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Highlights

We present a novel informational plane that can lead to better characterization of the

investigated time series in both, the correlation structure and the probability distribution
shape.

We show the insensibility to the probability distribution of the Bandt and Pompe
symbolization used to estimate the Shannon Entropy.

Two examples are presented and our plane gives a deeper understanding of them.
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Abstract

The aim of the contribution is to introduce a novel information plane, the causal-
amplitude informational plane. As previous works seems to indicate, Bandt
and Pompe methodology for estimating entropy does not allow to distinguish
between probability distributions which could be fundamental for simulation or
for probability analysis purposes. Once a time series is identified as stochastic by
the causal complexity-entropy informational plane, the novel causal-amplitude
gives a deeper understanding of the time series, quantifying both, the autocor-
relation strength and the probability distribution of the data extracted from
the generating processes. Two examples are presented, one from climate change
model and the other from financial markets.

Keywords: Permutation entropy; Time series analysis.

1. Introduction

The dynamical behavior of a complex system is usually recorded as a time
series (TS). One important task is to understand the nature (i.e linear, chaotic,

periodic, stochastic, etc.), along with others features that can help modeling the
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data generator process of the time series at hand.

The use of quantifiers based on Information Theory has led to interesting re-
sults regarding the characterization of nonlinear chaotic dynamics, improving
the understanding of their associated time series. Permutation Entropy (PE),
which is a information theory quantifier, that has the same functional form as
Shannon Entropy [1] but uses, in order to estimate the required probabilities,
the symbolic methodology proposed by Bandt and Pompe [2] that reveals inter-
nal nonlinear causality, understood as autocorrelation, for a given time series.
In [3, 4, 5, 6, 7] was found that the use of the Permutation Entropy and the
Statistical Complexity in an informational plane is very useful to distinguish
between chaotic (i.e deterministic) and stochastic dynamics. But once this dis-
crimination is completed, it is time to look for a better understanding by an-
alyzing the distribution of the data. In this manner, several contribution were
presented before, in [3, 8] PE was applied for general non Gaussian 1/f* noise
and the fractional Brownian motion and, in [9], theoretical curves for the PE of
the fractional Brownian motion and fractional Gaussian noise were developed.
In [3] PE was applied in general non Gaussian stochastic processes, and there-
fore no knowledge about their moments were obtained in order to compare with
chaotic time series, and in [8] PE was applied in Gaussian time series. At this
point the following question arise: Is the Bandt and Pompe methodology useful
to characterize the shape of the marginal probability distribution of a stochas-
tic process?. This is the question this paper addresses by means of simulating
Gaussian and non-Gaussian autoregressive processes of order 1 and comparing
their Shannon Amplitude Entropy (i.e the Shannon Entropy of the histogram of
the data) and Shannon Permutation Entropy. Autoregressive processes are sim-
ulated within this paper because both the associate correlation structure and
the probability distribution are well established and the correlation structure
is easily manipulable through the correlation parameter. Although Gaussian
autoregressive processes are well known [10], this is not the case of non Gaus-
sian autoregressive processes. However, the later impacts in diverse fields of

science and technology as diverse as random number generators [11], modeling




irreqularly spaced transaction financial data [12], foreign exchange rate volatil-
ity modeling [13], studying nervous systems mechanism (Spike sorting)[14] and
speech signal analysis [15] among others, inciting their study. The determina-
tion of the Probability Density Function (PDF) of the data generator process is
a fundamental task in several areas like simulation modeling where a real time
series should be reproduce numerically.

The paper reads as follows: Section 2 presents a brief introduction to Permu-
tation Entropy and Amplitude Entropy and the stochastic processes simulated,
Section 3 presents numerical results of the application of the entropies over the
simulated stochastic processes, Section 4 is devoted to present some application

cases and finally Section 5 is a discussion about the results.

2. Information quantifiers

A brief introduction to the entropy quantifiers considered within this paper
is presented in order to make this paper self-contained. Given a continuous
probability distribution function (PDF) — f(x)— the entropy of this distribution
is given by:

St = = [ 7m0 da. 1)
and is a measure of global character that it is not too sensitive to strong changes
in the distribution taking place on a small-sized region. Let now P = P(i) =
{pi; i=1,---,N}, with Zilpi = 1, be a discrete PDF, with N the number
of possible states of the system under study. In the discrete case, we define a

“normalized” Shannon entropy (0 < H < 1) as

H[P] = S[P]/Smaz = {—Z pi ln(pi)}/Sm, (2)

where the denominator Sp,q; = S[Pe] = In N is that obtained by an uniform

probability distribution P, = {p; =1/N, Vi=1,--- ,N}.

There is no a universal way to compute the set P for every system. One

possibility is to estimate each element p; is by using the empirical histogram




of the values of the time series using some method that wishfully leads to a
good estimation of the underlying probability distribution function of the data.
This is done by using the histogram as the maximum likelihood estimator of

the PDF, and computing the probabilities p; as:

B lT;lmH 1(x; belongs to bin 7)

Pi = T—m+1

7 (3)
leading to the Normalized Amplitude Entropy HMY (note: ML stands for
the Maximum Likelihood method). Note that this entropy does not take account
of the order of the data appearance in the time series.
Other way to compute the probabilities p; is through the symbolization proposed
by Bandt and Pompe [2]. Let X,,(¢t) = (z¢, Ttt1s -5 Ttam—1) With 0 < ¢ <
T — m + 1 be a non-disjoint partition containing the vectors of real values of
length m of the time series {X;}ter. Let S,,>3 the symmetric group of order
m! form by all possible permutation of order m, m; = (i1,42,...,%m) € Sm
(i; # ix Vj # k so every element in 7; is unique). We will call an element 7;
in S,, a symbol or a motiv as well. Then X,,(¢) can be mapped to a symbol

m; in Sy, for a given but otherwise arbitrary ¢t. The m number of real values

Xm(t) = (z¢,Te41, - - -, Tem—1) are mapped onto their rank. The rank function
is defined as:
m—1
R(T44n) = L(Zk < Titn) (4)
k=0

where 1 is the indicator function (i.e 1(Z) = 1 if Z is true and 0 otherwise),
Tign € Xpm(t) with 0 < n < m—1and 1 < R(z4y,) < m. So the rank
R(min(z¢yx)) = 1 and R(max(ziyr)) = m. The complete alphabet is all
the possible permutation of the ranks. Hence, any vector X,,(¢) is uniquely
mapped onto m; = (R(xt), R(xt41), ..., R(Tt4m—1)) € Sp. With this Rank
Permutation Mapping one simply maps each value z; in X,,(t) placing its rank
R(z;) € {1,2,...,m} in chronological order to form 7; in S,,. Using the rank
permutation Mapping we compute pi = P(m;) (see Fig. 1, bottom) ,
T-m+l 4

I (X,n (1) has ordinal patter m; in S,,)
pi = T _mil

, ()
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Figure 1: Rank Permutation Mapping: All symbols for m = 3 are shown. With this
Rank Permutation Mapping one simply maps each value z; in X, (t) placing its rank R(z;) €
{1,2,...,m} in chronological order to form m; in Sy,. Using the rank permutation Mapping
we compute p; = P(m;). It can be seen that the indexes of the vertical axis are fixed,
ordered by amplitude (i.e ranks), and they are mapped onto the time axis. For each vector
X§3) = (2t,Tt+1,Tr+2), the resultant pattern #(3) can be obtained reading the labels in the

horizontal axis from left to right (in chronological order).

where 1 is the indicator function and i = 1,...,m!.

Using these probabilities, the Normalized Permutation Entropy HBT for
each m can be computed using Eq. 2 where N = m! is the order of the sym-
metric group Sy, and Sya: = log(IN). Note that this entropy does not take
account of the amplitude of the observations besides the relative amplitude be-
tween neighbor values. The set of P = {p; i = 1... N} obtained as in Eq. 2
is what we will call from now onwards the Bandt and Pompe Distribution (BP
PDF). The BP PDF has two free parameters: the embedding dimension m and
the time delay 7 but within this paper HZ% is calculated using a fixed 7 = 1
parameter in order to not confuse with temporal scales and all results are shown
for the embedding dimension m = 4 because there was no significant difference

in the results when the m parameter varied from m = 3 to m = 6.

Another useful informational quantifier is the statistical complexity [8] —C—




defined as,
CIP] = Q[P Pe]- H[P] (6)

where H is the Normalized Permutation Entropy, Q; is the disequilibrium,
P is the BP PDF and P. = {p; =1/N, Yi=1,--- ,N}. Q; is defined in terms
of the Jensen—Shannon divergence. That is, Q [P, P.] = Qo J|P, P.], with
JP,P.] = S[(P+P.)/2]-S[P]/2—S5[Pe]/2, and Q¢ a normalization constant.

3. Stochastic processes

A general linear stochastic model is described that supposes a time series
to be generated by a linear aggregation of random shocks. [10]. A widely used

stochastic model is the autoregressive model or order p,

2t = Q120—1 + P2zp—2 + ... + Pp2i_p + ay (7

where the current value z; is expressed as a finite, linear aggregate of previ-
ous values of the process {z;_1, z1—2, - , 21—, } and a shock a;, distributed with

mean 0 and finite variance o2.

2

If z; is a wide-sense stationary process (i.e the mean p and the variance o2

do not depend on time), the autocorrelation between z; ans z; depends only on
the lag between t and s. This implies that the autocorrelation can be expressed
as a function of the time lag (v =t — s) between observations:
E(z — p)E(zi—y — )

Ca— (8)

0%

R(v) =

For simplicity the autocorrelation of lag v = 1is expressed as R(1) = p(r¢, Te41) = p1.

We consider three kind of autoregressive process: Gaussian, Exponential
and Uniform. The difference between them is the form of the random shock a;.
Within this paper, for sake of simplicity we set the order of the autoregressive

process p = 1 leading to the first-order autoregressive process AR(1).



Gaussian autoregressive model of order 1 AR(1): In the Gaussian process, Ec.

7 takes the form:

2t = Pr12e-1 + at 9)
where the current value z; is expressed as a finite, linear aggregate of the pre-
vious values of the process z; 1 and an independent and identically distributed
(i.i.d.) random shocks a; that has marginal Gaussian distribution with mean 0
and variance o2. For this process p; = ¢;.
Ezxponential autoregressive model of order 1 NEARA(1): Many positive-
valued time series have an exponential marginal distribution [13,14]. When the
z¢ random variable has an Exponential marginal distribution with A parameter,

the linear autoregressive model Ec. 7 takes the form:

B.zi-1 W.pa«a

Zr = ap + (10)
0 wpl—a
with
1-5
€t WP 1o
at & 1 (1 ):3 (11)
(1 — a)ﬂ.et W.p %
where “w.p.” stands by “with probability”. a > 0 and g > 0 are free corre-

lation parameters such as p; = a3, providing that « and 8 are not both equal to
one. a; has a particular mixed exponential distribution, where e¢; {t =0, 1,2..}
are independent identically distributed exponential variables with parameter
A > 0 in order to make the marginal distribution of z; exponential with A pa-
rameter. Note that with « or 8 equal to zero z; are exponential i.i.d. and both «
and 3 are nonnegative, so with this method the autocorrelations p = (a8)" are
positive and geometrically decreasing. This is unlike the Gaussian AR(1) model
where p; can be negative. To extend the exponential models to this possibility,
two sequences z; and z; are cross-couple constructed, involving antithetic vari-

ables, developing the NEARA(1) model in [16].
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Table 1: Discrete Uniform Distribution for the random shock a; in the AUR(1) model accord-
ing to [17] where k € {2,3,...}.

Uniform autoregressive model of order 1 UAR(1): Another useful model
construction for non-Gaussian variate time series is the first order autoregressive

process with uniform marginal distribution. The model responds to

1
Zt = %Zt_1 == a¢ (12)

with k& > 2. It has been shown in [17] that z; would shield continuous uniform
(0,1) marginal distribution if the i.i.d.random shocks a; has the marginal discrete
uniform distribution presented in Table 1 where k € {2,3,...} and p; = 1/k.
This model is called UAR(1) and has the lag r autocorrelation p, = p" = (1/k)".

If p; is —1/k there are similar results for negatively autocorrelated models.

4. Numerical Results

The processes presented in the previous Section were simulated, varying the
autocorrelation.
For the Gaussian processes nine positively and nine negatively autocorrelated
time series were simulated, with p; = +{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
and in addition with p; = 0, the well known Gaussian white noise. All these pro-
cesses were simulated with shocks a; with o = 1 and p = 0. The exponential pro-
cesses where simulated with « and /3 such p; = {—0.2,—-0.1,0,0.125,0.25,0.5,0.75}.
The autoregressive uniform process was simulated for p; = +{1/2,1/3,...1/9}
plus the uncorrelated data with uniform marginal distribution. All series have
length N = 10° points.
Using the Information Thoery Quantifiers presented in Section 2, we first an-

alyze the localization in the HB¥ x C informational plane (Fig. 1) of these




processes. Their planar localization is in accordance with others previously re-
ported [3]. It should be pointed out that the planar localization of the Gaussian
and non-Gaussian autoregressive process coincide. Uncorrelated time series, i.e.
Uniform, Gaussian and Exponential random numbers, are located in the same
region (HB%,C) = (1,0), with maximum entropy and minimum complexity. As
the autocorrelation increases in absolute value it moves to a higher C and a lower
HBP planar localization. The three processes are mostly indistinguishable in
the HBP x C plane, specially for lower correlation parameters. Thus, the under-
lying marginal density distribution is not a factor of the location of the process
in the HB¥ x C informational plane, and this is because the Bandt and Pompe
methodology for calculating p; takes account about the correlation structure of
the time series but not about the probability distribution of the data process
generator. This fact can be observed in Fig. 3 where the three histograms for
the BP PDF from non-correlated Uniform, Gaussian and Exponential standard
distributions are presented. As it can be seen, the three histograms are mostly
indistinguishable, confirming the first insight that the PE is not capable to dis-

criminate between different probability distributions.

To get a better characterization of time series in a simple manner, we present
a novel information plane: the HEP x HME plane (Fig. 4). In this plane the
simulated stochastic processes are clearly differentiated both in the x-axis , H57
and in the y-axis H™¥#. The higher correlation coefficient is, the lower H57
value and H™M¥ remains constant. In contrast, as the symmetry increases and
the kurtosis decreases, the value of HM# also increases and the value for H5P
remains constant. Hence, the planar localization of a given time series in this

plane can discriminate not only the autocorrelation structure (#5%7) but also

the probability distribution of the time series (H%).
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Figure 2: Localization in the causal entropy-complexity plane,considering m = 4,7 = 1, of the
stochastic processes simulated in the present work, in squares: exponential with parameter
A =1, circles: standard Gaussian distribution and triangles: discrete uniform with support
[0,1]. Darker color represents higher values in the autocorrelation. Average values over ten
realizations with different seeds are presented. The continuous lines represent the curves
of maximum and minimum statistical complexity, Cmaz and Ci,in, for a given normalized
permutation entropy HET [8]. As it was expected, the different location in the plane of the
process depends, in first place of the kind of process (i.e deterministic, stochastic), that in
this paper all three are autoregressive stochastic processes, and in second place, depends on
the strength of the autocorrelation. It can be noticed that the underlying marginal density
distribution is not a factor of the location of the process in this plane. For that reason the

HEBP x HML plane is presented in Fig. 4.
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Figure 3: Time Series and their histogram for the symbolic sequence generated using Bandt
and Pompe methodology for the three uncorrelated stochastic processes, in red: exponential
with parameter A = 1, green: standard Gaussian distribution and light blue: discrete uniform
with support [0,1]. This Figure depicts the fact that Shannon entropy endowed with prob-
abilities using the Bandt and Pompe methodology fails to distinguish between probability

distributions.
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Figure 4: Causal HBP x HML considering m = 4, T = 1, for the stochastic processes simulated
in the present work, in squares: exponential with parameter A = 1, circles: standard Gaussian
distribution and triangles: discrete uniform with support [0,1]. The dashed lines indicates
the theoretical entropy of the given distribution (exponential red, Gaussian green and uniform
blue). Darker color represents higher values in the autocorrelation. The stochastic processes
are clearly differentiated both in the x-axis , HE¥ and in the y-axis HM L. The Normalized
Amplitude Shannon Entropy depends mainly on the shape of the distribution, but in a lesser
way on the form that the histogram was constructed. The histogram construction of the
uniform distribution only depends on the length of the support interval of the random variable,
in this case, for all the UAR(1) processes is the same: Z(0,1). A similar case occurs with
the exponential variable but in this case depends on the rate. The NEARA(1) processes were
all simulated with A = 1. On the other hand the histogram of a Gaussian AR(1) process
depends on the variance o2 that depends on the autoregressive coefficient (¢) and on the
shock variance o2. The processes simulated in this paper have all the same variance 02 = 1,
but differs in ¢. This is how the variation in the y-axis for these processes can be interpreted.
Nevertheless this disturbance does not interferes with the discrimination of the processes with

different marginal distributions.
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5. Real applications

Two real applications are presented for the novel HBF x HML plane. One

referred to climate and the other to the stock market.

5.1. Climate change time series

Paleoclimatic data, taken from fossil corals, ice sheet, etc., make possible
the study of the history of climate change within the Earth evolution. Studies
using paleoclimatic data show that the El Nino/Southern Oscillation (ENSO)
has been present in the Earth climate for at least the past 130,000 years [18].
We study the dynamics of the Holocene proxy ENSO record corresponding to
Pallcacocha Lake sedimentary data, presented in [19]. The Holocene period
is the geological epoch that began after the Pleistocene approximately 11,700
years before present [20, 21] [22, 19]. The proxy record was obtained from the
analysis of clastic laminae deposition in sediment two 8 — m cores retrieved
from the Pallcacocha Lake in Ecuador, interpolated to a sample time of one
year using a cubic Hermite polynomial. This data set was previously analyzed
in [23, 24, 25] among others. In Fig. 5 the H5% x H™M¥ plane is presented for
the Pallcacocha Lake sedimentary data and its evolution over time. It shows
that the correlation dynamics (measured by HZ7) varies over the years during
the Holocene leading to chaotic and hyper-chaotic behavior, see [25] and the
probability distribution of the data generation process also changes. It can be
noticed from the Figure that most of the variation during the Holeocene is due
to change in the autocorrelation structure reflected in the Normalized Permu-
tation Entropy that ranges between 0.332 — 0.916 but there is also a change in
the probability distribution, suggested by the interval between 0.639 — 0.836 for
the Normalized Amplitude Entropy. Probability distribution remains between
the Gaussian and the Exponential distribution almost the time, but between
2500 and 1000 years before present the HM% decreases below the theoretical
exponential line given an indication of extreme events on the period. In Fig-

ure 6 the main statistical indicators that affect both entropies are presented.
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Normalized Amplitude Entropy H™¥# depends on the shape of the PDF of the
data, represented by the skewness and kurtosis and in a lesser extent, the stan-
dard deviation (the coefficient of variation -CV- in this case) and Normalized
Permutation Entropy H2% depends on the structure of the autocorrelation, rep-
resented in this case by p(r¢, 7r41). Near 9000 thousands years ago the data was
almost Gaussian (i.e low CV, kurtosis near 3 and skewness 0) but with strong
autocorrelation, near 1, and this is reflected in the HB” x HM¥~ plane of Figure
5 in a high HM#* and a low HBP. According to this analysis, the probability of
extreme events increased during a time in the Holeoscene period but returned
in the present near the starting point. This is a new information about ENSO
evolution, up to our knowledge, that could bring a new insight in the research
in climate change, studying the increase of extreme events by the probability

distribution that generates the data.

5.2. Financial time series

We employed daily data beginning in January 2, 1995 and ending in July
23, 2007. There is on average 3100 observations for each index. All country
indexes were studied for the same time period.

Let z; be the equity index of a stock on a time t, the continuously com-

pounded return or log return r; of an asset is defined as the natural logarithm

ry = log (Zt;l) (13)
t

We study the log return time series of the stock market of 30 countries,

of its simple gross return:

13 emerging, 15 developed and 2 frontiers countries, according the Morgan
Stanley Capital Index methodology (MSCI). These data were downloaded from
https://finance.yahoo.com/

The Efficient Market Hypothesis (EMH) states that the returns of an ef-
ficient financial market is characterized as white noise. However it is known
that stock markets indexes have multifractal structure [26]. In [27] was found

that emerging markets have greater correlation than developed markets and in

14
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Figure 5: HBP x HML for the ENSO evolution during the Holocene period. When darker,
closer in time. The labels stand for the years (in thousands) before present. The dashed lines
indicates the theoretical entropy of the given distribution, in red: exponential with parameter
A = 1 and green: standard Gaussian distribution. It can be noticed from the Figure that
most of the variation during the Holocene is due to change in the autocorrelation structure
and not in the probability distribution. Probability distribution remains almost constant and
has a lower entropy than an exponential distribution almost all the time, but between 2500
and 1000 years before present the HM£ decreases below the theoretical exponential line given

an indication of extreme events on this period.
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Figure 6: Main statistical indicators that affect both entropies are presented for the dynamics
of the Holocene proxy ENSO record corresponding to Pallcacocha Lake sedimentary data.
Normalized Amplitude Entropy H™M~£ depends on the shape of the PDF of the data, rep-
resented by the skewness and kurtosis and in a lesser extent, the standard deviation (the
coefficient of variation -CV- in this case) and Normalized Permutation Entropy HBP depends
on the structure of the autocorrelation, represented in this case by p(r¢,r++1). Near 9000
thousands years ago the data was almost Gaussian (i.e low CV, kurtosis near 3 and skewness
0) but with strong autocorrelation, near 1, and this is reflected in the HBP x HME plane of

Figure 5 in a high HM¥£ and a low HBP.
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[28] it is shown that deviations from the EMH could be associated with the
degree of development. As [29, 30] pointed out, deviation from the EMH, and
therefore the multi-fractal structure, could be explained in two ways: by the
departure from Gaussianity and by the presence of autocorrelations. In Fig.7
the HB% x HM£ plane is presented for financial markets for all 30 countries
studied in this contribution. This Figure agrees with the results in [28, 29, 30]
but also reflects the departure from Gaussianity. Even all time series are below
the exponential distribution. While Argentina (MERVAL index) is located near
the emergent countries, Venezuela (IBVC index) is far from both groups, emer-
gent and developed; this fact shows that even the Efficient Market Hypothesis
is contrasted using this plane but the Morgan Stanley Capital Index (MSCI)
includes other sources of information, as political features, for the classification.
Markets that have lower HM¥ in general reflect more probability for extreme
events. With this plane a description of the inefficiency, measured as the depar-
ture from the white noise in the probability distribution and in the correlation
structure, of the financial markets is provided, and it could be used as an im-
portant tool for the decision maker in this field as it can grasp no only the risk
by the dynamical behavior of the market but also the probability of extreme
events by the shape of the distribution.

In Tables 5.2 and 5.2 the main statistical indicators that affect both entropies
are presented. Normalized Amplitude Entropy HM~* depends on the shape
of the PDF of the data, represented by the skewness and kurtosis and in a
lesser extent, the standard deviation (this is because the entropy is normalized)
and Normalized Permutation Entropy HZ” depends on the structure of the
autocorrelation, represented in this case by p(r¢,r¢+1). The excess of kurtosis
from 3 is an indicator of the departure from Gaussianity, present in all the
markets. A positive skewness suggest that the is an inclination in the index to
close in a downward trend. The different values of these indicators impact in the
value of HM¥~. On the other hand while the autocorrelation coefficient varies
between indexes, the HB” remains constant along all the countries, implying

that the correlation structure is far more complex than an AR(1) process.
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Figure 7: HBP x HML for 30 countries. In red squares are the 15 developed countries, in
green circles, 13 emerging countries, and in light blue triangles the 2 frontier countries. The
dashed lines indicates the theoretical entropy of the given distribution, in red: exponential with
parameter A\ = 1 and green: standard Gaussian distribution. Even all time series are below
the exponential distribution entropy (red dashed line) , developed countries have lower HME
than emerging ones in general. Two frontier countries were added in the plot: Argentina and
Venezuela. While Argentina is located near the emergent countries, Venezuela is far from both
groups, emergent and developed; this fact shows that even the Efficient Market Hypothesis
is contrasted using this plane and the Morgan Stanley Capital Index (MSCI) includes other
sources of information, as political features, for the classification. That can be understood as
noise for the purpose of this plot. This new plane shows insights from financial series that are

very useful for decision making.
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6. Conclusion

In summary, in this paper, we introduce a new informational plane, HZF x
HML | which is very simple and fast to compute. This plane complements the
HBP x C giving global information about the family distribution of the data
generator process. This informational plane allows to discriminate between
probability distribution as well as the autocorrelation structure presented in
the time series leading a complete description of the data generation process. In
all the informational planes presented in the literature [5, 7] while the dynamics
of the processes are reflected in their location in an informational plane, this
not necessarily means that given a location of a time series in an informational
plane one can determine for sure what kind of process is the generator of that
data, and the same problematic persists in this HP¥ x HM~ plane. One aspect
to consider is that any entropy measure is a measure of global character, and
is not too sensitive to strong changes on the distribution taking place on small
sized region. Once the empirical PDF is calculated for a given time series, the
order of the elements to which the probability is calculated (for example in
this contribution for the Shannon Amplitude Entropy are the bins, and for the
Shannon Permutation Entropy are the symbols 7;) does not matter so, given
a distribution with similar probabilities for the bins, the Shannon Amplitude
Entropy will not differentiate between unimodal or bimodal distributions. For
detection of differences in local aspects of the PDF, other measures can be
considered as the Fisher Information Measure [31]. The potential application of
this plane is presented with two examples from actives research areas: climate
change model and efficiency in financial markets.In the former, evidence about
extreme evens change during the Holocene is obtained and in the last, a new
dimension of financial risk is grasp, the presence of very asymmetric distribution
in the emergent countries. We conclude by encouraging researchers to use this
informational plane along the well established HZ? x C plane to characterize

autoregressive process and stochastic processes in general.
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