 3.1, R(q) is a-nonnegative and N(q) is a-nonpositive. Moreover,
if x ∈ R(q) = N(c2) is such that 〈x, x〉a = 0 then ‖c1/2

1 x‖ = 〈c1x, x〉 = 〈x, x〉a =
0. Therefore x ∈ N(c1). Since N(c1) ∩ N(c2) = N(a) = {0}, it follows that
x = 0. Hence R(q) is a-positive. Similarly, N(q) is a-negative.
In this case,

H = N(c2)⊕a N(c1)

is the canonical decomposition of (H, 〈 , 〉a) determined by the positive decom-
position a = c1 − c2 of a.
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If a = a1 − a2 is the p.o.d. of a, then |a| = a1 + a2 and a = ua|a|, where ua

is a symmetry. In a similar way, each positive decomposition of a induces a
decomposition of a as a product of a reflection and a positive operator, as shows
the following corollary:

Corollary 4.6 Suppose that a = c1 − c2 is a positive decomposition of a. If
α = c1 + c2 and w = 2q − 1 as in (3), then a = αw where α ∈ L(H)+, w2 = 1
and w is a-positive. Conversely, if a = αw, with α ∈ L(H)+, w2 = 1 and w
a-positive, consider c1 = a(w+1

2 ) and c2 = c1 − a, then a = c1 − c2 is a positive
decomposition of a.

Proof. If w = 2q − 1 and α = c1 + c2 ∈ L(H)+, then w2 = 1 and w∗α =
(2p1 − 1)(c1 + c2) = c1 − c2 = a = αw. Also aw = α so that w is a-positive.
Conversely, consider a = αw where α ∈ L(H)+, w2 = 1 and w is a-positive. Let
q = w+1

2 . By Lemma 3.1, q is a-selfadjoint, R(q) is a-nonnegative and N(q) is
a-nonpositive. If c1 = aq and c2 = a(q − 1), by Theorem 4.4, it follows that
a = c1 − c2 is a positive decomposition of a.

By the above corollary, if a = c1 − c2 is a positive decomposition of a, then
a = αw where α = c1 + c2 ∈ L(H)+, w2 = 1 and w is a-positive. In this case,
α = (w∗|a|2w)1/2. In fact, α = aw = w∗a so that α2 = w∗a2w = w∗|a|2w.

If a is injective, then, by the previous results, a positive decomposition of a is
uniquely determined either by a cannonical decomposition of (H, 〈 , 〉a), or an
a-positive reflection; or equivalently, an a-selfadjoint projection with a-positive
range and a-negative nullspace.

The next proposition characterizes the a-positive reflections.

Proposition 4.7 Let a = ua|a| be the polar decomposition of a. A reflection w
is a-positive if and only if w admits a polar decomposition in (H, 〈 , 〉|a|) given
by w = uad, where d ∈ GL(H) is |a|-positive.

Proof. Suppose that w = 2q − 1 is an a-positive reflection, then aw = |a|uaw ∈
L(H)+. Therefore, d = uaw ∈ GL(H) is |a|-positive. Then w = uad, where d is
|a|-positive. Since |a|ua = ua|a| = u∗a|a|, then ua is |a|-unitary and w = uad is
the polar decomposition of w in (H, 〈, 〉|a|).
Conversely, suppose that w = uad, where d is |a|-positive. Then aw = |a|d is
positive.

Consider a injective and suppose thatH = S⊕aS⊥a = S ′⊕aS ′⊥a are two canon-
ical decompositions of (H, 〈 , 〉a). Denote by S |a| the completion of S respect
to 〈 , 〉|a|. As a consequence of Proposition 4.7, the next theorem shows that
the completion of the a-positive subspaces of the two canonical decompositions
have the same Hilbert space dimension; i.e., dim|a| S

|a|
= dim|a| S ′

|a|
. More-

over, dimS = dimS ′, when H is separable. The same holds for the a-negative
subspaces. Compare this result with [3, Corollary 7.4, Chapter IV].

Theorem 4.8 Consider a injective. Let H = S ⊕a S⊥a = S ′⊕a S ′⊥a be canon-
ical decompositions of H, then dimS = dimS ′ and dimS⊥a = dimS ′⊥a .
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Proof. Suppose that H = S ′ ⊕a S ′⊥a is the decomposition of H given by the
p.o.d. a = a1 − a2. In this case, the associated projection is p1 = pa1 . Consider
the oblique projection q = pS//S⊥a and the reflection w = 2q−1. By Proposition
4.7, w = uad, where d ∈ GL(H) is |a|-positive. Since w is a reflection, uad =
d−1ua, so that uadua = d−1. Observe that ua, d, d

−1 are |a|-selfadjoint. Then,
by Proposition 3.3 and Remark 3.2, it holds that ua, d, d

−1 admit bounded
extensions to H|a|, denoted by ua, d, d−1. Note that d−1 = (d)−1. Since d−1

is positive in H|a|, then d−1 admits a unique (positive) square root in H|a|,
(d−1)1/2 ∈ GL(H|a|)+. Note that ua(d)1/2ua is positive in H|a|, because ua is
selfadjoint in H|a| and (d)1/2 is positive in H|a|. Also, (ua(d)1/2ua)2 = uadua,
so that (uadua)1/2 = ua(d)1/2ua. Then (d−1)1/2 = (uadua)1/2 = ua(d)1/2ua

and (d−1)1/2ua = ua(d)1/2. Hence, 2q − 1 = w = uad = (d−1)1/2ua(d)1/2 =
(d−1)1/2(2p1 − 1)(d)1/2 = 2(d−1)1/2p1(d)1/2 − 1, since (d−1)1/2 = [(d)−1)]1/2 =
(d)−1/2. Therefore, q = (d−1)1/2p1(d)1/2. Then, R(p1) = (d−1)1/2R(q) and
N(p1) = (d−1)1/2N(q), so that dim|a|R(p1) = dim|a|R(q) and dim|a|N(p1) =
dim|a|N(q), where dim|a| U is the dimension of a subspace U of H|a|.
Then dim|a|R(p1)

|a|
= dim|a|R(q)

|a|
, because R(q) = R(q)

|a|
. Since H is sep-

arable, it is easy to see that (H, 〈 , 〉|a|) is separable. Hence, H|a| is separable,
because (H, 〈 , 〉|a|) is dense in H|a|. In this case, if S is a subspace of H, then

dim|a| S
|a|

= dim|a| S = dimS, with dim|a| S the cardinal of any maximal or-
thonormal subset of S in H|a| and dimS is the dimension of S as a subspace of
H. Therefore, dimR(p1) = dimR(q). Similarly, dimN(p1) = dimN(q∗).

In the proof of the previous proposition, we concluded that dim|a| S
|a|

= dimS
for any closed subspace S of H. This holds because the Hilbert space H is
separable, so that (H, 〈 , 〉|a|) and (therefore) H|a| are separable. There are
examples of inner product spaces E with completions E such that dim E < dim E ,
where dim E is the cardinal of any maximal orthonormal set, see [12].

Corollary 4.9 Consider a with closed range such that a = a1−a2 is the p.o.d.
of a and a = c1−c2 is a positive decomposition of a. Then dimR(ai) = dimR(ci)
and dimN(ai) = dimN(ci) for i = 1, 2.

Proof. Suppose first that a is invertible and consider p1 and q as in the proof
of the previous proposition; i.e. p1 = pa1 and q = pN(c2)//N(c1). By the
above proof, there exists g ∈ GL(H)+ such that q = g−1p1g so that q∗ =
g∗p1g

∗−1. Then, since q∗ = pR(c1)//R(c2), we get that dimR(ai) = dimR(ci)
and dimN(ai) = dimN(ci) for i = 1, 2.
More generally, if a has closed range and a = c1−c2 is a positive decomposition of
a, notice that cipa = ci, because N(a) ⊆ N(ci), for i = 1, 2. Then R(ci|R(a)) =
R(ci) and a|R(a) = c1|R(a) − c2|R(a) is a positive decomposition of a|R(a). Since
a|R(a) ∈ GL(R(a))s, it follows that dimR(ci|R(ai)) = dimR(ai|R(ai)), where
a = a1 − a2 is the p.o.d of a. Then dimR(ci) = dimR(ai), for i = 1, 2.
Also, dimN(ci|R(a)) = N(ai|R(a)). But, N(ci) = N(ci) ∩ R(a) ⊕ N(a). Then,
dimN(ai) = dimN(ci) for i = 1, 2.
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5 Congruence of a selfadjoint operator

Two operators a, b ∈ L(H) are congruent if there exists g ∈ GL(H) such that
b = gag∗. In this section we study the set of operators in L(H)s which are
congruent to a fixed selfadjoint operator a. We characterize this set in terms of
the positive decompositions of a.

The congruence between selfadjoint operators defines the following natural ac-
tion of the group GL(H) over the set L(H)s:

L : GL(H)× L(H)s → L(H)s, Lga = gag∗, a ∈ L(H)s, g ∈ GL(H).

Given a ∈ L(H)s, the orbit of a corresponding to the action L is the set Oa of
operators which are congruent to a, i.e.

Oa = {gag∗ : g ∈ GL(H)}.

Denote by Ia the isotropy group of a, i.e. Ia = {g ∈ GL(H) : gag∗ = a}.

The following result is a consequence of Proposition 2.4 and Theorem 2.5, and
provides a characterization of Oa, when a is positive.

Proposition 5.1 Let a, b ∈ L(H)+; then b ∈ Oa if and only if R(a) and R(b)
are unitarily equivalent.

Remark 5.2 If a, b ∈ L(H)+, it also holds that b is in the orbit of a if and only
if the ranges of their square roots are unitarily equivalent, see [10, Theorem 3.5].

If a, b are positive closed range operators, then b is congruent to a if and only if
dimR(b) = dimR(a) and dimN(b) = dimN(a), see [5, Theorem 3.4]. The next
result generalizes this fact, for selfadjoint operators.

Proposition 5.3 Consider a = a1−a2 the p.o.d of a. Then b ∈ Oa if and only
if there exists a positive decomposition b = b1− b2 such that R(bi) is (unitarily)
equivalent to R(ai) for i = 1, 2 and dimN(b) = dimN(a).

Proof. If b ∈ Oa, then b = gag∗ for some g ∈ GL(H), so that dimN(b) =
dimN(a). Consider bi = gaig

∗ ∈ L(H)+, for i = 1, 2, then it is easy to see that
b = b1 − b2 is a positive decomposition of b. Also, bi ∈ Oai , for i = 1, 2, and by
Proposition 5.1, R(bi) is unitarily equivalent to R(ai) for i = 1, 2.
Conversely, since dimN(b) = dimN(a), there exists a partial isometry v such
that v(N(a)) = N(b). By Proposition 5.1 and Remark 5.2, there exist u1, u2 ∈ U
such that R(b1/2

i ) = uiR(a1/2
i ), for i = 1, 2. Then b

1/2
i and uia

1/2
i u∗i have the

same range and nullspace, so that (see [10, Corollary 1]) there exists gi ∈ GL(H)
such that b1/2

i = giuia
1/2
i u∗i , or b1/2

i ui = giuia
1/2
i , i = 1, 2. Consider p1 =

p
R(b1)//R(b2)⊕N(b)

, p2 = p
R(b2)//R(b1)⊕N(b)

and w = p1g1u1pa1 + p2g2u2pa2 +
v(1 − pa). Then w ∈ GL(H). In fact, by Remark 4.3, it is easy to see that
w−1 = pa1u

∗
1g
−1
1 p1 + pa2u

∗
2g
−1
2 p2 + v∗(1 − pb). On the other hand, waw∗ =

w(a1 − a2)w∗ = b
1/2
1 u1u

∗
1b

1/2
1 − b1/2

2 u2u
∗
2b

1/2
2 = b. Hence b ∈ Oa.

The above result also holds if a = a1 − a2 is any positive decomposition of a;
in fact, in the proof of the proposition, it is sufficient to consider the oblique
projections p

R(a1)//R(a2)⊕N(a)
and p

R(a2)//R(a1)⊕N(a)
instead of pa1 and pa2 .
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Corollary 5.4 Let a = a1− a2 be any positive decomposition of a. Then Oa =
{b1 − b2 : bi ∈ Oai

, i = 1, 2; and R(b1)+̇R(b2) is unitarily equivalent to R(a)}.

Proof. Observe that R(b1) +R(b2) is an operator range by [10, Theorem 2.2]. If
b ∈ Oa then by Proposition 5.3, there exists a positive decomposition b = b1−b2
such that R(bi) is unitarily equivalent to R(ai) for i = 1, 2 and N(b) is unitarily
equivalent to N(a); or equivalently, bi ∈ Oai , i = 1, 2 and R(b) is unitarily
equivalent to R(a). But, by Lemma 4.2, R(b) = R(b1)+̇R(b2). Conversely, let
b = b1 − b2 with bi ∈ Oai

, i = 1, 2 and R(b1) + R(b2) = uR(a), for u ∈ U .
Then R(b1) + R(b2) is closed and R(b1) ∩ R(b2) = {0}, so by Theorem 2.2,
c0(R(b1), R(b2)) < 1. Note that bi ∈ L(H)+ because bi ∈ Oai

, for i = 1, 2.
Hence b = b1−b2 is a positive decomposition of b, so that R(b) = R(b1)+̇R(b2) =
uR(a) and then N(b) is unitarily equivalent to N(a). Therefore, by Proposition
5.3, b ∈ Oa.

If g ∈ Ia, then a = ga1g
∗ − ga2g

∗, where a = a1 − a2 is the p.o.d. of a. It
is not difficult to see that a = ga1g

∗ − ga2g
∗ is a positive decomposition of

a. Therefore, it is natural to ask if all the positive decomposition of a can be
written as a = ga1g

∗ − ga2g
∗ for some g ∈ Ia. The following proposition shows

that this holds if a has closed range.

Proposition 5.5 Consider a with closed range and p.o.d. a = a1 − a2. Then
{ga1g

∗ − ga2g
∗ : g ∈ Ia} is the set of positive decomposition of a.

Proof. Given g ∈ Ia, then a = gag∗. It follows easily that a = ga1g
∗ − ga2g

∗

is a positive decomposition of a. Conversely, let a = c1 − c2 be a positive
decomposition of a. By Corollary 4.9, it holds that dimR(ai) = dimR(ci) and
dimN(ai) = dimN(ci) for i = 1, 2. Therefore, by Remark 5.2, ci ∈ Oai

, for i =
1, 2. Then, there exist g1, g2 ∈ GL(H) such that c1 = g1a1g

∗
1 and c2 = g2a2g

∗
2 .

Consider g = g1pa1 +g2pa2 +pN(a). By Remark 4.3, it is not difficult to see that
g ∈ GL(H) and g−1 = g−1

1 p1 + g−1
2 p2 + pN(a), where p1 = pR(c1)//R(c2)⊕N(a)

and p2 = pR(c2)//R(c1)⊕N(a). Also, ga1g
∗ = g1a1g

∗
1p
∗
1 = c1p

∗
1 = c1. Similarly,

ga2g
∗ = c2. Finally, gag∗ = ga1g

∗ − ga2g
∗ = c1 − c2 = a, so that g ∈ Ia.
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