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Hopf-Rinow Theorem in the Sato Grassmannian®

Esteban Andruchow and Gabriel Larotonda

Abstract

Let Uz(H) be the Banach-Lie group of unitary operators in the Hilbert space H which are
Hilbert-Schmidt perturbations of the identity 1. In this paper we study the geometry of the
unitary orbit
{upu* : uw € Ua(H)},

of an infinite projection p in H. This orbit coincides with the connected component of p in
the Hilbert-Schmidt restricted Grassmannian Gry.s(p) (also known in the literature as the
Sato Grassmannian) corresponding to the polarization H = p(H)@®p(H)*L. It is known that
the components of Gr,..s(p) are differentiable manifolds. Here we give a simple proof of the
fact that Gr¥,(p) is a smooth submanifold of the affine Hilbert space p + Ba(H), where
B2(H) denotes the space of Hilbert-Schmidt operators of H. Also we show that G, (p) is
a homogeneous reductive space. We introduce a natural metric, which consists in endowing
every tangent space with the trace inner product, and consider its Levi-Civita connection.
This connection has been considered before, for instance its sectional curvature has been
computed. We show that the Levi-Civita connection coincides with a linear connection
induced by the reductive structure, a fact which allows for the easy computation of the
geodesic curves. We prove that the geodesics of the connection, which are of the form
v(t) = et*pe~t*, for 2 a p-codiagonal anti-hermitic element of Bo(#H), have minimal length
provided that ||z]| < w/2. Note that the condition is given in terms of the usual operator

norm, a fact which implies that there exist minimal geodesics of arbitrary length. Also we

0

.s(p) are joined by a minimal geodesic. If moreover

show that any two points p1,p2 € Gr
|lp1 — p2|l < 1, the minimal geodesic is unique. Finally, we replace the 2-norm by the k-
Schatten norm (k > 2), and prove that the geodesics are also minimal for these norms, up
to a critical value of ¢, which is estimated also in terms of the usual operator norm. In the

process, minimality results in the k-norms are also obtained for the group Us(H). [

1 Introduction

Let H be an infinite dimensional Hilbert space and B(H) the space of bounded
linear operators acting in H. Denote by GI(#H) and U(H) the groups of invertible
and unitary operators in H, and by By(H) the space of Hilbert-Scmidt operators,
that is

Ba(H) ={a € B(H) : Tr(a*a) < oo},
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where T'r is the usual trace in B(H). This space is a two sided ideal of B(#), and
a Hilbert space with the inner product

<a,b>=Tr(b*a).
The norm induced by this inner product is called the 2-norm, and denoted by
lall2 = Tr(a*a)'/?.

Throughout this paper, || || denotes the usual operator norm. Consider the following
groups of operators:

GlQ(H) = {g S Gl(%) g — 1e Bz(%)},

and

UQ(H) = {u S U(H) tu—1¢€ BQ(H)},

here 1 € B(H) denotes the identity operator. These groups are examples of what in
the literature [16] is called a classical Banach-Lie group. They have differentiable
structure when endowed with the metric ||g1 — g2||2 (note that g1 — go € Ba(H)).
Fix a selfadjoint infinite projection p € B(H). The aim of this paper is the geometric
study of the set

G0, (p) = {upu” : w € Un(H)},

the connected component of p in the (Hilbert-Schmidt) restricted Grassmannian
corresponding to the polarization H = R(p) @ R(p)* [29]. Since both R(p) and
R(p)* are infinite dimensional, the Us(H)-orbit of p lies inside Gr%,,(p) , [25]. The
fact that the group Us(H) acts transitively on Grl, (p) was proved by Stratila and
Voiculescu in [31] (see also [9]).
The Hopf-Rinow Theorem is not valid in infinite dimensional complete manifolds:
two points in a Hilbert-Riemann complete manifold may not be joined by a minimal
geodesic [12], [21], or even a geodesic [3]. The main results in this paper establish
the validity of the Hopf Rinow Theorem for Gr%,,(p) (EII, EI2). In the process
we prove minimality results for Us(H), which are perhaps well known but for which
we could find no references. We also prove minimality results, both in Us(H) and
GrY..(p), for the Finsler metrics given by the Schatten k-norms (k > 2).
If one chooses unitaries wy,, n € Z, in the different components of U,..s(H), then the
connected components of Gr.s(p) are

Grfes(p) = wnGT?es(p)w;kL = {WHUPU*WZ HEUES UQ(H)}’
so that the results described above are valid also in the other components of Gry.c5(p).
The restricted Grasamannian is related to several areas of mathematics and physics:
loop groops [29], [25], integrable systems [27], [29], [22], [32], group representation
theory [31], [9], [28], string theory [I], [5].
Unitary orbits of operators, and in particular projections, have been studied before
in ([10], [24], [8], [7], [I8], [2]). In this particular framework, restricting the action to
classical groups, certain results can be found in [9], [8] and [7]. In the latter paper,
the author considered the orbit of a finite rank projection.



If p has infinite rank and corank, then p and By(#H) are linearly independent. We
shall denote by
p+Ba(H)={p+a:acB(H)}.

Note that every element x in p + By(#H) has a unique decomposition z = p + a,
a € Ba(H). We shall endow this affine space with the metric induced by the 2-
norm: if z =p+aandy =p+0b, [z —yll2 := [|a —bll2. Apparently, p+ B(H) is a
Hilbert space.

The orbit Grl.,(p) sits inside p + Ba(H):

g = upu" =1+ (u—1)p(l - (uv—1)")
p+(u—1Dp+plu—1)"+(u—1)p(u—1)" €p+ Ba2(H).

Therefore we shall consider Gr%,,(p) with the topology induced by the 2-metric of
p + Ba(H)2. Throughout this paper, Ly denotes the length functional for piecewise

smooth curves, either in Us(H) or Grl,,(p), measured with the 2-norm:

t1
Lae) = [ (o)l .
to
We use the subscript h (resp. ah) to denote the sets of hermitic (resp. anti-hermitic.)
operators, e.g. Ba(H)ap = {x € Bo(H) : " = —x}.

Let us describe the contents and main results of the paper.

In section 2 we prove (Theorem 2.4) that Grl.(p) is a smooth submanifold of
the affine Hilbert space p + Ba(H), and that the map m, : Us(H) — Gr.(p),
mp(u) = upu* is a submersion.

In section 3 we introduce a linear connection, which is the Levi-Civita connection of
the trace inner product in Gr2,.(p). This connection was considered in [23], where

its sectional curvature was computed, and shown to be non negative. It is presented
here as the connection obtained from the reductive structure for the action of Us(H):

Ba(H)an = {y € B2(H)an : py = yp} © {2z € Ba(H)an : pzp = (1 — p)z(1 — p) = 0},

regarded as the decomposition of the Lie algebra of Us(H) (equal to Ba(H)ap), the
first subspace is the Lie algebra of the isotropy group, and the second subspace is
its orthogonal complement with respect to the trace. Therefore the geodesics can
be explicitely computed.

In section 4 we prove the main results (Theorems [4.8] [L11] and 12]) on minimality
of geodesics with given initial (respectively boundary) data. These results show
that any pair of points in Gr’,.(p) can be joined by a minimal geodesic, and that
there are mimimal geodesics which have arbitrary length.

In section 5 we consider the minimality problem, when the length of a curve is
measured with (the Finsler metric given by) the Schatten k-norms, for 2 < k < oo.
Here we obtain (Theorem 5.5) that for these metrics, the geodesics of the connection
have minimal length up to a critical value of ¢ (which depends on the usual operator
norm of the initial data). In both settings, k = 2 and k > 2, the minimality results
are proved first in Up(#H), and then derived for Grl,,(p) via a natural inmersion of

Tes
projections as unitaries (more specifically, symmetries).
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2 Differentiable structure of Gr° (p)

res
As said above, it is known that Gr?,,(p), being a connected component of Gr,.cs(p)
(the component of virtual dimension 0 [29]), is a differentiable manifold. Here we

show that Grl, (p) C p+Ba(H ), is a differentiable (real analytic) submanifold. The

Tes

action of Uz(#H) induces the map
7Tp : UQ(H) - Gr?es(p) ’ Wp(u) = UPU*

This map, regarded as a map on p + By(#H), is real analytic. Its differential at the
identity is the linear map

Op : Bo(H)an — B2(H)n, 0p(z) = xp — px.

Here we have identified the Banach-Lie algebra of Us(H) with the space Ba(H)an
of anti-hermitic elements in By(H), and used the fact that m, takes hermitic values,
i.e. in the set Ba(H )y, of hermitic elements of Ba(H).

Lemma 2.1. The map 5; defines an idempotent operator acting on Bo(H)p. More-
over, it is symmetric for the trace inner product in Ba(H)p,.

Proof. Straightforward computations show that if one regards ¢, as a linear map
from B(H) to B(H), then it verifies 45 = §,. Therefore 62 is an idempotent, whose
range and kernel coincide with the range and kernel of J,. Note that

512)(x) = xp — 2pxp + px.

Clearly 02 maps By (H)p, into By (H)p, and By (H)qn into Ba(H)an, so that in particular
it defines an idempotent (real) linear operator acting in By(H)p. Finally, if z,y €
BQ (H)hv

<& (x),y> = Tr(y(zp — 2pzp+ px) = Tr(pyz) — 2T (pypx) + Tr(ypx)
= Tr((py — 2pyp + yp)x) =< =,05(y) > .

Next let us show that the map 7, is a fibration:

Proposition 2.2. The map
mp : Ua(H) = Gries(p) C p+ Ba(H)n
has continuous local cross sections. In particular, it is a locally trivial fibre bundle.

Proof. Tt is well known that if p, q are projections such that ||p — ¢|| < 1, then the
element s = gp + (1 — ¢)(1 — p) is invertible. If ¢ € Gr% (p), then s € Glo(H).

Indeed, there exists u € Ua(H) (i.e. a unitary such that ugp = u —1 € Ba(H)) such
that ¢ = upu*. Then

s = p+ugp+puip+ uopugp + 1 — p+ up(l — p) + (1 — p)ug(l — p)
+up(1 — p)ug(l —p) € 14 Ba(H).
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Morever, s verifies sp = gp = gs. Let s = w|s| be the polar decomposition of s.
Note that sp = ¢s implies that ps* = s*¢, and then s*s commutes with p. Therefore

wpw* = s|s| 7 pls| st = s(s*s) TV 2p(s¥s) TV 2s* = sp(s¥s) T Lst = spsT! =q.

We claim that w € Us(H). Indeed, C1 + B2(H) is a *-Banach algebra (it is the
unitization of Ba(H)) with the 2-norm: ||A1 + a||3 = |A\|* + ||a||3. Since s lies in
Gla(H), in particular it is an invertible element of this Banach algebra, and therefore
by the Riesz functional calculus, w = s|s| =t € C + Bz(H), so that w = ul+wq with
wg € Ba(H). On the other hand, note that s*s, it is a positive operator which lies in
the C*-algebra C1 + KC(H), the unitization of the ideal X(H) of compact operators.
Therefore its square root is of the form r1 4 b, with » > 0 and b compact. Then
s*s = (r1 +b)? = r21 + b/, with ¥ € K(H). One has that s*s € Gly(H), so that
it is of the form 1 plus a compact operator, and since C1 and K(H) are linearly
independent, it follows that 7 = 1. Then w = s|s|~! is of the form 1 plus compact.
By the same argument as above, this implies that p = 1.

The map sending an arbitrary invertible element g € Gla(H) to its unitary part
u € Us(H) is a continuous map between these groups. In fact, it is real analytic, by
the regularity properties of the Riesz functional calculus.

Summarizing, consider the open set {qg € Grl,(p) : [l¢ — pll2 < 1} in Grl,(p). If ¢
lies in this open set, then in particular ||¢ — p|| < |l¢ — p|l2 < 1, so that s defined
above lies in Gly(H), and therefore its unitary part u € Us(H) verifies upu* = gq.
Denote by u = op(q). Clearly o, is continuous, being the composition of continuous
maps. Thus it is a continuous local cross section for 7, on a neighbourhood of p.
One obtains cross sections defined on neighbourhoods of other points of Grl.(p)
by translating this one with the action of Uy(H) in a standard fashion. O

Let us transcribe the following result contained in the appendix of the paper [26]
by I. Raeburn, which is a consequence of the implicit function theorem in Banach
spaces.

Lemma 2.3. Let G be a Banach-Lie group acting smoothly on a Banach space X.
For a fized xy € X, denote by 7y, : G — X the smooth map 7,(g9) = g-x¢. Suppose
that

1. Ty, is an open mapping, when regarded as a map from G onto the orbit {g-x :
g € G} of xg (with the relative topology of X ).

2. The differential d(mz,)1 : (TG)1 — X splits: its kernel and range are closed
complemented subspaces.

Then the orbit {g -z : g € G} is a smooth submanifold of X, and the map my, :
G —{g-x0:9€ G} is a smooth submersion.

This lemma applies to our situation:

Theorem 2.4. The orbit Gr?

res(P) is a real analytic submanifold of p + Ba(H) and
the map

2 Ua(H) = Griea(p) , mp(u) = upu®

s a real analytic submersion.



Proof. In our case, G = Us(H), X = p+ Ba2(H), ©o = p. The above proposition
implies that 7, is open. The differential d(mp); is J,, its kernel is complemented
because it is a closed subspace of the real Hilbert space By(H)on = (TU2(H))1.
The range of 8, equals 63 (B2(#H)p), and therefore it is closed and complemented in
By(H), by Lemma [ZTl In our context, smooth means real analytic (the group and
the action are real analytic). O

3 Linear connections in GrY

res (p) and U2 (H)

The tangent space of Grl..(p) at q is

(TGP, (p)q = {zq — qz : x € Ba(H)an},

or equivalently, the range of d,, the differential of m, at q. As noted above, it is
a closed linear subspace of By(H)p, and the operator 52 is the orthogonal projec-
tion onto (T'Grl.,(p)),. It is natural to consider the Hilbert-Riemann metric in
G720, (p) which consists of endowing each tangent space with the trace inner prod-
uct. Therefore the Levi-Civita connection of this metric is given by differentiating
in the ambient space By(H); and projecting onto TGrl. (p). That is, if X is a

tangent vector field along a curve v in Gr2, (p), then

DX .
— = 8(X).
dt 7(X)
This same connection can be obtained by other means, it is the connection induced
by the action of Us(H) on Gr2,.(p) and the decomposition of the Banach-Lie algebra

By(H)an of Uz(H):

By(H)an = {y € B2(H)an : yp = py} & {2 € Bo(H)an : p2p = (1 —p)2(1 — p) = 0},

or, if one regards operators as 2 X 2 matrices in terms of p, the decomposition of
Ba(H)qn in diagonal plus codiagonal matrices. This type of decomposition, where
the first subspace is the Lie algebra of the isotropy group of the action (at p), and
the second subspace is invariant under the inner action of the isotropy group, is
what in differential geometry is called a reductive structure of the homogeneous
space [30]. We do not perform this construction here, it can be read in [10], where
it is done in a different context, but with computations that are formally identical.
This alternative description of the Levi-Civita connection of Grl.,(p) allows for the
easy computation of the geodesics curves of the connection. The unique geodesic §

of Grl, (p) satisfying

6(0) = ¢ and 6(0) = zq — qx
is given by

5(t) = e*ge "

where z is the unique codiagonal element in Ba(H ). (¢zq¢ = (1 — q)z(1 — q) = 0)
such that

2q — qz = xq — qx.



Equivalently, z = §,(xp — pz) is the projection of x in the decomposition

r=y+z€{y€Bo(H)an:yp=py} ®{z € Ba(H)an : pzp = (1 —p)2(1 — p) = 0}.

Although our main interest in this paper are projections, it will be useful to take
a brief look at the natural Riemannian geometry of the group Us(#H). Namely, the
metric given by considering real part of the trace inner product, and therefore, the
2-norm at each tangent space. The tangent spaces of Uy(H) identify with

(TUQ (H))u = uBz(H)ah = BQ(H)ahu.
As with Gr?

res (D), the covariant derivative consists of differentiating in the ambient
space, and projecting onto TUs(H). Geodesics of the Levi-Civita connection are
curves of the form
w(t) = ue™,
for u € Us(H) and = € Ba(H)an. The exponential mapping of this connection is the
map

exp : Bo(H)an — U2(H), exp(x) = e”.
Remark 3.1.

1. The exponential map
exp : Ba(H)an — Ua(H)

is surjective. This fact is certainly well known. Here is a simple proof. If
u € Uy(H), then it has a spectral decomposition v = pg + >~ (1 + ag)pr,
where oy, are the non zero eigenvalues of u — 1 € By (H)qp- There exist t; € R
with [tx| < 7 such that e®* =1 + ;. One has the elementary estimate

el

2 (1
Ite|"( 1

) < e =112 = |ay [,

which implies that the sequence (tj) is square summable. Let z =), o, itppy
(note that pj are finite rank pairwise orthogonal projections). Thus z €
Ba(H)qn and clearly e* = .

2. The exponential map is a bijection between the sets
Bo(H)ap D{z € Bo(H)an : |I12|| <7} = {u € Us(H) : |1 —ul| <2}

Clearly if z € Ba(H)qn with ||z]] < 7, then e* € Us(H) and |e* — 1| < 2.
Suppose that u € Us(H) with [[u—1|| < 2. Then there exist x € B(H), 2* = —x
and ||z|| < 7, and z € By(H)an, such that e* = e* = w. Since ||z|| < 7, x
equals a power series in u = e, which implies that z commutes with z. Then
e*~% = 1 and thus (note that z — x is anti-hermitic) z — x = ), 2kmipy,
for certain projections py. Let z = ) i>1 Ajq; be the spectral decomposition
of z. Note that e* = i>1 ehi qj, and since x commutes with e, this implies
that  commutes with ¢;, and also with z. Also it is clear that ¢; and p;, also
commute, and that ¢; have finite ranks. Then

T = Z Ajq; + Z 2kmipg.

Jj1 |k|>1



The fact that ||z|| < 7 implies that the terms 2kmipy are cancelled by some of
the A;g;, in order that none of the remaining \; verify |A;| > 7. It follows that
the pi have finite ranks, and that there are finitely many. Thus we can define
2" adding the remaining \;q;. Clearly 2/ verifies ||2/|| < 7 and ¢* = % = u.

3. The argument above in fact shows that when one considers the exponential
exp:{z € Ba(H)an : ||2]| < 7} — Ua(H),
then it is surjective.

If x € B(H) with ||z|| < 7 then it is well known that

e 1) = 2sin12]), M)

There is a natural way to imbedd projections in the unitary group by means of the
map q — €; = 2¢ — 1. The unitary ¢; = 2¢ — 1 is a symmetry, i.e. a selfadjoint
unitary: €* =€, €2 = 1. See for instance [24], where this simple trick was used to
characterize the minimality of geodesics in the Grassmann manifold of a C*-algebra.
However, if ¢ € Gr2,,(p), €, does not belong to Us(H) (recall that ¢ has infinite rank
and corank). One can slightly modify this imbedding in order that it takes values

in Uy(#H). Consider:
S:Grl (p) = Us(H), S(q)=(2¢—1)(2p — 1) = egep.

Clearly it takes unitary values. Let us show that these unitaries belong to Uz (H).
Note that if ¢ = upu* with u € Us(#H), then

€g =uepu” =€y + (u—1)ep + p(u” — 1) + (u— 1)ep(u* — 1) € €, + Ba(H),

so that
€q€p € (p + Ba(H))ep = 1 + Ba(H).

Proposition 3.2. The map S preserves geodesics, and its differential is 2 times an
1sometry.

Proof. Let & be a geodesic in G0 (p), d(t) = e*qe ™ with 2z € By(H)an and z

Tes
codiagonal in terms of ¢. This latter condition is equivalent to z anticommuting
with €;: ze, = —€42. Which implies, as remarked in [10], that ;e = e'*¢,, and

thus etzeqe*tz = 2tz €q- Therefore
S((1) = 2 egep,

which is a geodesic in Ua(H).
The differential of S at ¢ is given by

dSQ(U) - 27}61’7 v € (TGrges(p))Q'

Right multiplication by a fixed unitary operator is isometric in By (), therefore this
map is 2 times an isometry. O



4 Minimality of geodesics

In this section we prove that the geodesics of the linear connection have minimal
length up to a certain critical value of ¢. This could be derived from the general
theory of Hilbert-Riemann manifolds. We shall prove it here, and in the process
obtain a uniform lower bound for the geodesic radius, i.e. the radius of normal
neighbourhoods. First we need minimality results in the group Us(#H). These results
are perhaps well known. We include proofs here for we could not find references for

them, and they are central to our argument on G2, (p).

Lemma 4.1. Suppose that x € Ba(H)an has finite spectrum and ||z|| < 7, and let
u € Us(H). Then the (geodesic) curve u(t) = uel®, t € [0,1], has minimal length
among all piecewise smooth curves in Us(H) joining the same endpoints.

Proof. Since the action of left multiplication by w is an isometric isomorphism of
Us(H), it suffices to consider the case u = 1. Let o(z) = {Ao = 0, A1,..., A} be
the spectrum of x. Then z = """ | A\;p; for p; finite rank projections, and denote
by po the projection onto the kernel of z. Note that e’ = py + > 1, eip;. Let
r2 =Tr(p;),i=1,...,n, and denote by S; the sphere in Ba(H) of radius r;,

Si = {a € By(H) : Tr(a*a) =7},

with its natural Hilbert-Riemann metric induced by the (trace) inner product in
the Hilbert space Ba(H). Consider the following smooth map

O :Ux(H) = S1 X ... xSy, ®(u) =(piu,...,ppu).

Here the product of spheres is considered with the product metric. Apparently ® is
well defined and smooth. Note that the curve ®(u(t)) is a minimal geodesic of the
manifold &1 X ... X S,. Indeed,

D(u(t)) = (eMpr,... e py),

where each coordinate ' p; is a geodesic of the corresponding sphere S;, with length
equal to |A\;|r; < ||z||r; < 7wry, and therefore it is minimal. Then ®(u(t)) is minimal,

being the cartesian product of n minimal geodesics in the factors. Next, note that
the length of ®(u) equals the length of pu:

1 n
Lo (®(p)) = /0 1™, Aaepa)lldt = {3 NP} 2 = llzllz = La(p).
1=1

If v(t), t € [0,1] is any other smooth curve in Us(H), we claim that Lo(®(v)) <
Ly(v). Clearly this would prove the lemma. Indeed, since ®(x) is minimal in
S1 X ... X Sp, one has Lao(P(pn)) < La(P(v)), and therefore

Lo(v) = La(®(v)) = La(®(p)) = La(p)-

Note that

1 n
Lo(@(v)) = /0 05 lomily 2t
=1
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Since Y. pi =1 —po and v*(1 — po)v < v*, one has that
n n
DollEpills = > Tr(*piv) = Tr(e*(1 = po)») < Tr(i*) = 7|3,
i=1 i=1

Therefore )
La@() < [ [Pladt = Lo(v).
0
O

Theorem 4.2. Let uw € Us(H) and x € Ba(H)an with ||z|| < w. Then the curve
wu(t) = uet®, t € [0,1] is shorter than any other pieceise smooth curve in Us(H)
joining the same endpoints. Moreover, if ||x|| < m, then p is unique with this
property.

Proof. Again, by the same argument as in the previous lemma, we may suppose
u = 1. Assume that g is not minimal. Let ~(¢), ¢t € [0,1] be a piecewise smooth
curve in Uy(H) with La(y) + 6 = ||z||2 = Lao(u), for some § > 0. Let 2z € Bo(H)an
be a finite rank operator close enough to x in the 2-norm in order that

y = log(e~"e*) verifies ||y|l2 < §/4,

llllz = llzll2] < 6/4,

and
2|l < 7.

Let p(t) = e%e, and consider y#p the curve v followed by p, which joins 1 to e?.
Then

La(y#p) = La(v)+ L2(p) = La(7) + [[yll2 < L2(7)+6/4 = [lzfl2—=36/4 < ||z[]2—=6/2,

which contradicts the minimality of the curve e* proved in the previous lemma,
because ||z|| < 7.

Suppose now that ||| < m. By the general theory of Hilbert-Riemann manifolds
[I7], any minimal curve starting at u is a geodesic of the linear connection, i.e. a
curve of the form ue!™. If it joins the same endpoints as u, then it must be e = e®.
Since ||z|| < 7, x is a power series in terms of e”, and therefore w commutes with
. Then e¥~% = 1. Suppose that w # z, then

m
w—x = Zka’pi,
k=1
for certain pairwise orthogonal (non nil) projectors p; € Ba(H). Then,

m
|w — z||3 = Z47T2T7“(Pz‘)2 > 47
k=1

Since ||z|| < m, this inequality clearly impies that ||w| > =, therefore leading to a
contradiction. O
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Remark 4.3. The proof in Theorem shows that if x € Bo(H)an, the curve
e!® remains minimal as long as t||z| < . One has coincidence |z|| = ||z||2 only
for rank one operators. In general, the number C, = ||z|2/]|z|| can be arbitrarily
large. Therefore, for a specific x € Ba(H)an, in terms of the 2-norm, e will remain
minimal as long as

t)|z]|2 < Cyr.

Corollary 4.4. There are in Us(H) minimal geodesics of arbitrary length. Thus
the Riemannian diameter of Us(H) is infinite.

Theorem 4.5. Let ug,u; € Us(H). Then there exists a minimal geodesic curve
joining them. If |[ug — u1|| < 2, then this geodesic is unique.

Proof. Again, using the isometric property of the left action of Us(H) on itself,
we may suppose ug = 1. The first assertion follows from the surjectivity of the
exponential map exp : {z € Ba(H)an : ||z]| < 7} — Grl.(p) in Remark B} and

Theorem The uniqueness assertion also follows from Remark [B.11 O

Denote by dy the geodesic distance, i.e. the metric induced by the 2-norm on the
tangent spaces, both in Us(#H) and Gr2..(p).

Proposition 4.6. If u,v € Us(H) then

2
\/E%(u,v) < lu = wll2 < da(u, v).

In particular the metric space (Uz(H),dz2) is complete.

Proof. Since left multiplication by v* is an isometry for both metrics, we may assume
that v = 1. As in Remark B.I we may assume that u = pg + >, € py, with p;
mutually orthogonal projections and | ¢ |< w. Then

lu =103 =11 (™ = DpelF =D [ e =1 = 2(1 — cos(ti))r,

E>1 E>1 E>1

where ry, = Tr(px). Now

1220 —eos) 21 12 (0= LDy s p 0 - T
- - 12 7 — 12

for any ¢ € [~m,7]. Let z = ) ;5 itgpy; clearly z € Ba(H)qn by the inequality
above and e = u. If y(t) = €'*, then v is a minimal geodesic in Uy(H) joining 1 to
u because ||z|| < w. Then da(u,1) = La(v) = ||2z||2, and from the two inequalities

above we obtain /1 — 7{—; lIzll2 < |lu—wvl||2 < ||z]|2, which proves the assertion of the
proposition.

Therefore, Us(H) is complete with the geodesic distance, because (Ua(H), | ||2) is
complete. This fact is certainly well known. We include a short proof. Suppose that
uy, is a Cauchy sequence in Uz(#H) for the 2-norm. Since the 2-norm bounds the
operator norm, it follows that there exists a unitary operator u such that |lu, —u| —
0. On the other hand w, — 1 is a Cauchy sequence in By(#), and therefore it
converges to some operator in By(H). Thus u € Uz (H). O
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Remark 4.7. If x,y are anti-hermitic operators with [|z||,||y|| < =, then e* = ¥
implies z = y. If ||z|| = ||y|| = 7, from Theorem .2 it follows that e* = e¥ implies
|lz||2 = |ly||2, because the curves e'*, e are both minimal geodesics joining the same
endpoints, hence they have the same length.

0
res

Now our main results on minimal geodesics of Gr},.(p) follow:

Theorem 4.8. Let z € Bo(H)an which is codiagonal with respect to q € Grl.,(p),

Tes

and such that ||z|| < 7/2. Then the geodesic a(t) = e*qe=%*, t € [0, 1] has minimal
length among all piecewise smooth curves in Grl, (p) joining the same endpoints.

Moreover, if ||z|| < 7/2, then « is unique having this property.

Proof. Let 3 be any other piecewise smooth curve in Gr%, (p) having the same

endpoints as a. Consider S(a) and S(8) in Uz(H). Note that S(a)(t) = e*Ze4ep,
with 2||z|| < 7. Therefore

Lx(0) = 5 L2(S(0)) < 5(S(6)) = La(5).

DN | =

The uniqueness part is an easy consequence. O

Remark 4.9. Again, as remarked after 2] for specific z (of rank greater than
one), the geodesic e'?ge'* will remain minimal as long as

s
tlzll < 5.

where again C, = ””ZZ””2 can be arbitrarily large.

Analogously as for Us(#H), one has

Corollary 4.10. There are in Grl, (p) minimal geodesics of arbitrary length, thus

res
Gr0..(p) has infinite Riemannian diameter.

Theorem 4.11. Let qq,q1 € G0, (p) such that ||qo — q1|| < 1. Then there erists a

res
unique geodesic joining them, which has minimal length.

Proof. The action of Uy(H) on Grl(p) is isometric, therefore we may suppose

without loss of generality that g9 = p. Then [24], [10] there exists z € B(H),

z* = —2z, ||z|| < 7/2, z p-codiagonal such that e*pe~* = ¢q;. Therefore
€ = € epe 7 = e*ey,

and thus z = %log(eq €,), where log is well defined because |1 — €g, 6| = |l€g —
&l = 2|lp — q1]| < 2. On the other hand ey €, € Uz(H), therefore by Remark [3.T]
2 € Bo(H)an. Moreover,

2[|z]] <,

and therefore the curve u(t) = e*?¢, is a minimal geodesic in Uz(H). Again, as in

the previous theorem, this implies that the geodesic curve §(t) = e*pe~'*, which
joins p and ¢, is minimal. O

12



Next let us consider the case when |/¢3 — g2/ = 1. The problem of existence of
minimal curves in this case, in the context of abstract C*-algebras, and measuring
with the operator norm, has been studied by Brown in [6].

Theorem 4.12. Let qo,q1 € Grl,(p) with ||go — q1]] = 1. Then there exists a
minimal geodesic joining them.

Proof. Again, without loss of generality, we may suppose gy = p. Consider the
following subspaces:

Hoo = ker pnker q1 , Ho1 = ker pNR(q1), Hio = R(p)Nkerq1, Hi1 = R(p)NR(q1),

and
Ho = (Hoo ® Ho1 @ Hio ® Hi1)*.

These are the usual subspaces to regard when considering the unitary equivalence
of two projections [I1]. The space Hj is usually called the generic part of H. It is
invariant both for p and ¢;. Also it is clear that Hgy and Hp; are invariant for p
and ¢1, and that p and ¢; coincide here. Thus in order to find a unitary operator
e* conjugating p and ¢, with z € Ba(H)an, which is codiagonal with respect to p,
and such that ||z|| < 7/2, one needs to focus on the subspaces Hy and Hyy & Hio.

Let us treat first Hy, denote by p’ and ¢} the projections p and ¢ reduced to Hy.
These projections are in what in the literature is called generic position. In [I3]
Halmos showed that two projections in generic position are unitarily equivalent,
more specifically, he showed that there exists a unitary operator w: Hy - K X K
such that

1 2
wp'w*:p”:<0 8) and wqiw*:q’{:(is §§>’

where ¢, s are positive commuting contractions acting in K and satisfying ¢ +
52 = 1. We claim that there exists an anti-hermitic operator y acting on K x K,
which is a co-diagonal matrix, and such that e¥p”’e™¥ = ¢{. In that case, the
element zp = w*yw is an anti-hermitic operator in Hy, which verifies e®p'e™% = ¢},
and is co-diagonal with respect to p/. Moreover. we claim that y is a Hilbert-
Schmidt operator in K x K with ||y|| < 7/2, so that 2 is also a Hilbert-Schmidt
operator in Hy with ||zo|| < 7/2. Let us prove these claims. By a functional
calculus argument, there exists a positive element z in the C* algebra generated by
¢, with ||z|] < 7/2, such that ¢ = cos(z) and s = sin(z). Since ¢f lies in the Hilbert-
Schmidt Grassmannian of p”, in particular one has that ¢ |y is a Hilbert-Schmidt
operator. That is, the operator cos(z) sin(z)+ sin(z)? is Hilbert-Schmidt in K. By
a strightforward functional calculus argument, it follows that z is a Hilbert-Schmidt
operator. Consider the operator
(0 —x
-(2 )

Clearly y* = —y, |ly|]| < 7/2. A straightforward computation shows that

y I -y I
e'pe ”=Dpy,

13



and our claims follow.
Let us consider now the space Hy; @ Hio. Recall [29] that an alternative definition
of Grl.,(p) states that if ¢ € Gr2..(p) then

Tes Tes

Pq1lr(q) : B(q1) — R(p)

is a Fredholm operator of index 0. Note that Ho; = ker(pq1|g(q,))- Thus in particu-
lar dim Hy; < oo. On the other hand, it is also apparent that Hyg C R(pqi)*NR(p),
and therefore also dim Hyp < oo. Therefore, the fact that pg| R(q) has zero index
implies that

dim H01 < dim HlO-

The fact that ¢; lies in the connected component of p in the Sato Grassmannian
corresponding to the polarization given by p, implies that, reciprocally, p lies in the
component of g1, in the Grassmannian corresponding to the polarization given by
q1- Thus, by symmetry,

dim H01 = dim HlO-

Let v : Hig — Hp1 be a surjective isometry, and consider
w: Hyy ® Hio = Hor @ Hio ,w(§' +&") = v*¢ 4 v

In matrix form (in terms of the decomposition Hyy @& Hig),

w_Ov
vt 0 )

Apparently, wp| g, e, W = q1|Hy @ Hy,- Let

0 v
22—71'/2( o 0).

Note that z9 is an anti-hermitic operator in Hy; @ Hyg, with norm equal to /2. A
straightforward matrix computation shows that e*? = w. Consider now

z=2z0+ 21+ 22,

where z; = 0 in Hyy @© Hi1, and zg is the anti-hermitic operator in the generic
part Hg of H found above. Then it is clear that z is anti-hermitic, Hilbert-Schmidt
(dim(Hg, @ Hyp) < 00), p-codiagonal, ||z|| = 7/2, and e*pe™* = ¢;. O

Also completeness of the geodesic metric follows:
Corollary 4.13. The metric space (G0 (p),ds) is complete.

Proof. Let q, be a Cauchy sequence in Grl. (p). Since the map S : Grl. (p) —

Tes res
Us(H) of Proposition 3.2]is 2 times an isometry, then S(g,) is a Cauchy sequence in
Us(H), and therefore converges to an element u of Uy(#H) in the metric dy. Moreover,
S(Gr0,.(p)) is closed in Us(H) and then exists ¢ € Gr% (p) such that S(q) = u.

res TeSs

Clearly ds2(gn,q) — 0. O
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5 k-norms

In this section we study the minimality problem of geodesics in Grl,,(p) measured

in the k-norms, for k € R, k > 2. To do this, as with the case k = 2, we study first
short curves in Us(H) with these norms. Minimality of geodesics in Grl. (p) will
follow with arguments similar as in the previous section. We shall endow now the

tangent spaces of Us(H) and Gr%,,(p) with the Schatten k-norm:

lzllx = Tr(jal*)!/* = Tr((a*z)2)V".

Note that since the tangent spaces live inside By(#H), and k& > 2, the k-norm of z is
finite. We shall denote by Lj the functional which measures the length of a curve
(either in Uy(H) or Gr2.(p)) in the k-norm:

Li(a) = / )yt

We are now then in the realm of (infinite dimensional) Finsler geometry.
To prove our results, two inequalities proved by Hansen and Pedersen in [14] will play
a fundamental role. Let us transcribe these inequalities, called Jensen’s inequalities.

1. The first is the version for C*-algebras ([14], Th. 2.7): if f(t) is a convex
continuous real function, defined on an interval I and and A is a C*-algebra
with finite unital trace ¢r, then the inequality

tr(f(Q_ braibi)) < tr(>_ b} f(ai)bi) (2)
i—1 i=1

is valid for every n-tuple (a1, ...,a,) of selfadjoint elements in A with spectra
contained in I and every n-tuple (b1,...,b,) in A with >, bfb; = 1. We
shall use it in a simpler form: if a is a selfadjoint element in a C*-algebra with

trace tr, then
tr(f(a)) < f(tr(a)) (3)

for every convex continuous real function defined in the spectrum of a.

2. The second inequality is valid for finite matrices ([14], Th. 2.4): let f be a
convex continuous function defined on I and let m and n be natural numbers,
then

Tr(f(Y ajwia;)) < Tr(d ] ai f(zi)a;) (4)
i—1 i=1

for every n-tuple (z1,...,z,) of selfadjoint m x m matrices with spectra con-

tained in I and every n-tuple (ai, ..., a,) of m x m matrices with Y " | afa; =

1. We shall need a simpler version, namely if r € R, r > 1, then

n

Tr(a") = Tr((Y_pja’p;) = Tr((D_pjap;)") = Tr(>_(pjap;)"),  (5)

=0 =0 i=0
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for pg,p1,...,pn projections with Z?:o pj = 1 and pq,...,p, of finite rank,
and a a positive trace class operator. A simple aproximation argument shows
that one can obtain (G from (). Indeed, let {],... ,%J_} be an orthonormal
basis for the range of p;, j = 1,...,n and {¢;,¢2,...} be an orthonormal
basis for the range of pg. For any integer NV > 1, let e denote the orthogonal
projection onto the subspace generated by {¢/.j = 1,...,n, i = 1,...k;} U
{¢r,k =1,...,N}. Clearly ey is a finite rank projection such that p; < en
, for 5 = 1,...,n and such that eypoeny = po,n is also a projection. Let
any = enyaen. Then the following facts are apparent:

(a) pjanp; = pjap; for j=1,...,n.
(b) any — a and po,yanpo,N — poapo in || ||1, and therefore pjalyp; — pja’p;
for j=0,1,...,nand r>1in | |;.

It follows that one can reduce to prove () for the operator ay and the pro-
jections po N, P1,--.,Pn, all of which are operators in the range of ey, which
is finite dimensional.

Let us first state the following lemma which is a simple consequence of (B]).

Lemma 5.1. Let a € B(H) be a positive operator and p a finite rank projection.
Then, ifre R, r>1

Tr(pap)” < Tr(p)"'Tr((pap)").

Proof. If p = 0 the result is trivial. Suppose Tr(p) # 0. Consider the finite C*-

algebra pB(H)p, with unit p and normalized finite trace tr(pxp) = %. Then

by Jensen’s trace inequality for the map f(t) =",

Tr(pap)” _ Tr((pap)”)
Tr(p)r = Tr(p)

which is the desired inequality. U
Denote by S& the unit sphere of By (H):
Sk ={x € Be(H) : [l«]lx = R}.

If p(t) is a curve of unitaries in Us(H), and p is finite rank projection with Tr(p) =
RE, then u(t)p is a curve in SE: ||upllx = Tr((pu*up)*/?)V/* = R.

Lemma 5.2. Let p be a finite rank projection with Tr(p) = R¥ and pu(t) be a smooth
curve in Ua(H), such that ;1(0)p = p and p(1)p = e*p with —7 < a < w. Then the

curve up of SE, measured with the k-norm, is longer than the curve e(t) = e®p.

Proof. The length of up is (in the k-norm) measured by

1 1
[ Nitwwlede = [ o)) ar
0 0
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by the inequality in the above lemma,

1
Li(up) > Tr(p) * /0 Tr(pis(t)*u(t)p) /.

This last integral measures the length of the curve up in the 2-sphere S, ,, of radius

Rk/
R*/? in the Hilbert space Ba(H). The curves €(t) = e!®p are minimizing geodesics
of these spheres, provided that |o|RF/? < wR*/2, which holds because |a| < 7. It

follows that .
/0 Tr(pi() 4(E)p) 2 > La(e) = |a|Tr(p) /2.
Then

Li(up) > [a|Tr(p) 5 Tr(p)/2 = |a|R = Ly(e).

U
Lemma 5.3. Let € Ba(H)ap with finite spectrum, x = Y7 | a;p; with > 7 | p; =
1 —po (po the kernel projection of x) and —7 < o; < 7 (i.e. ||z|| < w). Then the
curve 6(t) = €, t € [0,1] is the shortest curve in Us(H) joining its endpoints,
when measured with the k-norm.

Proof. Let Tr(p;) = Rk i=1,...,n. Note that the kernel projection py has infinite
rank. The length Lg(p) of p is measured by fo ||fe(t)||xdt. Then, by inequality (&),
with a = f(¢)*(t) > 0 in B1(H), one has

ke = O Tr((pii()*i(t)p) ™)} = {ZHM tpill}. (6)

Jj=0

On the other hand, note that
18115 = {D_ el "RE)}*,
=1

Trivially, {37 Tr((psfs(t)* fu(t)pi)**) 35 > {325, Tr((pin(t)* fu(6)pa) /) HF, (iee.
we omit the term corresponding to the projection pgy, which has infinite trace). We
finish the proof by establishing that

(D Tr(pain(t) iw()p)* )} = {3 leal "REYF = Li(6).
j=1

=1

There is a classic Minkowski type inequality (see inequality 201 of [15]) which states
that if fy,..., f, are non negative functions, then

/{ka TR Z{/ i)V

In our case fi(t) = [ i(t)pille:
1 n n 1 n

/O 5 a@pl e > (4 /0 V@pllsdt}) s > (3 JaalREYVE,
=1 =1 =1
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where in the last inequality we use the previous lemma: fol lfe(t)||xdt > |oy|R; for
1=1,...,n. ]

Theorem 5.4. Let x € By(H)an with ||z|| < 7w, and v € Us(H). Then the curve
5(t) = ve'® has minimal length among piecewise smooth curves in Us(H) joining the
same endpoints, measured with the k-norm.

Proof. There is no loss of generality if we suppose v = 1. Indeed, for any curve pu
of unitaries, Lj(u) = Li(v*y). Suppose that there exists a piecewise C! curve of
unitaries p which is strictly shorter than 0, Ly(u) < Lk(0) — € = ||z|[x —e. The
element z can be approximated in the k-norm topology of Bi(#) by anti-hermitic
elements z € By (#H), with finite spectrum and the following conditions:

L Izl < Jlzf) < .
2. el — /2 < llzllx < 2]l

3. There exists a C* curve of unitaries joining e* and e? of k-length Lj less than
€/2.

The first two are clear. The third condition can be obtained as follows. By the
third condition e™%e* = e¥, with y € Ba(H)qn. Moreover z can be adjusted so as
to obtain y of arbitrarily small k-norm. Then the curve of unitaries y(t) = e%e!¥ is
C*°, joins e* and e?, with k-length ||y||x < €/2.

Consider now the curve y/, which is the curve u followed by the curve e*e®¥ above.
Then clearly

L) < Li(p) + llylli < Li(p) + €/2.

Therefore Ly (u') < ||z|lx — €/2. On the other hand, since x’ joins 1 and e*, by the
lemma above, it must have length greater than or equal to ||z||x. It follows that

1zl < [lzllk — /2,

a contradiction.

O

One obtains minimality of geodesics in Gr2. (p) for the k-norm analogously as in

the previous section:

Theorem 5.5. Let z € Bo(H)an, codiagonal with respect to q € Grl. (p), with
|lz|] < m/2. Then the geodesic a(t) = e**qe %, t € [0,1], has minimal length for the
k-norm among all piecewise smooth curves in Gr2,.(p) having the same endpoints.

If ||z]| < 7/2, this curve « is unique with this property.

Proof. The proof follows as in the analogous result for the 2 norm in the previous
section, noting that the map S is also isometric for the k-norms. O

Theorem 5.6. Let q1,q2 € Grl. (p), then there exists a geodesic joining them,

which has minimal length fot the k-norm.

Proof. The proof follows as in the above result, the geodesic a(t) = e*qie~'* with
|z]| < 7/2 exists by virtue of (£I1]) and (£12]). O
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