
Accepted Manuscript

Characterization of autoregressive processes using entropic quantifiers

Francisco Traversaro, Francisco O. Redelico

PII: S0378-4371(17)30713-6
DOI: http://dx.doi.org/10.1016/j.physa.2017.07.025
Reference: PHYSA 18442

To appear in: Physica A

Received date : 10 April 2017
Revised date : 19 July 2017

Please cite this article as: F. Traversaro, F.O. Redelico, Characterization of autoregressive processes
using entropic quantifiers, Physica A (2017), http://dx.doi.org/10.1016/j.physa.2017.07.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.physa.2017.07.025


Highlights

• We present a novel informational plane that can lead to better characterization of the 

investigated time series in both, the correlation structure and the probability distribution 
shape.

•  We show the insensibility to the probability distribution of the Bandt and Pompe 

symbolization used to estimate the Shannon Entropy.

•  Two examples are presented and our plane gives a deeper understanding of them.

*Highlights (for review)
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Abstract

The aim of the contribution is to introduce a novel information plane, the causal-

amplitude informational plane. As previous works seems to indicate, Bandt

and Pompe methodology for estimating entropy does not allow to distinguish

between probability distributions which could be fundamental for simulation or

for probability analysis purposes. Once a time series is identified as stochastic by

the causal complexity-entropy informational plane, the novel causal-amplitude

gives a deeper understanding of the time series, quantifying both, the autocor-

relation strength and the probability distribution of the data extracted from

the generating processes. Two examples are presented, one from climate change

model and the other from financial markets.

Keywords: Permutation entropy; Time series analysis.

1. Introduction

The dynamical behavior of a complex system is usually recorded as a time

series (TS). One important task is to understand the nature (i.e linear, chaotic,

periodic, stochastic, etc.), along with others features that can help modeling the
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data generator process of the time series at hand.

The use of quantifiers based on Information Theory has led to interesting re-

sults regarding the characterization of nonlinear chaotic dynamics, improving

the understanding of their associated time series. Permutation Entropy (PE),

which is a information theory quantifier, that has the same functional form as

Shannon Entropy [1] but uses, in order to estimate the required probabilities,

the symbolic methodology proposed by Bandt and Pompe [2] that reveals inter-

nal nonlinear causality, understood as autocorrelation, for a given time series.

In [3, 4, 5, 6, 7] was found that the use of the Permutation Entropy and the

Statistical Complexity in an informational plane is very useful to distinguish

between chaotic (i.e deterministic) and stochastic dynamics. But once this dis-

crimination is completed, it is time to look for a better understanding by an-

alyzing the distribution of the data. In this manner, several contribution were

presented before, in [3, 8] PE was applied for general non Gaussian 1/fα noise

and the fractional Brownian motion and, in [9], theoretical curves for the PE of

the fractional Brownian motion and fractional Gaussian noise were developed.

In [3] PE was applied in general non Gaussian stochastic processes, and there-

fore no knowledge about their moments were obtained in order to compare with

chaotic time series, and in [8] PE was applied in Gaussian time series. At this

point the following question arise: Is the Bandt and Pompe methodology useful

to characterize the shape of the marginal probability distribution of a stochas-

tic process?. This is the question this paper addresses by means of simulating

Gaussian and non-Gaussian autoregressive processes of order 1 and comparing

their Shannon Amplitude Entropy (i.e the Shannon Entropy of the histogram of

the data) and Shannon Permutation Entropy. Autoregressive processes are sim-

ulated within this paper because both the associate correlation structure and

the probability distribution are well established and the correlation structure

is easily manipulable through the correlation parameter. Although Gaussian

autoregressive processes are well known [10], this is not the case of non Gaus-

sian autoregressive processes. However, the later impacts in diverse fields of

science and technology as diverse as random number generators [11], modeling
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irregularly spaced transaction financial data [12], foreign exchange rate volatil-

ity modeling [13], studying nervous systems mechanism (Spike sorting)[14] and

speech signal analysis [15] among others, inciting their study. The determina-

tion of the Probability Density Function (PDF) of the data generator process is

a fundamental task in several areas like simulation modeling where a real time

series should be reproduce numerically.

The paper reads as follows: Section 2 presents a brief introduction to Permu-

tation Entropy and Amplitude Entropy and the stochastic processes simulated,

Section 3 presents numerical results of the application of the entropies over the

simulated stochastic processes, Section 4 is devoted to present some application

cases and finally Section 5 is a discussion about the results.

2. Information quantifiers

A brief introduction to the entropy quantifiers considered within this paper

is presented in order to make this paper self-contained. Given a continuous

probability distribution function (PDF) −f(x)− the entropy of this distribution

is given by:

S[f ] = −
∫

∆

f ln(f) dx , (1)

and is a measure of global character that it is not too sensitive to strong changes

in the distribution taking place on a small-sized region. Let now P = P(i) =

{pi; i = 1, · · · , N}, with
∑N
i=1 pi = 1, be a discrete PDF, with N the number

of possible states of the system under study. In the discrete case, we define a

“normalized” Shannon entropy (0 ≤ H ≤ 1) as

H[P ] = S[P ]/Smax =

{
−

N∑

i=1

pi ln(pi)

}
/Smax , (2)

where the denominator Smax = S[Pe] = lnN is that obtained by an uniform

probability distribution Pe = {pi = 1/N, ∀i = 1, · · · , N}.

There is no a universal way to compute the set P for every system. One

possibility is to estimate each element pi is by using the empirical histogram
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of the values of the time series using some method that wishfully leads to a

good estimation of the underlying probability distribution function of the data.

This is done by using the histogram as the maximum likelihood estimator of

the PDF, and computing the probabilities pi as:

pi =

∑T−m+1
l=1 1(xt belongs to bin i)

T −m+ 1
, (3)

leading to the Normalized Amplitude Entropy HML (note: ML stands for

the Maximum Likelihood method). Note that this entropy does not take account

of the order of the data appearance in the time series.

Other way to compute the probabilities pi is through the symbolization proposed

by Bandt and Pompe [2]. Let Xm(t) = (xt, xt+1, . . . , xt+m−1) with 0 ≤ t ≤
T − m + 1 be a non-disjoint partition containing the vectors of real values of

length m of the time series {Xt}t∈T . Let Sm≥3 the symmetric group of order

m! form by all possible permutation of order m, πi = (i1, i2, . . . , im) ∈ Sm

(ij 6= ik ∀j 6= k so every element in πi is unique). We will call an element πi

in Sm a symbol or a motiv as well. Then Xm(t) can be mapped to a symbol

πi in Sm for a given but otherwise arbitrary t. The m number of real values

Xm(t) = (xt, xt+1, . . . , xt+m−1) are mapped onto their rank. The rank function

is defined as:

R(xt+n) =
m−1∑

k=0

1(xt+k < xt+n) (4)

where 1 is the indicator function (i.e 1(Z) = 1 if Z is true and 0 otherwise),

xt+n ∈ Xm(t) with 0 < n ≤ m − 1 and 1 ≤ R(xt+n) ≤ m. So the rank

R(min(xt+k)) = 1 and R(max(xt+k)) = m. The complete alphabet is all

the possible permutation of the ranks. Hence, any vector Xm(t) is uniquely

mapped onto πi = (R(xt), R(xt+1), . . . , R(xt+m−1)) ∈ Sm. With this Rank

Permutation Mapping one simply maps each value xi in Xm(t) placing its rank

R(xi) ∈ {1, 2, . . . ,m} in chronological order to form πi in Sm. Using the rank

permutation Mapping we compute pi = P(πi) (see Fig. 1, bottom) ,

pi =

∑T−m+1
l=1 1(Xm(l) has ordinal patter πi in Sm)

T −m+ 1
, (5)
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Figure 1: Rank Permutation Mapping: All symbols for m = 3 are shown. With this

Rank Permutation Mapping one simply maps each value xi in Xm(t) placing its rank R(xi) ∈
{1, 2, . . . ,m} in chronological order to form πi in Sm. Using the rank permutation Mapping

we compute pi = P (πi). It can be seen that the indexes of the vertical axis are fixed,

ordered by amplitude (i.e ranks), and they are mapped onto the time axis. For each vector

X
(3)
t = (xt, xt+1, xt+2), the resultant pattern π̃(3) can be obtained reading the labels in the

horizontal axis from left to right (in chronological order).

where 1 is the indicator function and i = 1, . . . ,m!.

Using these probabilities, the Normalized Permutation Entropy HBP for

each m can be computed using Eq. 2 where N = m! is the order of the sym-

metric group Sm and Smax = log(N). Note that this entropy does not take

account of the amplitude of the observations besides the relative amplitude be-

tween neighbor values. The set of P = {pi i = 1 . . . N} obtained as in Eq. 2

is what we will call from now onwards the Bandt and Pompe Distribution (BP

PDF). The BP PDF has two free parameters: the embedding dimension m and

the time delay τ but within this paper HBP is calculated using a fixed τ = 1

parameter in order to not confuse with temporal scales and all results are shown

for the embedding dimension m = 4 because there was no significant difference

in the results when the m parameter varied from m = 3 to m = 6.

Another useful informational quantifier is the statistical complexity [8] −C−
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defined as,

C[P ] = QJ [P ,Pe] · H[P ] (6)

where H is the Normalized Permutation Entropy, QJ is the disequilibrium,

P is the BP PDF and Pe = {pi = 1/N, ∀i = 1, · · · , N}. QJ is defined in terms

of the Jensen–Shannon divergence. That is, QJ [P ,Pe] = Q0 J [P ,Pe], with

J [P ,Pe] = S[(P+Pe)/2]−S[P ]/2−S[Pe]/2, andQ0 a normalization constant.

3. Stochastic processes

A general linear stochastic model is described that supposes a time series

to be generated by a linear aggregation of random shocks. [10]. A widely used

stochastic model is the autoregressive model or order p,

zt = φ1zt−1 + φ2zt−2 + ....+ φpzt−p + at (7)

where the current value zt is expressed as a finite, linear aggregate of previ-

ous values of the process {zt−1, zt−2, · · · , zt−p} and a shock at, distributed with

mean 0 and finite variance σ2.

If zt is a wide-sense stationary process (i.e the mean µ and the variance σ2
z

do not depend on time), the autocorrelation between zt ans zs depends only on

the lag between t and s. This implies that the autocorrelation can be expressed

as a function of the time lag (ν = t− s) between observations:

R(ν) =
E(zt − µ)E(zt−ν − µ)

σ2
z

(8)

For simplicity the autocorrelation of lag ν = 1 is expressed asR(1) = ρ(rt, rt+1) = ρ1.

We consider three kind of autoregressive process: Gaussian, Exponential

and Uniform. The difference between them is the form of the random shock at.

Within this paper, for sake of simplicity we set the order of the autoregressive

process p = 1 leading to the first-order autoregressive process AR(1).
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Gaussian autoregressive model of order 1 AR(1): In the Gaussian process, Ec.

7 takes the form:

zt = φ1zt−1 + at (9)

where the current value zt is expressed as a finite, linear aggregate of the pre-

vious values of the process zt−1 and an independent and identically distributed

(i.i.d.) random shocks at that has marginal Gaussian distribution with mean 0

and variance σ2. For this process ρ1 = φ1.

Exponential autoregressive model of order 1 NEARA(1): Many positive-

valued time series have an exponential marginal distribution [13,14]. When the

zt random variable has an Exponential marginal distribution with λ parameter,

the linear autoregressive model Ec. 7 takes the form:

zt = at +




β.zt−1 w.p α

0 w.p 1− α
(10)

with

at =




et w.p 1−β

1−(1−α)β

(1− α).β.et w.p αβ
1−(1−α)β

(11)

where “w.p.” stands by “with probability”. α > 0 and β > 0 are free corre-

lation parameters such as ρ1 = αβ, providing that α and β are not both equal to

one. at has a particular mixed exponential distribution, where et {t = 0, 1, 2..}
are independent identically distributed exponential variables with parameter

λ > 0 in order to make the marginal distribution of zt exponential with λ pa-

rameter. Note that with α or β equal to zero zt are exponential i.i.d. and both α

and β are nonnegative, so with this method the autocorrelations ρk = (αβ)k are

positive and geometrically decreasing. This is unlike the Gaussian AR(1) model

where ρ1 can be negative. To extend the exponential models to this possibility,

two sequences zt and z′t are cross-couple constructed, involving antithetic vari-

ables, developing the NEARA(1) model in [16].
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at 0 1
k

2
k

... (k−1)
k

P (at)
1
k

1
k

1
k

1
k

1
k

Table 1: Discrete Uniform Distribution for the random shock at in the AUR(1) model accord-

ing to [17] where k ∈ {2, 3, ...}.

Uniform autoregressive model of order 1 UAR(1): Another useful model

construction for non-Gaussian variate time series is the first order autoregressive

process with uniform marginal distribution. The model responds to

zt =
1

k
zt−1 + at (12)

with k ≥ 2. It has been shown in [17] that zt would shield continuous uniform

(0,1) marginal distribution if the i.i.d.random shocks at has the marginal discrete

uniform distribution presented in Table 1 where k ∈ {2, 3, ...} and ρ1 = 1/k.

This model is called UAR(1) and has the lag r autocorrelation ρr = ρr = (1/k)r.

If ρ1 is −1/k there are similar results for negatively autocorrelated models.

4. Numerical Results

The processes presented in the previous Section were simulated, varying the

autocorrelation.

For the Gaussian processes nine positively and nine negatively autocorrelated

time series were simulated, with ρ1 = ±{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and in addition with ρ1 = 0, the well known Gaussian white noise. All these pro-

cesses were simulated with shocks at with σ = 1 and µ = 0. The exponential pro-

cesses where simulated with α and β such ρ1 = {−0.2,−0.1, 0, 0.125, 0.25, 0.5, 0.75}.
The autoregressive uniform process was simulated for ρ1 = ±{1/2, 1/3, ...1/9}
plus the uncorrelated data with uniform marginal distribution. All series have

length N = 106 points.

Using the Information Thoery Quantifiers presented in Section 2, we first an-

alyze the localization in the HBP × C informational plane (Fig. 1) of these
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processes. Their planar localization is in accordance with others previously re-

ported [3]. It should be pointed out that the planar localization of the Gaussian

and non-Gaussian autoregressive process coincide. Uncorrelated time series, i.e.

Uniform, Gaussian and Exponential random numbers, are located in the same

region (HBP , C) = (1, 0), with maximum entropy and minimum complexity. As

the autocorrelation increases in absolute value it moves to a higher C and a lower

HBP planar localization. The three processes are mostly indistinguishable in

the HBP ×C plane, specially for lower correlation parameters. Thus, the under-

lying marginal density distribution is not a factor of the location of the process

in the HBP × C informational plane, and this is because the Bandt and Pompe

methodology for calculating pi takes account about the correlation structure of

the time series but not about the probability distribution of the data process

generator. This fact can be observed in Fig. 3 where the three histograms for

the BP PDF from non-correlated Uniform, Gaussian and Exponential standard

distributions are presented. As it can be seen, the three histograms are mostly

indistinguishable, confirming the first insight that the PE is not capable to dis-

criminate between different probability distributions.

To get a better characterization of time series in a simple manner, we present

a novel information plane: the HBP × HML plane (Fig. 4). In this plane the

simulated stochastic processes are clearly differentiated both in the x-axis , HBP

and in the y-axis HML. The higher correlation coefficient is, the lower HBP

value and HML remains constant. In contrast, as the symmetry increases and

the kurtosis decreases, the value of HML also increases and the value for HBP

remains constant. Hence, the planar localization of a given time series in this

plane can discriminate not only the autocorrelation structure (HBP) but also

the probability distribution of the time series (HML).
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Figure 2: Localization in the causal entropy-complexity plane,considering m = 4, τ = 1, of the

stochastic processes simulated in the present work, in squares: exponential with parameter

λ = 1, circles: standard Gaussian distribution and triangles: discrete uniform with support

[0, 1]. Darker color represents higher values in the autocorrelation. Average values over ten

realizations with different seeds are presented. The continuous lines represent the curves

of maximum and minimum statistical complexity, Cmax and Cmin, for a given normalized

permutation entropy HBP [8]. As it was expected, the different location in the plane of the

process depends, in first place of the kind of process (i.e deterministic, stochastic), that in

this paper all three are autoregressive stochastic processes, and in second place, depends on

the strength of the autocorrelation. It can be noticed that the underlying marginal density

distribution is not a factor of the location of the process in this plane. For that reason the

HBP ×HML plane is presented in Fig. 4.
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Figure 3: Time Series and their histogram for the symbolic sequence generated using Bandt

and Pompe methodology for the three uncorrelated stochastic processes, in red: exponential

with parameter λ = 1, green: standard Gaussian distribution and light blue: discrete uniform

with support [0, 1]. This Figure depicts the fact that Shannon entropy endowed with prob-

abilities using the Bandt and Pompe methodology fails to distinguish between probability

distributions.
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Figure 4: CausalHBP×HML considering m = 4, τ = 1, for the stochastic processes simulated

in the present work, in squares: exponential with parameter λ = 1, circles: standard Gaussian

distribution and triangles: discrete uniform with support [0, 1]. The dashed lines indicates

the theoretical entropy of the given distribution (exponential red, Gaussian green and uniform

blue). Darker color represents higher values in the autocorrelation. The stochastic processes

are clearly differentiated both in the x-axis , HBP and in the y-axis HML. The Normalized

Amplitude Shannon Entropy depends mainly on the shape of the distribution, but in a lesser

way on the form that the histogram was constructed. The histogram construction of the

uniform distribution only depends on the length of the support interval of the random variable,

in this case, for all the UAR(1) processes is the same: I(0, 1). A similar case occurs with

the exponential variable but in this case depends on the rate. The NEARA(1) processes were

all simulated with λ = 1. On the other hand the histogram of a Gaussian AR(1) process

depends on the variance σ2
z that depends on the autoregressive coefficient (φ) and on the

shock variance σ2. The processes simulated in this paper have all the same variance σ2 = 1,

but differs in φ. This is how the variation in the y-axis for these processes can be interpreted.

Nevertheless this disturbance does not interferes with the discrimination of the processes with

different marginal distributions.
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5. Real applications

Two real applications are presented for the novel HBP ×HML plane. One

referred to climate and the other to the stock market.

5.1. Climate change time series

Paleoclimatic data, taken from fossil corals, ice sheet, etc., make possible

the study of the history of climate change within the Earth evolution. Studies

using paleoclimatic data show that the El Niño/Southern Oscillation (ENSO)

has been present in the Earth climate for at least the past 130,000 years [18].

We study the dynamics of the Holocene proxy ENSO record corresponding to

Pallcacocha Lake sedimentary data, presented in [19]. The Holocene period

is the geological epoch that began after the Pleistocene approximately 11,700

years before present [20, 21] [22, 19]. The proxy record was obtained from the

analysis of clastic laminae deposition in sediment two 8 − m cores retrieved

from the Pallcacocha Lake in Ecuador, interpolated to a sample time of one

year using a cubic Hermite polynomial. This data set was previously analyzed

in [23, 24, 25] among others. In Fig. 5 the HBP ×HML plane is presented for

the Pallcacocha Lake sedimentary data and its evolution over time. It shows

that the correlation dynamics (measured by HBP) varies over the years during

the Holocene leading to chaotic and hyper-chaotic behavior, see [25] and the

probability distribution of the data generation process also changes. It can be

noticed from the Figure that most of the variation during the Holeocene is due

to change in the autocorrelation structure reflected in the Normalized Permu-

tation Entropy that ranges between 0.332− 0.916 but there is also a change in

the probability distribution, suggested by the interval between 0.639−0.836 for

the Normalized Amplitude Entropy. Probability distribution remains between

the Gaussian and the Exponential distribution almost the time, but between

2500 and 1000 years before present the HML decreases below the theoretical

exponential line given an indication of extreme events on the period. In Fig-

ure 6 the main statistical indicators that affect both entropies are presented.
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Normalized Amplitude Entropy HML depends on the shape of the PDF of the

data, represented by the skewness and kurtosis and in a lesser extent, the stan-

dard deviation (the coefficient of variation -CV- in this case) and Normalized

Permutation Entropy HBP depends on the structure of the autocorrelation, rep-

resented in this case by ρ(rt, rt+1). Near 9000 thousands years ago the data was

almost Gaussian (i.e low CV, kurtosis near 3 and skewness 0) but with strong

autocorrelation, near 1, and this is reflected in the HBP ×HML plane of Figure

5 in a high HML and a low HBP . According to this analysis, the probability of

extreme events increased during a time in the Holeoscene period but returned

in the present near the starting point. This is a new information about ENSO

evolution, up to our knowledge, that could bring a new insight in the research

in climate change, studying the increase of extreme events by the probability

distribution that generates the data.

5.2. Financial time series

We employed daily data beginning in January 2, 1995 and ending in July

23, 2007. There is on average 3100 observations for each index. All country

indexes were studied for the same time period.

Let zt be the equity index of a stock on a time t, the continuously com-

pounded return or log return rt of an asset is defined as the natural logarithm

of its simple gross return:

rt = log

(
zt+1

zt

)
(13)

We study the log return time series of the stock market of 30 countries,

13 emerging, 15 developed and 2 frontiers countries, according the Morgan

Stanley Capital Index methodology (MSCI). These data were downloaded from

https://finance.yahoo.com/

The Efficient Market Hypothesis (EMH) states that the returns of an ef-

ficient financial market is characterized as white noise. However it is known

that stock markets indexes have multifractal structure [26]. In [27] was found

that emerging markets have greater correlation than developed markets and in
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Figure 5: HBP × HML for the ENSO evolution during the Holocene period. When darker,

closer in time. The labels stand for the years (in thousands) before present. The dashed lines

indicates the theoretical entropy of the given distribution, in red: exponential with parameter

λ = 1 and green: standard Gaussian distribution. It can be noticed from the Figure that

most of the variation during the Holocene is due to change in the autocorrelation structure

and not in the probability distribution. Probability distribution remains almost constant and

has a lower entropy than an exponential distribution almost all the time, but between 2500

and 1000 years before present the HML decreases below the theoretical exponential line given

an indication of extreme events on this period.
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Figure 6: Main statistical indicators that affect both entropies are presented for the dynamics

of the Holocene proxy ENSO record corresponding to Pallcacocha Lake sedimentary data.

Normalized Amplitude Entropy HML depends on the shape of the PDF of the data, rep-

resented by the skewness and kurtosis and in a lesser extent, the standard deviation (the

coefficient of variation -CV- in this case) and Normalized Permutation Entropy HBP depends

on the structure of the autocorrelation, represented in this case by ρ(rt, rt+1). Near 9000

thousands years ago the data was almost Gaussian (i.e low CV, kurtosis near 3 and skewness

0) but with strong autocorrelation, near 1, and this is reflected in the HBP ×HML plane of

Figure 5 in a high HML and a low HBP .
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[28] it is shown that deviations from the EMH could be associated with the

degree of development. As [29, 30] pointed out, deviation from the EMH, and

therefore the multi-fractal structure, could be explained in two ways: by the

departure from Gaussianity and by the presence of autocorrelations. In Fig.7

the HBP × HML plane is presented for financial markets for all 30 countries

studied in this contribution. This Figure agrees with the results in [28, 29, 30]

but also reflects the departure from Gaussianity. Even all time series are below

the exponential distribution. While Argentina (MERVAL index) is located near

the emergent countries, Venezuela (IBVC index) is far from both groups, emer-

gent and developed; this fact shows that even the Efficient Market Hypothesis

is contrasted using this plane but the Morgan Stanley Capital Index (MSCI)

includes other sources of information, as political features, for the classification.

Markets that have lower HML in general reflect more probability for extreme

events. With this plane a description of the inefficiency, measured as the depar-

ture from the white noise in the probability distribution and in the correlation

structure, of the financial markets is provided, and it could be used as an im-

portant tool for the decision maker in this field as it can grasp no only the risk

by the dynamical behavior of the market but also the probability of extreme

events by the shape of the distribution.

In Tables 5.2 and 5.2 the main statistical indicators that affect both entropies

are presented. Normalized Amplitude Entropy HML depends on the shape

of the PDF of the data, represented by the skewness and kurtosis and in a

lesser extent, the standard deviation (this is because the entropy is normalized)

and Normalized Permutation Entropy HBP depends on the structure of the

autocorrelation, represented in this case by ρ(rt, rt+1). The excess of kurtosis

from 3 is an indicator of the departure from Gaussianity, present in all the

markets. A positive skewness suggest that the is an inclination in the index to

close in a downward trend. The different values of these indicators impact in the

value of HML. On the other hand while the autocorrelation coefficient varies

between indexes, the HBP remains constant along all the countries, implying

that the correlation structure is far more complex than an AR(1) process.
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Figure 7: HBP × HML for 30 countries. In red squares are the 15 developed countries, in

green circles, 13 emerging countries, and in light blue triangles the 2 frontier countries. The

dashed lines indicates the theoretical entropy of the given distribution, in red: exponential with

parameter λ = 1 and green: standard Gaussian distribution. Even all time series are below

the exponential distribution entropy (red dashed line) , developed countries have lower HML

than emerging ones in general. Two frontier countries were added in the plot: Argentina and

Venezuela. While Argentina is located near the emergent countries, Venezuela is far from both

groups, emergent and developed; this fact shows that even the Efficient Market Hypothesis

is contrasted using this plane and the Morgan Stanley Capital Index (MSCI) includes other

sources of information, as political features, for the classification. That can be understood as

noise for the purpose of this plot. This new plane shows insights from financial series that are

very useful for decision making.
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6. Conclusion

In summary, in this paper, we introduce a new informational plane, HBP ×
HML, which is very simple and fast to compute. This plane complements the

HBP × C giving global information about the family distribution of the data

generator process. This informational plane allows to discriminate between

probability distribution as well as the autocorrelation structure presented in

the time series leading a complete description of the data generation process. In

all the informational planes presented in the literature [5, 7] while the dynamics

of the processes are reflected in their location in an informational plane, this

not necessarily means that given a location of a time series in an informational

plane one can determine for sure what kind of process is the generator of that

data, and the same problematic persists in this HBP ×HML plane. One aspect

to consider is that any entropy measure is a measure of global character, and

is not too sensitive to strong changes on the distribution taking place on small

sized region. Once the empirical PDF is calculated for a given time series, the

order of the elements to which the probability is calculated (for example in

this contribution for the Shannon Amplitude Entropy are the bins, and for the

Shannon Permutation Entropy are the symbols πi) does not matter so, given

a distribution with similar probabilities for the bins, the Shannon Amplitude

Entropy will not differentiate between unimodal or bimodal distributions. For

detection of differences in local aspects of the PDF, other measures can be

considered as the Fisher Information Measure [31]. The potential application of

this plane is presented with two examples from actives research areas: climate

change model and efficiency in financial markets.In the former, evidence about

extreme evens change during the Holocene is obtained and in the last, a new

dimension of financial risk is grasp, the presence of very asymmetric distribution

in the emergent countries. We conclude by encouraging researchers to use this

informational plane along the well established HBP × C plane to characterize

autoregressive process and stochastic processes in general.
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