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0. Introduction

Let H and K be Hilbert spaces. Generalized inverses of bounded linear operators T : H → K can be parametrized by
means of the sets Q H and QK of linear projections (not necessarily bounded) in H and K, respectively. On the other side,
a projection can be studied by means of the angle (inclination) between its nullspace and its image. This paper explores
in some detail the relationships between generalized inverses, projections and angles. Before stating the main results, we
describe some previous facts. The main tool in the paper is the use of a particular type of solutions of operator equations
like B X = C where B, C are bounded linear operators between suitable Hilbert spaces. We refer to this sort of equations as
Douglas equations, because R.G. Douglas [7] proved the following theorem which appears once and again in the literature.

Theorem. Let B ∈ L(H, K) and C ∈ L(G, K). The following conditions are equivalent:

1. There exists D ∈ L(G, H) such that B D = C.
2. R(C) ⊆ R(B).
3. There exists a positive number λ such that CC∗ � λB B∗ .

If one of these conditions holds then there exists a unique solution XN(B)⊥ ∈ L(G, H) of the equation B X = C such that R(XN(B)⊥ ) ⊆
N(B)⊥ . This solution will be called the Douglas reduced solution. It also satisfies ‖XN(B)⊥‖ = inf{‖D‖: D ∈ L(G, H), B D = C}.

We refer the reader to the papers by Douglas [7], Fillmore and Williams [9] and Nashed [11] for proofs and applications
of the previous theorem. In [1], the orthogonal complement of N(B) is replaced by an arbitrary closed complement M
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of N(B). Then there exists a unique solution XM of B X = C such that R(XM) ⊆ M; it is called the reduced solution for
M and it has some analogous properties as those of Douglas reduced solution. In [1] we parametrize reduced solutions by
means of generalized inverses under the hypothesis R(B) closed. Here, we omit this hypothesis. This forces us to deal with
unbounded generalized inverses.

The main result of the paper states that, among all solutions of the equation B X = C , reduced solutions are those Y
which can be factorized as Y = B ′C for some generalized inverse of B such that R(B ′B) is closed; this set coincides with
the set of those solutions Y such that R(Y ) has positive Dixmier angle with N(B) (see definition below). These results are
applied to the problem of characterizing positive solutions of a Douglas type equation. This problem, originally studied by
Z. Sebestyén [14], has been recently solved by A. Dajić and J.J. Koliha [5] for closed range operators. Our methods here
extend the result to non-closed range operators.

Finally we apply the previous results to get a partition of a certain set of projections. More precisely, given a closed
subspace, S , of a Hilbert space H and a positive semidefinite operator A ∈ L(H) we consider the set P (A, S) = {Q ∈ L(H):
Q 2 = Q , R(Q ) = S, A Q = Q ∗ A}. This set is an affine submanifold of L(H), which may be void. If P (A, S) is not void and
we consider the matrix representation of operators of L(H) induced by the decomposition H = S ⊕ S ⊥ then the elements
of P (A, S) admit the matrix representation

Q =
(

1 y
0 0

)
,

where y ∈ L(S ⊥, S) is a solution of a certain Douglas type equation. Therefore we study the elements of P (A, S) for which
the operator y is a reduced solution.

1. Preliminaries

Throughout H, K and G denote separable complex Hilbert spaces with inner product 〈 , 〉. By L(H, K) we denote the
space of all bounded linear operators from H to K. The algebra L(H, H) is abbreviated by L(H). By L(H)+ we denote
the cone of positive (semidefinite) operators of L(H), i.e., L(H)+ := {A ∈ L(H): 〈Aξ, ξ〉 � 0 ∀ξ ∈ H}. For every T ∈ L(H, K)

its range is denoted by R(T ), its nullspace by N(T ) and its adjoint by T ∗ . In the sequel we denote by S +̇ T the direct
sum of the subspaces S and T . In particular, if S ⊆ T ⊥ we denote S ⊕ T . If S is a closed subspace of H we denote
QS := {Q ∈ L(H): Q 2 = Q and R(Q ) = S} and P S the orthogonal projection onto S . Furthermore, if T is an algebraic
complement of S , i.e., S +̇ T = H, then Q T //S denotes the unique projection with R(Q ) = T and N(Q ) = S . It is well
known that Q T //S is bounded if and only if T is closed.

The next theorem introduces the notion of reduced solution which is the starting point of this article. The proof is similar
to Douglas original proof [1].

Theorem 1.1. Let B ∈ L(H, K) and C ∈ L(G, K) be such that the equation B X = C has a solution and let M be a topological comple-
ment of N(B). Then there exists a unique solution XM ∈ L(G, H) of the equation B X = C such that R(XM) ⊆ M. The operator XM
will be called the reduced solution for M of the equation B X = C.

Corollary 1.2. If XM is a reduced solution for M of the equation B X = C then N(XM) = N(C).

Proof. Since B XM = C then N(XM) ⊆ N(C). Now, if ξ ∈ N(C) then 0 = Cξ = B XMξ . So XMξ ∈ R(XM) ∩ N(B) ⊆ M ∩
N(B) = {0}. Therefore N(XM) = N(C). �
Remark 1.3. If the equation B X = C has a solution and M is an algebraic complement of N(B) then there exists a unique
linear operator XM such that B XM = C and R(XM) ⊆ M. In this case, as the next examples show, the boundedness of
the solution XM is not guaranteed.

1. Let S be a closed subspace of H and M a non-closed subspace of H such that M +̇ S = H. If ξ ∈ M then Pspan{ξ} is
a solution of the equation P S ⊥ X = P S ⊥ Pspan{ξ} such that R(Pspan{ξ}) ⊆ M, and Pspan{ξ} is bounded.

2. Given the equation B X = B and M a non-closed subspace such that M +̇ N(B) = H, then Q M//N(B) is a solution such
that R(Q M//N(B)) ⊆ M, but, since M is not closed, Q M//N(B) is not bounded.

Our goal is to study reduced solutions. For this, the notion of generalized inverse will play a fundamental role. Note that,
given T ∈ L(H, K) and an algebraic complement of N(T ) then the operator T M = T |M : M → R(T ) is injective. Hence,
there exists

T −1
M = (T |M)−1 : R(T ) → M.

Definition 1.4. Given T ∈ L(H, K), let T ′ be a linear operator K → H whose domain D(T ′) contains the range of T and let
M be an algebraic complement of N(T ).
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1. T ′ is an inner inverse of T if T ′|R(T ) = T −1
M .

2. T ′ is a generalized inverse of T if T ′ is an inner inverse of T and D(T ′) = R(T ) +̇ N(T ′).
3. T ′ is the Moore–Penrose inverse of T , if T ′ is the generalized inverse of T with M = N(T )⊥ and N(T ′) = R(T )⊥ . In the

sequel, the Moore–Penrose inverse of T will be denoted by T †.

These kinds of inverses have been extensively studied. We refer the reader to [8,12] and [13] for the proof of the
following characterizations.

Proposition 1.5. Let T ∈ L(H, K) and T ′ : D(T ′) ⊆ K → H a linear operator with R(T ) ⊆ D(T ′).

1. The next assertions are equivalent:
(a) T ′ is an inner inverse of T ;
(b) T ′T = Q M//N(T ) for some algebraic complement M of N(T );
(c) T T ′ : D(T ′) → H verifies (T T ′)2 = T T ′ and R(T T ′) = R(T );
(d) T T ′T = T .

2. The next assertions are equivalent:
(a) T ′ is a generalized inverse of T ;
(b) T T ′T = T and T ′T T ′ = T ′;
(c) T ′ is an inner inverse with R(T ′) = M.

3. The next assertions are equivalent:
(a) T ′ is the Moore–Penrose inverse of T ;
(b) T ′ : R(T ) ⊕ R(T )⊥ → H verifies T T ′T = T , T ′T T ′ = T ′ , T T ′ = P R(T )|D(T ′) and T ′T = P N(T )⊥ .

The inner inverses corresponding to a topological complement of the nullspace instead of an algebraic complement are
particularly interesting because in such case T ′T = Q M//N(T ) is bounded. Given T ∈ L(H, K), we shall denote by

I(T ) = {
T ′: T ′T = Q M//N(T ) ∈ L(H)

}
and by

I g(T ) = {
T ′ ∈ I(T ): T ′ is a generalized inverse of T

}
.

Note that T † ∈ I(T ). Moreover, if T ′ ∈ I(T ) and C ∈ L(G, K) verifies that R(C) ⊆ R(T ) then T ′C ∈ L(G, H). In fact, by
Douglas theorem, there exists D ∈ L(G, H) such that T D = C . Now, if T ′ ∈ I(T ) then T ′C = T ′T D = Q M//N(T )D ∈ L(G, H).

Another notion which is relevant in this paper is that of angle between subspaces. Recall that the Friedrichs angle between
two closed subspaces S and T of H is the angle θ(S, T ) ∈ [0, π

2 ] whose cosine is defined by

c(S, T ) = sup
{∣∣〈ξ,η〉∣∣: ξ ∈ S ∩ (S ∩ T )⊥, η ∈ T ∩ (S ∩ T )⊥ and ‖ξ‖ � 1, ‖η‖ � 1

}
.

Furthermore, the Dixmier angle between S and T is the angle θ0(S, T ) ∈ [0, π
2 ] whose cosine is defined by

c0(S, T ) = sup
{∣∣〈ξ,η〉∣∣: ξ ∈ S, η ∈ T and ‖ξ‖ � 1, ‖η‖ � 1

}
.

Clearly, if S ∩ T = {0} then both angles coincide. We present some well-known results about angles between subspaces that
we shall use frequently during these notes. See [10] and [6] for their proofs.

Proposition 1.6. Let S, T be two closed subspaces of H.

1. S + T is a closed subspace if and only if c(S, T ) < 1.
2. c(S, T ) = 0 if and only if S = S ∩ T ⊕ S ∩ T ⊥ .
3. S +̇ T is a closed subspace if and only if c0(S, T ) < 1.

2. Reduced solutions of Douglas equations

Given a solution D of the equation B X = C then, in many cases, it is useful to express D as a product B̃C for a certain B̃ .
In such cases, the operator B̃ acts as a sort of inverse of B; in fact, B̃ B D = D . In the next proposition we provide equivalent
conditions to the existence of such factorization of the solution.

Proposition 2.1. Let D ∈ L(G, H) be a solution of the equation B X = C. The following conditions are equivalent:

1. D = B̃C for some linear operator B̃ : D(B̃) → H with R(C) ⊆ D(B̃);
2. R(D) ∩ N(B) = {0};
3. N(D) = N(C).
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Proof. 1. → 2. Let ξ ∈ R(D) ∩ N(B). Then, ξ = Dη for some η ∈ G and so Cη = B Dη = 0. Hence, ξ = Dη = B̃Cη = 0.
2. → 3. Suppose that R(D)∩ N(B) = {0} and let ξ ∈ N(C). Then B Dξ = Cξ = 0, i.e., Dξ ∈ R(D)∩ N(B) = {0}. So ξ ∈ N(D)

and thus N(C) ⊆ N(D). It is trivial that N(D) ⊆ N(C). Therefore, N(C) = N(D).
3. → 1. If N(C) = N(D) then the operator B̃ : R(C) → H defined by B̃(Cξ) = Dξ is well defined. It is clear that B̃ is

linear and that B̃C = D . �
Corollary 2.2. Every reduced solution XM of the equation B X = C can be written as XM = B̃C , for some linear operator B̃ with
R(C) ⊆ D(B̃).

Proof. Since R(XM) ∩ N(B) ⊆ M ∩ N(B) = {0} then, by Proposition 2.1, the assertion follows. �
In the next result we describe the operator B̃ of Corollary 2.2. It is well-known that the Douglas reduced solution of

B X = C is given by B†C (see [12]). We prove that a similar factorization holds for reduced solutions when the Moore–
Penrose inverse of B is replaced by a generalized inverse in I g(B). Moreover, we characterize the reduced solutions by
means of angles. As a consequence, we shall prove that reduced solutions are exactly the solutions which can be written
as B̃C for some linear operator B̃ with R(C) ⊆ D(B̃) if some additional hypotheses regarding the dimensions of the spaces
involved are included.

Theorem 2.3. Let B ∈ L(H, K) and C ∈ L(G, K) be such that R(C) ⊆ R(B). Hence, if Y ∈ L(G, H) is a solution of the equation B X = C
then the following conditions are equivalent:

1. Y is a reduced solution of B X = C ;
2. Y = Q M//N(B) XN(B)⊥ , where M is a topological complement of N(B);
3. Y = B ′C, where B ′ ∈ I g(B);
4. Y = B ′C, where B ′ ∈ I(B);
5. c0(R(Y ), N(B)) < 1.

Proof. 1. → 2. Let Y be the reduced solution for M of the equation B X = C . Observe that since M is a closed sub-
space then Q M//N(B) is bounded and so Q M//N(B) XN(B)⊥ ∈ L(G, H). Furthermore, B(Q M//N(B) XN(B)⊥ ) = B XN(B)⊥ = C and
R(Q M//N(B) XN(B)⊥ ) ⊆ M. Thus, by the uniqueness of the reduced solution, we get Y = Q M//N(B) XN(B)⊥ .

2. → 3. Observe that the operator B ′ : R(B) + R(B)⊥ → H defined by B ′ = Q M//N(B)B† belongs to I g(B). Furthermore,
B ′B = Q M//N(B) . Hence, Y = Q M//N(B) XN(B)⊥ = B ′B XN(B)⊥ = B ′C

3. → 4. It is trivial, because if I g(B) ⊆ I(B).
4. → 5. Let Y = B ′C for some B ′ ∈ I(B). Then, R(Y ) = R(B ′C) ⊆ R(B ′ B) = M for some closed subspace M such that

M +̇ N(B) = H. Thus, R(Y ) ⊆ M and so R(Y ) ∩ N(B) = {0}. Moreover, since M +̇ N(B) = H is closed, we have that
c0(M, N(B)) < 1. Hence, as R(Y ) ⊆ M, c0(R(Y ), N(B)) � c0(M, N(B)) < 1.

5. → 1. If c0(R(Y ), N(B)) < 1 then, by Proposition 1.6, it holds that R(Y ) +̇ N(B) is closed. Hence, there exists M =
(R(Y )+ N(B))⊥ +̇ R(Y ), which is closed since (R(Y )+ N(B))⊥ ⊆ R(Y )⊥ , such that R(Y ) ⊆ M and M +̇ N(B) = H. Therefore,
Y is the reduced solution for M. �
Corollary 2.4. Let B ∈ L(H, K), C ∈ L(G, K) and Y ∈ L(G, H) be such that BY = C. If H has finite dimension then the following
conditions are equivalent:

1. Y is a reduced solution of the equation B X = C ;
2. Y = B̃C for some linear operator B̃ with R(C) ⊆ D(B̃).

Proof. 1. → 2. It follows by Theorem 2.3.
2. → 1. If Y = B̃C for some linear operator B̃ with R(C) ⊆ D(B̃) then, by Proposition 2.1, R(Y ) ∩ N(B) = {0}. Further-

more, as R(Y ) +̇ N(B) has finite dimension, then R(Y ) +̇ N(B) is a closed subspace and, by Proposition 1.6, we get that
c0(R(Y ), N(B)) < 1. Therefore, by Theorem 2.3, Y is a reduced solution of the equation B X = C . �

As the next example shows, Corollary 2.4 fails, in general, in the infinite dimensional case.

Example 2.5. Let D ∈ L(H) be a non-closed range operator and let ξ ∈ R(D) \ R(D). Define B = Pspan{ξ}⊥ . Clearly, D is
a solution of the equation B X = B D . Moreover, as N(B) = span{ξ}, then R(D) ∩ N(B) = {0} and so, by Proposition 2.1,
D = B̃ B D for some linear operator B̃ : D(B̃) → H with R(D) ⊆ D(B̃). However, D is not a reduced solution of the equation
B X = B D . Indeed, as R(D) ∩ N(B) = N(B) �= {0} then c0(R(D), N(B)) = 1 and, by Theorem 2.3, D is not a reduced solution.

Remark 2.6. By Douglas theorem, the Douglas reduced solution has minimal norm. A similar property holds for every
reduced solution. Let XM be a reduced solution for M of the equation B X = C . If we consider the generalized inverse,
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B ′ : R(B) +̇ R(B)⊥ ⊆ K → M ⊆ H of B such that B ′|R(B) = B−1
M and N(B ′) = R(B)⊥ , then XM = B ′C . Now, let A = Q ∗ Q +

(I − Q ∗)(I − Q ) where Q = Q M//N(B) . Thus, A ∈ L(H)+ is invertible and the functional 〈ξ,η〉A = 〈Aξ,η〉 for every ξ,η ∈ H
defines an inner product. Hence, it can be checked that M is the orthogonal complement of N(B) with respect to 〈 , 〉A .
Thus, if we consider H with the inner product 〈 , 〉A then the generalized inverse B ′ , defined above, is the Moore–Penrose
inverse of B . Then, XM = B ′C is the Douglas reduced solution of the equation B X = C and so |||XM||| = inf{|||D|||: B D = C}
where |||D||| = sup0�=ξ∈G

‖A1/2 Dξ‖
‖ξ‖ . Note that 〈 , 〉A and 〈 , 〉 are equivalent because A is invertible.

2.1. Positive reduced solutions

This subsection is devoted to study positive reduced solutions of Douglas type equations. The next result due to
Z. Sebestyén [14] provides an equivalent condition for the existence of a positive solution.

Theorem (Sebestyén). Consider operators B, C ∈ L(H, K) such that the equation B X = C has a solution. Hence, the equation admits
a positive solution if and only if CC∗ � λBC∗ for some constant λ � 0.

Even though Sebestyén’s result characterize the Douglas equations which admits a positive solution, it does not provide
an expression of them. A formula of positive solutions is given by A. Dajić and J.J. Koliha in [5], but under some extra
hypotheses. More precisely, they proved the following result.

Theorem 2.7. Consider operators B, C ∈ L(H, K) such that R(B) and R(BC∗) are closed. If the equation B X = C has a positive
solution then the general positive solution is given by

X = C∗(BC∗)′
C + (I − B ′B)S(I − B ′B)∗, S ∈ L(H)+,

where (BC∗)′ and B ′ are arbitrary inner inverses of BC∗ and B, respectively. Moreover, X0 = C∗(BC∗)′C is a particular positive
solution of B X = C, independent of the choice of the inner inverse (BC∗)′ .

Here, we shall prove that the formula given by A. Dajić and J.J. Koliha still holds if the conditions R(B) and R(BC∗)
closed are replaced by certain angle condition. In Remark 2.10, we show that our hypotheses are weaker than Dajić and
Koliha’s ones. Before that we present the following technical lemma.

Lemma 2.8. Let B ∈ L(H, K). The general selfadjoint solution of the homogeneous equation B X = 0 is given by Y = (I − B ′B)Z(I −
B ′B)∗ , where Z ∈ L(H) is selfadjoint and B ′ ∈ I(B).

Proof. Let Y be a solution of B X = 0. Then, Y = (I − B ′B)Y for every B ′ ∈ I(B). If in addition Y = Y ∗ then Y = Y (I − B ′B)∗
and thus Y = (I − B ′B)Y (I − B ′B)∗ .

Conversely, if Z ∈ L(H) is selfadjoint then Y = (I − B ′B)Z(I − B ′B)∗ is a selfadjoint solution of B X = 0 for every
B ′ ∈ I(B). �
Theorem 2.9. Consider operators B, C ∈ L(H, K) such that the equation B X = C has a positive solution. If R(C) ⊆ R(BC∗) and
c0(R(C∗), N(B)) < 1 then X0 = C∗(BC∗)†C is a positive reduced solution of the equation B X = C. Furthermore, the general positive
solution is given by

Y = C∗(BC∗)†
C + (I − B ′B)S(I − B ′B)∗, (1)

where S ∈ L(H)+ and B ′ ∈ I(B).

Proof. Note that X0 = C∗(BC∗)†C ∈ L(H) because R(C) ⊆ R(BC∗). Moreover, since the equation B X = C admits a pos-
itive solution then, by Sebestyén’s result, BC∗ ∈ L(K)+ and so (BC∗)† is positive.1 Therefore X0 ∈ L(H)+ . Now, B X0 =
B(C∗(BC∗)†C) = P R(BC∗)|D((BC∗)†)C = C . On the other hand, R(X0) = R(C∗). Indeed, since B X0 = C then N(X0) ⊆ N(C)

which implies that R(C∗) ⊆ R(X0). The other inclusion follows from the definition of X0. Then c0(R(X0), N(B)) =
c0(R(C∗), N(B)) < 1 and so, by Theorem 2.3, we assert that X0 is a positive reduced solution.

The last part of the proof is devoted to obtain formula (1). Let Y be a positive solution of B X = C . Then Y − X0 is
a selfadjoint solution of B X = 0. Now, consider B̂ ∈ I(B) such that B̂C = X0; the existence of such B̂ is guaranteed by
Theorem 2.3. Therefore, by Lemma 2.8, we have

Y − X0 = (I − B̂ B)Z(I − B̂ B)∗, (2)

1 Here, the positivity of T † means 〈T †ξ, ξ〉 � 0 for every ξ ∈ D(T †).
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for some Z ∈ L(H) selfadjoint. Then

(I − B̂ B)Y (I − B̂ B)∗ = (I − B̂ B)X0(I − B̂ B)∗ + (I − B̂ B)Z(I − B̂ B)∗ = (I − B̂ B)Z(I − B̂ B)∗.

Note that since Y is positive then S = (I − B̂ B)Z(I − B̂ B)∗ ∈ L(H)+ . Now, let B ′ ∈ I(B). Then (I − B ′B)(I − B̂ B) = (I − B̂ B)

and so, from (2), we get Y = X0 + (I − B ′B)S(I − B ′B)∗ .
Conversely, if Y = X0 + (I − B ′B)S(I − B ′B)∗ with S ∈ L(H)+ then Y is a positive solution of B X = C . �

Remark 2.10. Let us note that the hypotheses of Theorem 2.9 are weaker than A. Dajić and J.J. Koliha’s hypotheses. In
fact, suppose that A. Dajić and J.J. Koliha’s hypotheses hold. Thus, since the equation B X = C admits a positive solu-
tion then CC∗ � λBC∗ for some positive constant λ. Hence, by Douglas theorem, R(C) ⊆ R((BC∗)1/2). Thus, if R(BC∗)
is closed then R(C) ⊆ R((BC∗)1/2) = R(BC∗) and so R(C) ⊆ R(BC∗) = R(C B∗) ⊆ R(C), i.e., R(C) is closed. Furthermore,
from R(C) ⊆ R(BC∗) we get that N(BC∗) ⊆ N(C∗) which implies R(C∗) ∩ N(B) = {0}. Finally, if X0 = C∗(BC∗)†C then
R(C∗) = R(X0 B∗) ⊆ R(X0) ⊆ R(C∗), i.e., R(C∗) = R(X0). Now, R(C∗) + N(B) = R(X0) + N(B) = B−1(R(C)) is closed and
so, by Proposition 1.6, c0(R(C∗), N(B)) < 1.

On the other hand, let C ∈ L(H)+ with non-closed range and B = P R(C) . Hence the equation B X = C admits a positive

solution, R(C) ⊆ R(BC∗) and c0(R(C∗), N(B)) = 0 < 1, but R(BC∗) = R(C) is not closed.

3. Reduced projections

In this section we will study some special projections Q ∈ Q S which are orthogonal with respect to the semi-inner
product induced by A ∈ L(H)+ , namely,

〈 , 〉A : H × H → C, 〈ξ,η〉A := 〈Aξ,η〉.
This functional is an inner product if and only if A is injective. Moreover, if A is invertible then 〈 , 〉A and 〈 , 〉 are equivalent
in an obvious sense.

Given T ∈ L(H), we say that T is A-selfadjoint (or symmetrizable for A) if 〈T ξ,η〉A = 〈ξ, Tη〉A for every ξ,η ∈ H or, which
is equivalent, if AT = T ∗ A. Given a closed subspace S , we denote by P (A, S) the set of A-selfadjoint projections with fixed
range S :

P (A, S) = {
Q ∈ QS : A Q = Q ∗ A

}
.

If P (A, S) is not empty, then the pair (A, S) is called compatible. The compatibility of a pair (A, S) can be read in terms
of range inclusions. For this, let us consider the matrix representation of operators in L(H) induced by the decomposition
H = S ⊕ S ⊥ . Thus, every Q ∈ QS is represented by

Q =
(

1 y
0 0

)
, (3)

where y ∈ L(S ⊥, S); and every A ∈ L(H)+ is represented by

A =
(

a b
b∗ c

)
, (4)

where a ∈ L(S)+ and c ∈ L(S ⊥)+ . Therefore, the pair (A, S) is compatible if and only if R(b) ⊆ R(a) (see [2]). Moreover,
Q ∈ P (A, S) if and only if ay = b. The main goal of this section is to characterize the elements Q ∈ P (A, S) such that

Q =
(

1 xM
0 0

)
, (5)

where xM is a reduced solution of the equation ax = b. This sort of projections will be called reduced projections. Observe
that, by Douglas theorem, if the pair (A, S) is compatible then there always exists a reduced projection in P (A, S), namely,

P A,S =
(

1 xN(a)⊥
0 0

)
.

Different properties of the element P A,S have been studied by Corach et al. in [4] and [3]. Here, we describe the set of
reduced projections by means of the results obtained in Section 2. For this, we start providing an equivalent condition for a
projection Q ∈ QS to be A-selfadjoint.

In what follows, given a subspace S of H, we denote

S⊥A = {
ξ ∈ H: 〈ξ,η〉A = 0 ∀η ∈ S

}
.

The following identities hold: S ⊥A = (AS)⊥ = A−1(S ⊥).
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Proposition 3.1. Let (A, S) be a compatible pair and Q ∈ Q S . The following conditions are equivalent:

1. Q ∈ P (A, S);
2. N(Q ) = S ⊥A ∩ M for some topological complement, M, of S ∩ N(A).

Proof. 1. → 2. Let Q ∈ P (A, S) and N = S ∩ S ⊥A = S ∩ N(A). First, let see that S ⊥A = N +̇ N(Q ). Observe that since
Q ∈ QS , then N ∩ N(Q ) = (S ∩ N(Q )) ∩ N(A) = {0}. Furthermore, as Q ∈ P (A, S), then N(Q ) ⊆ S ⊥A and so N +̇ N(Q ) ⊆

S ⊥A . On the other hand, if ξ = ξ1 +ξ2 ∈ S ⊥A , where ξ1 ∈ S and ξ2 ∈ N(Q ) then ξ −ξ2 = ξ1 ∈ S ⊥A ∩ S = N . Therefore S ⊥A =
N +̇ N(Q ). Now, define M = N(Q ) +̇ (S ⊥A )⊥ which is closed because N(Q ) ⊆ S ⊥A . We claim that M +̇ N = H. Indeed,
M + N = N(Q ) +̇ (S ⊥A )⊥ + N = N(Q ) +̇ N +̇ (S ⊥A )⊥ = S ⊥A +̇ (S ⊥A )⊥ = H. Moreover, let η = η1 + η2 ∈ M ∩ N , where
η1 ∈ N(Q ) and η2 ∈ (S ⊥A )⊥ . Now, η−η1 = η2 ∈ S ⊥A ∩ (S ⊥A )⊥ = {0}. Then η = η1 ∈ N(Q )∩ S = {0}. Hence, M +̇ N = H. It
only remains to show that N(Q ) = S ⊥A ∩ M. It is straightforward that N(Q ) ⊆ S ⊥A ∩ M. On the contrary, let μ = μ1 +μ2 ∈
S ⊥A ∩ M, where μ1 ∈ N(Q ) and μ2 ∈ (S ⊥A )⊥ . Then μ − μ1 = μ2 ∈ S ⊥A ∩ (S ⊥A )⊥ = {0}. Therefore μ = μ1 ∈ N(Q ) and so
N(Q ) = S ⊥A ∩ M.

2. → 1. As N(Q ) ⊆ S ⊥A , if ξ = ξ1 + ξ2 and η = η1 +η2, where ξ1, η1 ∈ S and ξ2, η2 ∈ N(Q ) then 〈Q ξ,η〉A = 〈ξ1, η1〉A =
〈ξ, Q η〉A . Therefore Q is A-selfadjoint. �
Lemma 3.2. Let A ∈ L(H)+ with the matrix representation (4) and let S be a closed subspace of H. If the pair (A, S) is compatible
then N(a) = S ∩ N(A).

Proof. Let ξ ∈ N(a) ⊆ S . Then, as the pair (A, S) is compatible and a is positive it holds N(a) ⊆ N(b∗) and therefore b∗ξ = 0.
Hence, Aξ = aξ + b∗ξ = 0, i.e., ξ ∈ S ∩ N(A). The other inclusion is clear. �
Lemma 3.3. Let Q 1, Q 2 ∈ Q. If N(Q 1) ⊆ N(Q 2) and R(Q 1) ⊆ R(Q 2) then Q 1 = Q 2 .

Proof. The assertion is consequence of the following equivalences: (i) N(Q 1) ⊆ N(Q 2) ⇔ Q 2 Q 1 = Q 2 and (ii) R(Q 1) ⊆
R(Q 2) ⇔ Q 2 Q 1 = Q 1. �

In the next theorem we characterize the reduced projections. Observe that in Proposition 3.1 we describe the nullspace
of the elements of P (A, S) by means of a complement of S ∩ N(A). Now, we shall give an additional condition on such
complement in order to Q ∈ P (A, S) be a reduced projection.

Theorem 3.4. Let (A, S) be a compatible pair and Q ∈ P (A, S). Then the following conditions are equivalent:

1. Q is a reduced projection;
2. N(Q ) = S ⊥A ∩ M, where M is a topological complement of S ∩ N(A) such that c(M, S) = 0;
3. c0(R(Q P S ⊥ ), S ∩ N(A)) < 1.

Proof. Let Q = ( 1 y
0 0

) ∈ P (A, S) and, for simplicity, let N = S ∩ N(A).
1. → 2. If y a reduced solution of the equation ax = b then R(y) ⊆ W for some closed subspace W such that

W +̇ N(a) = S . Define M = W + S ⊥ . Then, M + N = M + N(a) = W + S ⊥ + N(a) = S + S ⊥ = H. Furthermore,
M ∩ N = {0}. Indeed, if ξ = ξ1 + ξ2 ∈ M ∩ N with ξ1 ∈ S ⊥ and ξ2 ∈ W then ξ − ξ2 = ξ1 ∈ S ∩ S ⊥ = {0}. Thus, ξ1 = 0
and so ξ = ξ2 ∈ W ∩ N(a) = {0}. Hence, ξ = 0 and so M +̇ N = H. It is straightforward that S +̇ (S ⊥A ∩ M) = H. By
Proposition 3.1 and Lemma 3.3, in order to prove that Q = Q S//S ⊥A ∩M we must see that N(Q ) ⊆ S ⊥A ∩ M. Now, as

Q ∈ P (A, S), then N(Q ) ⊆ S ⊥A . Let us see that N(Q ) ⊆ M. For this, let ξ = ξ1 + ξ2 ∈ N(Q ) with ξ1 ∈ S and ξ2 ∈ S ⊥ . Then,
Q ξ = ξ1 + yξ2 = 0. Hence, ξ1 = −yξ2 ∈ W . So, ξ = ξ1 + ξ2 ∈ W + S ⊥ = M and then N(Q ) ⊆ M. It only remains to show
that c(M, S) = 0 or, which is equivalent, that M = (M ∩ S) ⊕ (M ∩ S ⊥). Clearly, (M ∩ S) ⊕ (M ∩ S ⊥) ⊆ M. Now, let
η = η1 + η2 ∈ M, where η1 ∈ W and η2 ∈ S ⊥ . Then η − η1 = η2 ∈ M ∩ S ⊥ and η − η2 = η1 ∈ M ∩ S .

2. → 1. It is sufficient to show that there exists a closed subspace W such that W +̇ N(a) = S and R(y) ⊆ W . Define
W = M ∩ S . Then W +N(a) ⊆ S . Now, let ξ = ξ1 +ξ2 ∈ S , where ξ1 ∈ M and ξ2 ∈ N = N(a). Then ξ −ξ2 = ξ1 ∈ M ∩ S = W
and so ξ = ξ1 + ξ2 ∈ W + N(a). Furthermore, W ∩ N(a) = W ∩ N = M ∩ N = {0}. Thus W +̇ N(a) = S . Now, given ξ ∈ S ⊥ ,
it holds −yξ + ξ ∈ N(Q ) ⊆ M. Since c(M, S) = 0 then, by Proposition 1.6, M = (M ∩ S) ⊕ (M ∩ S ⊥) and so −yξ + ξ =
κ1 + κ2, where κ1 ∈ M ∩ S and κ2 ∈ M ∩ S ⊥ . Therefore −yξ = κ1 and ξ = κ2 and so R(y) ⊆ M ∩ S = W .

1. ↔ 3. It is consequence of Theorem 2.3. �
Remark 3.5. If the pair (A, S) is compatible and Q ∈ P (A, S) then Q is the reduced projection P A,S if and only if any of
the following conditions hold:

(i) N(Q ) = S ⊥A ∩ (S ∩ N(A))⊥;
(ii) c0(R(Q P S ⊥ ), S ∩ N(A)) = 0.
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The compatibility of a pair is related to the existence of solutions of certain Douglas type equations. For example, in
[3, Proposition 4.2], it is proved that the pair (A, S) is compatible if and only if the equation A1/2 P S X = P

A1/2(S)
A1/2 has

a solution. As a consequence, in the next result we show that if the pair (A, S) is compatible then the equation A1/2 X =
P

A1/2(S)
A1/2 has a solution. In that case, the reduced solutions are A-selfadjoint projections. Moreover, if S ∩ N(A) = {0}

then P A,S is a reduced solution of such equation.

Proposition 3.6. Let A ∈ L(H)+ and (A, S) be a compatible pair. Then the following conditions hold:

1. The equation A1/2 X = P
A1/2 S A1/2 has a solution.

2. If XM is a reduced solution of the equation A1/2 X = P
A1/2 S A1/2 then XM is an A-selfadjoint projection with N(XM) = S ⊥A .

3. If S ∩ N(A) = {0} then there exists a closed subspace M of H such that S ⊆ M and M +̇ N(A) = H. In that case, P A,S is the
reduced solution for M of the equation A1/2 X = P

A1/2 S A1/2 . In other words, P A,S = (A1/2)′ P
A1/2 S A1/2 where (A1/2)′ is the

generalized inverse for M of A1/2 .

Proof. 1. If the pair (A, S) is compatible then the equation A1/2 P S X = P
A1/2 S A1/2 has a solution (see [3], Proposition 4.2).

Hence, R(P
A1/2 S A1/2) ⊆ R(A1/2 P S ) ⊆ R(A1/2). Thus, A1/2 X = P

A1/2 S A1/2 has a solution.

2. Let D be a reduced solution for M of the equation A1/2 X = P
A1/2 S A1/2. Hence, A1/2 D2 = A1/2 D D = P

A1/2 S A1/2 D =
P 2

A1/2 S
A1/2 = P

A1/2 S A1/2. Hence both, D and D2 are reduced solution for M of the equation A1/2 X = P
A1/2 S A1/2 and

so, D = D2. Furthermore, AD = A1/2 P
A1/2 S A1/2 is selfadjoint. Thus, D is an A-selfadjoint projection. Finally, since N(D) =

N(P
A1/2 S A1/2), it is sufficient to show that N(P

A1/2 S A1/2) = S ⊥A = (AS)⊥ . Now, since for every η ∈ S and ξ ∈ H it holds

〈ξ, Aη〉 = 〈P
A1/2 S A1/2ξ, A1/2η〉, then the assertion follows.

3. Let M = S + (S +̇ N(A))⊥ . Since (S +̇ N(A))⊥ ⊆ S ⊥ , then M is closed. Moreover, since (A, S) is compatible then
S + N(A) is a closed subspace of H (see [2, Theorem 6.2]) and so M +̇ N(A) = H. Now, if XM denotes the reduced solution
for M of the equation A1/2 X = P

A1/2 S A1/2 then, by item 2., XM is an A-selfadjoint projection. Furthermore, S ⊆ R(XM).

In fact, if η ∈ S then P
A1/2 S A1/2η = A1/2η = A1/2 XMη. Thus, η − XMη ∈ M ∩ N(A1/2) = {0}. Then, η = XMη ∈ R(XM).

Since S ∩ N(A) = {0}, by item 2. it follows that N(XM) = N(P A,S ). Therefore, XM is an A-selfadjoint projection with
R(P A,S ) = S ⊆ R(M) and N(XM) = N(P A,S ). So, by Lemma 3.3, XM = P A,S . �
Acknowledgment

The authors thank Professor A. Maestripieri for her useful comments which lead to the equivalence between angles and reduced solutions.

References

[1] M.L. Arias, G. Corach, M.C. Gonzalez, Generalized inverses and Douglas equations, Proc. Amer. Math. Soc. 136 (2008) 3177–3183.
[2] G. Corach, A. Maestripieri, D. Stojanoff, Oblique projections and Schur complements, Acta Sci. Math. (Szeged) 67 (2001) 439–459.
[3] G. Corach, A. Maestripieri, D. Stojanoff, Oblique projections and abstract splines, J. Approx. Theory 117 (2002) 189–206.
[4] G. Corach, A. Maestripieri, D. Stojanoff, A classification of projectors, in: Topological Algebras, Their Applications and Related Topics, in: Banach Center

Publ., vol. 67, Polish Acad. Sci., Warsaw, 2005, pp. 145–160.
[5] A. Dajic, J. Koliha, Positive solutions to the equations A X = C and X B = D for Hilbert space operators, J. Math. Anal. Appl. 333 (2007) 567–576.
[6] F. Deutsch, The angles between subspaces in Hilbert space, in: S.P. Singh (Ed.), Approximation Theory, Wavelets and Applications, Kluwer, Netherlands,

1995, pp. 107–130.
[7] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413–416.
[8] H.W. Engl, M.Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82 (1981) 566–586.
[9] P.A. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971) 254–281.

[10] T. Kato, Perturbation Theory of Linear Operators, second ed., Springer, New York, 1966.
[11] M.Z. Nashed, Generalized Inverses and Applications, Academic Press, New York, 1976.
[12] M.Z. Nashed, On generalized inverses and operator ranges, in: Functional Analysis and Approximation, Birkhäuser, Basel, 1981, pp. 85–96.
[13] M.Z. Nashed, Inner, outer, and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987) 261–325.
[14] Z. Sebestyén, Restrictions of positive operators, Acta Sci. Math. (Szeged) 46 (1983) 299–301.


	Reduced solutions of Douglas equations and angles between subspaces
	Introduction
	Preliminaries
	Reduced solutions of Douglas equations
	Positive reduced solutions

	Reduced projections
	Acknowledgment
	References


