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A B S T R A C T

Estimation of short crack propagation rates has proven to be a key factor in design and maintenance of metallic
components subjected to loading conditions related to high cycle fatigue (HCF). Extrapolation of long crack
fracture mechanics approaches fails to correlate short crack behaviour, since crack length dependence of the
short crack propagation threshold is not accounted for. In this paper, a fracture mechanics approach for pre-
diction of HCF behaviour involving short cracks is analysed. The method is defined through application of the
resistance curve concept and a short crack propagation threshold prediction model. Different threshold esti-
mation methods are reviewed and compared. Application of the proposed model is exemplified and results of
predicted crack propagation rates and estimated fatigue lives are presented and discussed.

1. Introduction

In high cycle fatigue of metallic components, a relatively large
fraction of the total life is required to initiate a crack which size can be
detected by inspection. In these cases, as much as 80% of the total fa-
tigue life is needed to create a 1mm long crack [1,2]. Thus, it is very
important to rely on an accurate estimation model to account for the
short crack propagation behaviour and the number of fatigue load cy-
cles that are necessary to create such a crack.

In the analysis of cracks longer than 1mm, several modifications of
the Paris law have been proposed by different researchers in order to
consider the fatigue crack propagation threshold, ΔKthR. Two of the
simplest expressions for crack propagation rates, da/dN, are:

= −a N C K Kd /d (Δ Δ )thR
m (1)

= −∗ ∗ ∗a N C K Kd /d (Δ Δ )m
thR
m (2)

where ΔK is the applied stress intensity factor range and C, C∗, m and
m∗ are constants that depend on material, environment and load ratio.
Expression (1) was proposed by Zheng and Hirt [3], and expression (2)
by Klesnil and Lukáš [4]. Fatigue limit can be defined by the minimum
nominal applied stress range for which the resultant applied ΔK is equal
or greater than the threshold for fatigue crack propagation, ΔKth, for
any crack length. Hence, both expressions give the same result when
the fatigue limit or endurance of different configurations is estimated.
In expression (1) the difference between the total applied ΔK and ΔKthR

can be considered as an effective driving force concept, so it can be
assumed to be a physically relevant propagation driving force

parameter. In expression (2), the difference between ΔK and ΔKthR is
initially modified by the m∗ exponent, reducing the equation to a Paris
law expression that is shifted a constant value. At the same time, it
provides better fitting of experimental results, mainly for applied ΔK
values in the near-threshold region. However, expression (2) has some
problems when trying to account for the fatigue crack propagation rate
of short cracks, as we will discuss later.

Generally speaking, cracks shorter than 1mm do not follow the
crack growth laws derived for long cracks, for which the threshold for
fatigue crack propagation, ΔKthR, is constant for a given load ratio. In
the case of short cracks, ΔKth is a function of crack length, and increases
from a minimum value that is associated to the fatigue limit of the
material [1–8], to a maximum value given by ΔKthR.

Section 2 of this paper presents an overview of the most widely used
short crack threshold estimation models. Additionally, a comparison of
these models with the Chapetti model [7] is made to emphasize the
differences between them in order to clarify some cases of misuse, given
several misunderstandings of the fundamental hypotheses behind it.
Section 3 presents the development of a methodology, based on a
fracture mechanics approach, that is able to predict the high cycle fa-
tigue behaviour of short cracks, applying the resistance curve concept.
The method is fully defined for cracks larger than the characteristic
microstructural dimension of the studied material, which can usually be
found to be the grain size, pearlite colony size, bainite sheaf length, etc.
The equations and parameters needed to make the fatigue crack growth
estimations are also presented and estimations are compared with ex-
perimental results taken from the bibliography. Finally, some re-
commendations on future work are given.
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2. Overview and comparison of short fatigue crack growth
threshold estimation models

As we have mentioned before, it is now well understood that the
complex behaviour of short cracks is related to the threshold for short
fatigue crack propagation, which is a function of crack length. Many
efforts have been made to study small fatigue crack growth [1–17] and
various kinds of models have been proposed to try to correlate this
behaviour (see for instance Refs. [5–8,13]). Common fatigue analyses
usually contemplate the use of the resistance curve concept, expressed
by Eqs. (1) or (2). However if the anomalous crack propagation beha-
viour usually shown by short cracks is to be included, estimation of
short fatigue crack growth rates must consider a crack length dependent
propagation threshold, ΔKth, as follows:

= −a N C K Kd /d (Δ Δ )th
m (3)

= −∗ ∗ ∗a N C K Kd /d (Δ Δ )m
th
m (4)

The total applied stress intensity factor range, ΔK, can be properly
evaluated for any configuration, and since experimental measurements
of crack length dependent threshold values are difficult to obtain, they
are usually estimated using available prediction models. Three of these
models are introduced next, plotted schematically in Figs. 1 and 2.
Fig. 1 shows the estimated threshold stress range as a function of crack
length (Kitagawa and Takahashi diagram [18]), and Fig. 2 plots the
estimated threshold in terms of the stress intensity factor range as a
function of the square root of crack length.

2.1. El Haddad model

El Haddad model proposes a mathematical transition between the
plain fatigue limit, ΔσeR, and the crack propagation threshold for long
cracks, ΔKthR, and defines a critical distance, L0, using these two para-
meters. It is worth noting that this L0 parameter does not hold any
relation to an actual crack size or physical dimension (see Figs. 1 and
2). El Haddad and co-workers proposed the following expression to
estimate the threshold as a function of an “effective” length (a+ L0)
[6]:

=
+

K K a
a L

Δ Δth thR
0 (5)

Definition of L0 is given by:

⎜ ⎟= ⇒ = ⎛
⎝

⎞
⎠

K σ πL L
π

K
σ

Δ Δ 1 Δ
ΔthR eR

thR

eR
0 0

2

(6)

From expressions (5) and (6), the threshold stress range can be ex-
pressed as:

=
+

σ σ L
a L

Δ Δth eR
0

0 (7)

Several modifications of this basic model have been proposed,
adding the parameter Y in expression (5) to account for different geo-
metrical and loading configurations, or modifying L0 to account for the
plastic zone size and other aspects related to short crack propagation
[19–21].

It is important to emphasize that in the El Haddad model, ΔKth=0
for a=0, (see Figs. 1 and 2) since the model does not allow a definition
of a minimum ΔKth value, associated to the fatigue limit (micro-
structural threshold). This means that, according to this model, there is
not minimum threshold for fatigue short crack propagation.

2.2. Crack closure based models

Some authors attribute the short crack propagation behaviour to the
initial stages of crack closure development. Propagation models based
on this theory postulate that the total threshold is obtained as the sum
of the effective threshold stress intensity range, ΔKeff,th, and the opening
stress intensity factor Kop. In these models, Kop is the crack length de-
pendent parameter, while the ΔKeff,th value is constant, irrespective of
crack length. Effective threshold values are obtained from standard
fatigue tests of specimens with long cracks, in which it is necessary to
measure the crack closure component with a certain precision. The
threshold for fatigue crack propagation as a function of crack length is
then given by:

= +K K KΔ Δth eff th op, (8)

Nomenclature

a crack length
C,C∗ environmentally sensitive material constant
d position from the surface of the strongest microstructural

barrier to fatigue crack propagation
da/dN crack growth rate
k exponential factor
m,m∗ environmentally sensitive material exponent
ΔK applied stress intensity factor range
ΔKdr microstructural threshold
ΔKc extrinsic component of ΔKth

ΔKcR extrinsic component of ΔKthR

ΔKth crack length dependent threshold
ΔKthR long crack threshold
ΔKeff,th long crack effective threshold
Kop crack opening stress intensity
Kop,max maximum crack opening stress intensity
L0 critical distance
L0eff effective critical distance
Δσ applied stress range
Δσer plain fatigue limit
Δσth threshold stress range
R load ratio
Y geometrical factor

Fig. 1. Schematic representation of the analysed models in a Kitagawa-Takahashi type
diagram showing the threshold between propagation and non-propagating cracks.
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In the model of McEvily and Minakawa the development of the
opening stress intensity factor, Kop, (due to the development of the
crack closure effect), which should be zero for zero crack length and
maximum for long cracks, is estimated by the following exponential
expression [5]:

= − −K e KΔ (1 )op
ka

op,max (9)

where Kop,max is the maximum value of the closure component and k is a
parameter of units mm−1 that must be experimentally measured for a
given material and load ratio. According to the authors, k varies from 2
to 10mm−1 for steels, depending on the tensile resistance of the alloy
[22,23].

Tanaka and Akiniwa[11] proposed a different expression to esti-
mate the development of Kop, given by:

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

K a c
c c

KΔ op op
1

2 1
,max

(10)

where c1 is taken as the length of the stage I crack, and c2 is the crack
length above which Kop=Kop,max (limit between the short crack and
long crack regimes). The parameter c1 could be associated to the mi-
crostructural dimension (grain size d, for instance), but the parameter
c2 must be experimentally measured for each material and loading
ratio.

These methods have another source of uncertainties associated with
the value of Kop,max, which is measured using standardised tests that
present several implementation difficulties, and give results that are
highly dependent on experimental procedures and techniques [24].

2.3. Chapetti model

As it was described by Miller [16], fatigue resistance is character-
ized by the existence of a microstructural and a mechanical threshold.
The microstructural threshold is strictly related to the intrinsic micro-
structural properties of the material. It can be defined as the stress level
needed for a microstructurally short crack (MSC) to overcome the
strongest microstructural barrier, usually found to be a characteristic
microstructural dimension (grain size, pearlite colony size, bainite
sheaf length, etc.). Previous work by Chapetti et al. [7,25] provided
evidence that this intrinsic threshold stress level matches the material’s
plain fatigue limit. Taking this into consideration, the Chapetti model
[7] defines the microstructural or intrinsic threshold as:

=K Y σ πdΔ ΔdR eR (11)

where ΔσeR is the material’s plain fatigue limit, d is the position of the
strongest microstructural barrier (e.g. grain size), and Y is the geo-
metric correction factor. As in most cases MSC nucleated at surfaces are
considered semi-circular [26], Y is taken as 0.65. The ‘R’ subscript in-
dicates that as ΔσeR is R-ratio dependent, ΔKdR also is.

The Chapetti model proposes that, in addition to the microstructural
threshold, the cracks propagation threshold is also composed by an
“extrinsic” component, ΔKC, which is dependent on crack length. Once
this component has fully developed, it reaches a maximum value (for
long cracks), ΔKCR, which is constant for a given material and load
ratio. This maximum extrinsic component is defined as the difference
between the long crack propagation threshold, ΔKthR, and the micro-
structural threshold, ΔKdR, given by:

= −K K KΔ Δ ΔCR thR dR (12)

The development of ΔKC as a function of crack length can be modelled
with an exponential function of the form:

= − −K K eΔ Δ (1 )C CR
ka (13)

where a is the crack length, and k is a material and R-ratio dependent
constant that defines the shape of the ΔKC curve. The material threshold
as a function of crack length is then defined as:

= + = ⩾K K K Y σ π a a dΔ Δ Δ Δth dR C th (14)

From expressions (12) and (13) we finally get:

= + − − ⩾− −K K K K e a dΔ Δ (Δ Δ ) [1 ]th dR thR dR
k a d( ) (15)

It is now important to define the value of the constant k, responsible
for the behaviour of ΔKC, the extrinsic component of ΔKth. The first
hypothesis the model considers is that the plain fatigue limit, ΔσeR, is
defined by the strongest microstructural barrier located at position d. A
second hypothesis of this model postulates that, for cracks longer than
d, the threshold stress level must be equal or lower than the plain fa-
tigue limit. Graphically, we can exemplify this condition in Fig. 1,
where from a= d, the slope of the Δσth vs. a curve must be equal
(tangent) or lower than the horizontal line defined by the fatigue limit,
ΔσeR. Considering this restriction, we can obtain an upper limiting value
for k. When comparing this upper value with two sets of experimental
data for steel, it was found that better correspondence is obtained when
using one half of the given upper limit. This gave rise to the final form
of the expression used to estimate the parameter k, without the need of
any further calibration or additional fitting procedures [7]:

=
−

=k
d

K
K K d

K
K

1
4

Δ
(Δ Δ )

1
4

Δ
Δ

dR

thR dR

dR

CR (16)

This expression was later proved to work very well with experimental
data for eight different materials. See Ref. [7] for more details.

It can be seen that the Chapetti model is fully defined once ΔσeR,
ΔKthR and d are known, all being parameters that can be easily obtained
from common standardised fatigue tests and metallographic analysis.

2.4. Comparison of the models

Figs.1 and 2 help us analyse the differences between the three
models: the El Haddad model, which is a mathematical transition be-
tween the fatigue limit, ΔσeR, and the fatigue propagation threshold for
long cracks, is plotted in blue colour; the representation of a propaga-
tion model based on the development of the crack closure component
with crack length (in its different versions, proposed by McEvily et al.
[5] or Tanaka et al. [11]), plotted in green colour; and the Chapetti
model, plotted in red colour. Even though the Kitagawa diagram
(Fig. 1) is the most popular way of representing threshold values,
plotting the driving force as a function of the crack length in terms of
the stress intensity factor range, ΔK, seems to be more practical when
using expressions like (5), (8) or (15). Additionally, using the square
root of the crack length yields a clarified analysis of the differences
between the models (Fig. 2). A straight line given by the following
expression can be plotted in order to relate the basic concepts of the
models:

=K Y σ π aΔ Δ eR (17)

Fig. 2. Schematic representation of the analysed models in a Modified Kitagawa-
Takahashi type diagram showing threshold curves in terms of ΔKth vs a1/2.
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It can be seen that the El Haddad model does not allow a definition
of the transition between the fatigue crack initiation and propagation
stages. In the case of the models that use the crack closure concepts, an
intrinsic crack length L0eff is defined, associated to the fatigue limit by
using the effective fatigue crack propagation threshold for long cracks
(ΔKeff,th, the threshold for long-crack propagation without the crack
closure component). This length seems to be related with the extension
of the mode II crack propagation stage (crack initiation), but there is
not clear experimental evidence to prove this. On the other hand, the
Chapetti model allows a clear definition of the crack initiation stage,
and a fatigue crack initiation life, as the number of cycles necessary to
nucleate a micro crack with length equal to d.

Application of the crack closure models requires estimation of the k
or c1 parameters in expressions (9) and (10) respectively. These values
are obtained by fitting of experimental results of short crack propaga-
tion, and by measurement of the effective threshold for long cracks
(that is to say, to measure the crack closure component at threshold
levels). Technical difficulties and large scatter associated with these
experimental requirements, reduces significantly the practical applica-
tion of this models. Consequently, the El Haddad and Chapetti models
are usually preferred for fatigue life estimations [12,27,28], requiring
only measurement of the long crack propagation threshold, ΔKthR, and
the fatigue limit or endurance, ΔσeR, (plus d in the case of the Chapetti
model). In those cases where it is necessary to deal with a minimum
ΔKth for fatigue crack propagation, the Chapetti model is preferred,
since that minimum value is defined by the microstructural threshold,
ΔKdR. El Haddad model usually gives lower threshold values than ΔKdR

for a= d (see Figs. 1 and 2). This driving force difference can add up to
a considerably high number of cycles when dealing with high cycle
fatigue, resulting in over-conservative fatigue life estimations.

Different analyses of the Chapetti model can be found in the lit-
erature and some of them consider that the ΔKC term refers to the
closure component of the threshold ΔKth (see expression (13)), and so,
that it is similar to the model proposed by McEvily (see expression (9)).
For instance, Santus and Taylor [12] express textually that “ΔKC is the
closure term” of the threshold. Other analyses of the model in the same
publication are based on this misunderstanding. The only similarity
between the Chapetti and McEvily models is the mathematical ex-
pression used for the estimation of the development of ΔKth, an ex-
ponential function that requires only one constant (k) to describe the
behaviour of the curve. In the McEvily model, ΔKop is defined as the
crack length dependent closure component, and it is intrinsically re-
lated to the conceptual basis of the model. In the Chapetti model, ΔKC is
defined as the difference between the total threshold, ΔKth, and the
microstructural threshold, ΔKdR, which is obtained through the fatigue
limit and the position of the strongest microstructural barrier, d. The
microstructural threshold associated to the plain fatigue limit is not
only defined by the absence of the crack closure effect in a micro crack
with length equal to d, but also influenced by the surface strain con-
centration, change in crack propagation mode and other differences
with the fatigue behaviour and nature of long cracks. In the case of MSC
propagation, the experimental evidence behind the fatigue limit being a
microstructural threshold related to the strongest microstructural bar-
rier [16], makes the definition of ΔKdR much more realistic than the
extrapolation of the effective threshold for long crack propagation,
ΔKeff,th. Another important difference between the models is that the
parameter k used to describe the development of ΔKth in the closure
models (see expression (9)), must be obtained by fitting experimental
data of short crack thresholds. In the Chapetti model, the parameter k is
estimated with ΔKthR, ΔσeR and d in expression (16), which is deduced
from conditions associated to the definition of the microstructural
threshold and a final calibration against a few sets of experimental
results. Additionally, expression (15) can be applied for any alloy
making the model a practical and useful estimation tool.

Several other misunderstandings of the Chapetti model can be found
in the literature [29]. A clear one is the recent publication of Wang

et al. [30] that misunderstood not only the model itself, but also the
hypothesis that were used for the proposal.

In the following section an application to estimate short crack
propagation behaviour and high cycle fatigue lives is presented. The
model proposed by Chapetti [7] to estimate the short fatigue crack
propagation threshold as a function of crack length is used for the
analysis.

3. Application, results and discussion

3.1. Fatigue propagation rates estimation for short cracks

Fig. 3 shows experimental results for long and short crack propa-
gation published by Akiniwa and Tanaka [31] for Al 2024-T3 and load
ratio R=−1. Open symbols represent long crack data while solid
symbols represent average short crack growth rates. Solid lines re-
present long crack behaviour described by Eq. (1) in red and Eq. (2) in
blue. Parameters C and m used in Eq. (1) are optimized to fit the ex-
perimental values at the near threshold region so that the high cycle
fatigue behaviour is properly accounted for, while parameters C∗ and
m∗ in Eq. (2) are the standard Paris coefficients. Values used for the
curve fitting are: C=5.5 · 10−10, C∗=6.95 · 10−13 (when ΔK values
are expressed in units of MPa(m)1/2 and da/dN in units of m/cycle),
m=2 and m∗=4.1. It can be seen that Eq. (2) produces a better fit of
the threshold behaviour of long cracks. However, when the dependence
of the propagation threshold with crack length is included in the cal-
culation, expression (2) does not show a proper fitting of the short crack
propagation data. Discontinuous lines (dashed and dotted) in Fig. 3,
shows prediction results using the Chapetti model for the estimation of
the propagation threshold as a function of crack length by means of Eq.
(15). These estimations are plotted against short crack propagation data
(average) [31] for two different applied stress ranges, Δσ, of 300MPa
and 460MPa drawn as dashed and dotted lines respectively. Red lines
were obtained with Eq. (3) while blue lines were obtained through Eq.
(4). The parameters used in the model were extracted from Refs. [31]
and [32], being: ΔKthR=6MPa(m)1/2, ΔσeR=275MPa and d=19 μm.
It is clear that Eq. (4) gives is a mathematical limitation to the crack
propagation rate values, and that it does not adequately represent the
short crack propagation behaviour. However, introduction of the crack
length dependent threshold given by the Chapetti model in Eq. (3) al-
lows accounting for the higher crack propagation rates shown by short
cracks as the nominal applied stress is increased for the same applied
ΔK. Fig. 4 shows only the results from expression (3) adding the ex-
perimental propagation rates of a main crack reported by Akiniwa et al.
for each nominal stress range. It can be seen that good agreement is

Fig. 3. Comparison of estimated short and long crack propagation rates with Eqs. (3) and
(4) for Al 2324-T3 [31], using the Chapetti model for the short crack propagation
threshold prediction.
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found with the tendencies of experimental data. These experimental
values show the usual saw-tooth profile associated with the interaction
between the micro-crack font and the first 2, 3 or 4 microstructural
barriers. After that, threshold values can be averaged as the crack grows
and the propagating front crosses more than 5 or 10 microstructural
identities. This is a well-accepted assumption for the most widely used
threshold prediction models (El Haddad, Tanaka, McEvily, Chapetti,
etc).

3.2. High cycle fatigue life estimation

The previous analysis of Fig. 4 is complemented with the results
presented in Fig. 5, which shows the predicted crack length as a func-
tion of number of cycles by integrating expression (3), for the same Al
alloy analysed by Akiniwa and Tanaka [31]. Integration of experi-
mental results through linear interpolation is also plotted for the
average short crack propagation data and for main cracks. It can be
seen that for the 460MPa stress level, predicted propagation behaviour
yields very good agreement with experimental data. For the 300MPa
nominal stress level the fatigue life is underestimated, however, given
the large scatter usually encountered with short crack propagation at
stress levels near the fatigue limit, it can be concluded that the pre-
diction presents an adequate, conservative result.

In a recent publication, Santus and Taylor [12] proposed that the
physically short crack propagation is similarly modelled by means of a
driving force equation, but independent from the long crack propaga-
tion. They concluded that, with the use of this equation, a better de-
scription of the short crack behaviour is provided. They obtained
physically short crack propagation model parameters by fitting ex-
pression (3) to experimental data taken from the literature, for two
aluminium alloys and a titanium alloy at two different heat treatment
conditions and load ratios. The proposed model offers a phenomen-
ological tool to describe the higher short crack propagation rates than
those expected for long cracks at similar applied ΔK. However, it cannot
be used for prediction purposes due to the need of experimental results
to fit and obtain the parameters needed for the model.

In the same publication they also presented the possibility to esti-
mate the initiation period by subtracting the predicted propagation
cycles from the total fatigue life obtained from smooth samples. Fig. 6
shows an S-N plot with experimental results for a Ti-6Al-4V alloy [12],
together with the propagation estimation presented by Santus and
Taylor (dashed line), obtained using their proposal and the El Haddad
model for the estimation of the short crack propagation threshold. The
propagation lives obtained by their procedure results very small when
compared to total lives of the fatigue specimens. Given this fact, Santus
et al. concluded that most of the fatigue life is spent at the initiation

period, characterizing the propagation stage as almost negligible.
Fig. 6 also shows the prediction of the propagation stage by in-

tegration of expression (3) and using the Chapetti model for the short
crack propagation threshold prediction. Data used in the calculation are
ΔσeR=470MPa (extracted from lowest value at 107 cycles),
ΔKthR=4MPa(m)1/2 and d=20 μm [33]. It can be seen that there is a
large difference between both predictions, up to two orders of magni-
tude at stress levels near the fatigue limit, contrary to the conclusion of
similarity between both El Haddad and Chapetti models as it has been
reported [12]. Additionally, the Santus model does not seem to be able
to predict the fatigue limit of the given configuration, as the Chapetti
model does. Considering the experimental scatter, the curve integrated
from the Chapetti model falls close to the experimental results while
keeping a conservative result. The authors believe that the result ob-
tained by Santus and Taylor is related to the choice of over-conservative
values of C and m parameters used in the propagation equation,
whereas a proper expression has been used within the Chapetti model
to integrate da/dN values. Furthermore, using the El Haddad model for
estimation of the short crack propagation threshold, gives a relatively
high fatigue crack propagation rate for nominal stress level near the
fatigue limit. As it was mentioned before, for a= d, the fatigue
threshold estimated by the El Haddad model is smaller than ΔKdR, the
minimum threshold for fatigue crack propagation at the fatigue limit,
ΔσeR (see Figs. 1 and 2).

4. Conclusion

An integrated fracture mechanics approach to estimate the high
cycle fatigue behaviour of metallic components is presented. Definition
of the intrinsic transition crack length given by the parameter d, which
separates the crack initiation and crack growth periods, allows the
proposed method to include the short crack regime analysis, where the
threshold for fatigue crack propagation is a function of crack length.
Application of the model to both long and short crack propagation was
carried out using a single da/dN and results were in good agreement
with experimental data for different values of nominal applied stress
level.

Given the lack of need for additional fitting parameters or difficult
experimental procedures and the simplicity of application, authors
believe that the proposed model can be utilized in different types of
analyses based on fracture mechanics principles. Simplification of the
saw-tooth profiles usually found in short crack propagation rates
(Fig. 4) into a continuum equation yields good results, and adequate
and conservative crack propagation rates are easily estimated with the
proposed methodology. These results can vary significantly with mis-
understanding and misuse of the Chapetti model (see Fig. 6).

Fig. 4. Short crack propagation rate estimation using Eq. (3) and the Chapetti model
against experimental results for average and main short crack propagation rates in Al
2024-T3 [31].

Fig. 5. Prediction of crack propagation behaviour against integration of experimental
results.
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Thus, the method can be used as a simple and practical estimation
tool, and aid in the study of interesting fatigue phenomena related with
small fatigue cracks and high cycle fatigue. This includes the study of
the mechanism of non-propagating crack development, notch size effect
and fatigue notch sensitivity. Further analysis and applications should
be carried out in order to demonstrate its ability and the reliability of
the estimations.

5. Future work

As the proposed method encompasses the propagation of both short
and long cracks, future work would have to focus on expanding the
predictive capabilities of the procedure into the field of variable am-
plitude loading. This would require reliable experimental data, for short
and long cracks for different stress ratios, in order to correlate mean
stress effects. Additionally, the load interaction phenomena should be
included in the form of a modified driving force, accounting for the
influence of residual stress fields and the occurrence of crack closure
effects.
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