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a b s t r a c t

An induced matching is a matching where no two edges are connected by a third edge.
Finding a maximum induced matching on graphs with maximum degree ∆, for ∆ ≥ 3, is
known to be NP-complete. In this work we consider the weighted version of this problem,
which has not been extensively studied in the literature. We devise an almost tight
fractional local ratio algorithm with approximation ratio ∆, which proves to be effective
also in practice. Furthermore, we show that a simple greedy algorithm applied to K1,k-free
graphs yields an approximation ratio 2k− 3. We explore the behavior of this algorithm on
subclasses of chair-free graphs and we show that it yields an approximation ratio k when
restricted to (K1,k, chair)-free graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple undirected graph. A subset M ⊆ E is an induced matching if M is a matching and no
edge of E connects two edges of M. The Maximum Induced Matching (MIM) problem is to find an induced matching of
maximum cardinality. Note that the size of a MIM is the same as the size of a maximum independent set of L(G)2, the square
of the line graph of G. To our best knowledge, MIM was introduced in [30] among some generalizations of the classical
maximum matching problem, although it was referred to as ‘‘risk-free’’ marriage problem. The authors proved it to be
NP-complete when restricted to bipartite graphs of degree at most 4. Independently, this problem was introduced
in [3], where a polynomial time algorithm for chordal graphs was given. Thereafter MIM was polynomially solved on
trees [12], circular-arc graphs [14], trapezoid, k-interval dimension, cocomparability graphs [15], (Star1,2,3, Sun4)-free
bipartite graphs [26], weakly chordal graphs [5] and on bounded treewidth graphs [27]. The relations between the families of
G and L(G)2 were exploited to conclude that MIM is polynomially solvable for polygon–circle, AT-free, and filament-interval
graphs; where the latter contains cocomparability, circle, circular-arc, chordal and outerplanar graphs [4]. A polynomial
time algorithm for hhd-free graphs and a linear time algorithm for a subclass of hhd-free graphs which is a more general
class than chordal graphs were given in [24]. The problem was proven to be NP-complete on bipartite graphs of maximum
degree 3, C4-free bipartite graphs [26], d-regular graphs for d ≥ 5, line graphs (which implies that MIM is NP-complete
on claw-free graphs and chair-free graphs) [23] and on cubic planar graphs [11,22]. Note that since any claw-free graph
is K1,k-free for k ≥ 3 and cannot contain a chair, it follows that MIM is NP-complete on (K1,k, chair)-free graphs — a class
that we address in this work. Several algorithms were given for classes related to AT-free graphs, in particular it was shown
that the MaximumWeight InducedMatching (MWIM) problem is polynomially solvable on graphs with bounded asteroidal
index [8]. It was observed that orthogonal ray graphs have bounded asteroidal index [31], which by [8] implies a polynomial
time algorithm for MWIM for this class. MIM was solved in polynomial time for line graphs of Hamiltonian graphs, and it
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was shown that the problem remains NP-complete on Hamiltonian graphs [23]. In the same paper the authors gave some
polynomial time algorithms for subclasses of P5-free graphs and they noted that if G is P5-free, then L(G)2 is P5-free. In those
years was still an open question whether the maximum independent set on P5-free graphs was polynomial time solvable,
and therefore this observation did not directly yield a polynomial time algorithm for MIM on P5-free graphs. Remarkably,
this long standing question was affirmatively answered a decade later in [25]; which implies that MIM is polynomial on
P5-free graphs. In [23] a polynomial time algorithmwas given for recognizing graphs where the size of a maximum induced
matching is the same as the size of a maximummatching, and a polynomial time algorithmwas given to find a MIM in such
class. A simpler recognition algorithm for this class was given in [6]. The line of research of [6,23] was continued in [10],
where the authors simplified further the proofs of [6] and gave a polynomial time algorithm for recognizing graphs where
the maximum induced matching differs in at most k with the maximum matching. MWIM was shown to be polynomially
solvable on chordal graphs, (claw, net)-free graphs and some other subclasses of claw-free graphs [2].

Regarding approximability, for graphs of degree atmost∆ only a 2(∆−1)-approximation is known [32]. However, several
approximations were given for d-regular graphs with d ≥ 3, which all used the same theoretical upper bound for proving
their approximation ratios — namely, that any induced matching of a d-regular graph has at most m/(2d − 1) edges. This
bound was first introduced in [32], where the author gave a simple greedy algorithm with performance ratio d− 1

2 +
1

4d−2 .
This was improved in [11], where the authors gave an asymptotic approximation ratio d− 1. In the same work they gave a
PTAS for planar graphs of degree at most 3. In the following year, a 0.75d + 0.15 approximation ratio for d-regular graphs
was given [16]. This ratio was further improved to 0.7083d+ 0.425 on (C3, C5)-free d-regular graphs [29]. An algorithm for
cubic graphs with performance ratio 9/5 appears in [20].

Several results were given regarding lower bounds and algorithms attaining them. Any subcubic planar graph has an
induced matching of size at least m/9 and it is possible to find such induced matching [21]. It is known that in subcubic
graphs without short cycles there must be an induced matching of size at least (n − 1)/5 [17]. For bounded degree graphs
there is a polynomial time algorithm that computes an induced matching of size at least n

(⌈∆/2⌉+1)(⌊∆/2⌋+1) for graphs with
sufficiently large ∆ and with no isolated vertices [18]. One can find an induced matching in polynomial time with at least
m/20 edges for graphs with degree at most 4, and at leastm/18 edges for a subclass of these graphs [19].

On the negative side, MIM cannot be approximated on general graphs with a constant performance ratio unless P =
NP [32]. Furthermore, the problem cannot be approximated within a factor n1/2−ϵ for some ϵ > 0, unless P = NP [28].
Moreover, MIM is APX-complete for d-regular bipartite graphs for d ≥ 3 [9].

Despite the vast amount of research done for induced matchings, not much has been achieved for the weighted version
of this problem besides [2,8,31]. To our best knowledge, no approximation algorithmwas given using a linear program as an
upper bound. However, a generalization ofMWIMwith edge capacities was considered in [13], and for some particular cases
(that excluded the classical induced matching) the authors gave some constant approximation ratios by relating a natural
linear programming formulation with a capacitated b-matching polytope.

In this work we propose a fractional local ratio algorithm for MWIM with performance ratio ∆. For an overview on local
ratio algorithms we suggest the survey [1]. Furthermore, we show that a simple greedy algorithm yields an approximation
ratio 2k− 3 for K1,k-free graphs and k for (K1,k, chair)-free graphs.

2. A ∆-approximation algorithm

Let G = (V , E) be an edge-weighted graph with weights we ∈ Q≥0. For an edge uv = e ∈ E we define N(e) = N(v)∪N(u)
and δ(e) = δ(u) ∪ δ(v), where N(v) is the open neighborhood of v and δ(v) is the set of edges incident to v. We denote
C(e) ⊆ E to be the set of edges which are in conflict with e; more formally, C(e) =

⋃
w∈N(e)δ(w). Note that in our definition

e ∈ C(e).
We can model the MWIM problem with an integer linear program. We define the binary variables xe for e ∈ E such that

e is included in the solution if and only if xe = 1. Consider the following formulation, where x(A) denotes
∑

a∈Axa.

max
∑
e∈E

wexe

s.t. x(δ(e)) ≤ 1 ∀e ∈ E,

xe ∈ {0, 1} ∀e ∈ E.

Our algorithm uses linear relaxations of the above program restricted to different sets of variables. Formally, for a subset
F ⊆ E, we denote LPF to be the following linear program restricted to the variables xf for f ∈ F .

max
∑
e∈E

wexe

s.t. x(δ(e)) ≤ 1 ∀e ∈ E,

xe ≥ 0 ∀e ∈ F .

In what follows we show that Algorithm 1 has performance ratio ∆ provided that in each recursive call one can find an
edge e ∈ F such that x(C(e)) ≤ ∆. Note that there is at most one recursive call in each call, and in each step |F | decreases
by at least one. Therefore, the algorithm ends after at most |E| recursive calls. For the sake of completeness, we include the
proof of the following theorem.
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Algorithm 1 IM(F , w)
1: if F = ∅ then
2: return ∅
3: Compute an optimal solution x to LPF
4: Let F0 = {e : xe = 0}
5: if F0 ̸= ∅ then
6: return IM(F \ F0, w)
7: Let e ∈ F such that x(C(e)) ≤ ∆

8: For each f ∈ F , let ŵf =

{
we if f ∈ C(e),
0 otherwise.

9: M← IM(F \ {e}, w − ŵ)
10: if M ∪ {e} is an induced matching (i.e. if C(e) ∩M = ∅) then
11: M←M ∪ {e}
12: return M

Theorem 1 ([1,7]). If for any non empty subset F ′ ⊆ F and any feasible solution y to LPF ′ there is some g ∈ F ′ such that
y(C(g)) ≤ ∆, then Algorithm 1 computes an induced matching M such that w(M) ≥ 1

∆

∑
f∈Fwf xf , where x is the solution to LPF

computed in Line 3.

Proof. We prove this by induction in the number of iterations. The base case is handled in Line 2, which trivially holds.
Suppose the algorithm returns on Line 6. Let x′ be the solution to LPF\F0 computed in the recursive call. Then

w(M) ≥
1
∆

∑
f∈F\F0

wf x′f ≥
1
∆

∑
f∈F\F0

wf xf =
1
∆

∑
f∈F

wf xf ,

where the first inequality holds by inductive hypothesis; the second holds because x′ is an optimal solution for LPF\F0 and x
restricted to F \ F0 is feasible for LPF\F0 ; and the last equality holds because xf = 0 for each f ∈ F0.

We now consider the case when the algorithm returns on Line 12. Let w̃ = w− ŵ. Denote x′ to be the computed optimal
solution to LPF\{e} with weights w̃. On the one hand, we have

w̃(M) ≥
1
∆

∑
f∈F\{e}

w̃f x′f ≥
1
∆

∑
f∈F\{e}

w̃f xf =
1
∆

∑
f∈F

w̃f xf ,

where the first inequality follows from the inductive hypothesis; the second from the fact that x′ is an optimal solution for
LPF\{e} (withweights w̃) and x restricted to F \{e} is feasible for LPF\{e}; and the last equality holds because w̃e = 0, regardless
of whether e ∈M or not. On the other hand, we have

ŵ(M) = ŵe|M ∩ C(e)| ≥ ŵe ≥ ŵe
x(C(e))

∆
=

1
∆

∑
f∈C(e)

ŵexf =
1
∆

∑
f∈F

ŵf xf ,

where the first equality follows from the definition of ŵ; the first inequality follows since M ∩ C(e) is always non-empty;
the second inequality because x(C(e)) ≤ ∆; and the last equality follows because ŵf = 0 for any f ∈ F \ C(e) and ŵf = ŵe
for each f ∈ C(e).

Therefore, we have

w(M) = w̃(M)+ ŵ(M) ≥
1
∆

∑
f∈F

ŵf xf +
1
∆

∑
f∈F

w̃f xf =
1
∆

∑
f∈F

wf xf . □

Lemma 2. Let x be a solution to LPF , then there is some edge e ∈ F such that x(C(e)) ≤ ∆.

Proof. Let v ∈ V be a vertex that maximizes β = x(δ(v)). Take any edge uv = e ∈ δ(v) ∩ F . For each w ∈ N(v) \ {u}, we
have that x(δ(vw)) = x(δ(v) ∪ δ(w)) ≤ 1, and therefore x(δ(w) \ δ(v)) ≤ 1− x(δ(v)) = 1− β . Hence,

x(C(e)) ≤ x(δ(e))+
∑

w∈N(v)\{u}

x(δ(w) \ δ(v))+
∑

w∈N(u)\{v}

x(δ(w))

≤ 1+ (∆− 1)(1− β)+ (∆− 1)β
= ∆,

where the first inequality holds because each variable of x(C(e)) appears at least once in the sum; and the second inequality
holds since x(δ(w)) ≤ β for each w ∈ N(u) \ {v} by definition of β . □
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Fig. 1. Tightness of the Algorithm 1 for graphs of degree at most ∆.

Corollary 1. Algorithm 1 has performance ratio ∆.

Remark 1. For any ∆ there is a ∆-regular graph G and a subset of edges F such that the optimal solution x to LPF is such that
x(C(e)) = ∆− 1/2 for each edge e ∈ F . In other words, Lemma 2 is almost tight.

Proof. Connect three matchings of ∆ − 1 edges by three complete bipartite subgraphs. Define the set F as the matchings.
An example for ∆ = 4 is depicted in the first graph of Fig. 1, where the solid edges are those in F . An optimal solution to LPF
is given by assigning 1/2 to each edge in F , which implies x(C(e)) = ∆− 1/2 for each e ∈ F . □

Remark 2. The integrality gap is at least∆−1. This means that unless we use a stronger linear formulation, we cannot hope
to improve much the approximation ratio using the linear program as upper bound.

Proof. Consider twomatchings of∆−1 edges connected by a complete bipartite graph.With the remaining vertices of each
matching form a clique. Assign a zero weight to the edges in the complete bipartite subgraph and the cliques, and a unitary
weight to the edges of the matchings. An example for ∆ = 5 is depicted in the second graph of Fig. 1, where the bold edges
have weight 1. Clearly, an optimal induced matching has weight 1, while assigning 1/2 to each edge of the matchings yields
a fractional solution of weight ∆− 1. □

3. A greedy algorithm

Consider the natural greedy approach: sort the edges by their weights in a non-increasing order and iteratively keep
adding the heaviest possible edge to the solution, making sure that at every moment the solution is an induced matching.
When no more edges can be added, return the constructed solution.

Observe that this algorithm can be implemented in O(m log n) time: sorting is O(m log n); then we iterate through the
edge set and we take the first edge uv whose endpoints are non-marked; we add this edge and we mark N(u) ∪ N(v) — this
second phase takes O(m) time.

Note that if M is a maximum weight induced matching and |M ∩ C(e)| ≤ α for each e ∈ E, then in each iteration of
the greedy algorithm we pay at most α times what we receive for the edge we pick, and thus the approximation ratio is α.
Formally, if S = {e1, . . . , et} is the induced matching constructed by the algorithm, where ei was added before ei+1, then

w(M) = w

(
t⋃

i=1

C(ei) ∩M

)

= w

⎛⎝ t⋃
i=1

C(ei) ∩M \
i−1⋃
j=1

C(ej)

⎞⎠
=

t∑
i=1

w

⎛⎝C(ei) ∩M \
i−1⋃
j=1

C(ej)

⎞⎠
≤

t∑
i=1

αwei

= αw(S),
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Fig. 2. Graphs G4 and H4 .

where the first equality holds because
⋃

e∈SC(e) = E; the second is a rewriting of the edges of M in the order of their
appearances in C(e1), . . . , C(et ); the third equality holds because the above sets are disjoint; the inequality holds since
wei ≥ wf for each f ∈ M \

⋃i−1
j=1C(ej) ⊆ E \

⋃i−1
j=1C(ej), and since |C(ei) ∩M \

⋃i−1
j=1C(ej)| ≤ |C(ei) ∩M| ≤ α; and the

final equality is simply the definition of w(S). We thus proved the following.

Theorem 3. If for any induced matching Mwe have |M∩ C(e)| ≤ α for each e ∈ E, then the greedy algorithm has performance
ratio α.

3.1. K1,k-free graphs

Lemma 4. If G is K1,k-free and M is an induced matching of G, then |M ∩ C(e)| ≤ 2k− 3 for any edge uv = e ∈ E.

Proof. If e ∈ M, then |C(e) ∩M| = 1 ≤ 2k − 3. Suppose that e ̸∈ M. If δ(u) ∩M ̸= ∅, then since M is an induced
matching, it follows that δ(v) ∩M = ∅. Since G is K1,k-free, there are at most k − 1 pairwise non-adjacent neighbors of
v, meaning that |δ(N(v)) ∩M| ≤ k − 1, where δ(N(v)) =

⋃
w∈N(v)δ(w). Note that δ(N(u)) ∩M ⊆ δ(N(v)), and therefore

|C(e) ∩ M| ≤ k − 1 < 2k − 3. Suppose now δ(e) ∩ M = ∅. If |C(e) ∩ M| ≥ 2k − 2, then it must be the case that
|δ(N(u))∩M| = |δ(N(v))∩M| = k− 1 and these sets are disjoint, but this is not possible because in N[u] there must be an
induced K1,k centered on u with k pairwise disjoint vertices given by k− 1 endpoints of M ∩ δ(N(u)) and v. □

Corollary 2. If G is K1,k-free (k ≥ 3), then the greedy algorithm has performance ratio 2k− 3.

3.2. Subclasses of chair-free graphs

Suppose now that G is chair-free andM is an induced matching of G. In what follows we show that if there is some edge
e ∈ E such that |M ∩ C(e)| = k ≥ 4, then Gmust have at least one of two possible graphs as induced subgraph.

Define Gk (k ≥ 3) to be the graph given by an inducedmatching of k edges with a universal vertex. DefineHk (k ≥ 4) to be
the graph given by an inducedmatching of size k and two additional adjacent vertices, u and v, such that u is connected to all
the vertices of the first k−1 edges in thematching, and v is connected to all the vertices of the last k−1 edges in thematching
(see Fig. 2 for an example). In what follows we say that an edge uv neighbors with a vertex w if w ∈ N(v) ∪ N(u) \ {u, v}.

Lemma 5. Let G be a chair-free graph and M be an induced matching of G. If v ∈ V is not an endpoint of some edge in M and
v neighbors with k ≥ 3 edges from M, then v and its neighboring edges in M induce a Gk.

Proof. Suppose for contradiction that there is some edge uw ∈ M such that uv ∈ E but v and w are not adjacent. Then,
since k ≥ 3, there must be at least two non-adjacent vertices, x and y, neighboring v that are endpoints of edges in M. But
this is not possible, because {x, y, v, u, w} induces a chair. □

Theorem 6. Let G be a chair-free graph and M be an induced matching of G. If there is some edge uv = e ∈ E such that
|M ∩ C(e)| = k ≥ 4, then there is an induced Gk or an induced Hk in G.

Proof. Clearly, e ̸∈M because k ≥ 4. If u is an endpoint of some edge in M, then v must be neighboring k edges of M, and
therefore by Lemma 5 there must be an induced Gk centered on v. Suppose now that e does not share any endpoint with
edges fromM. Clearly, if u or v neighbors k edges fromM, then by Lemma 5 there is an induced Gk. Suppose that there is an
edge xy ∈M neighboring u but not v, and an edge pq ∈M neighboring v but not u. Suppose w.l.o.g. that xu ∈ E and vq ∈ E.
It thus follows that {x, u, v, q} induces a P4, which means that any endpoint of an edge inM (other than xy and pq) adjacent
to umust be adjacent to v and vice versa (because G is chair-free). Therefore, there are k− 2 edges inM neighboring both, u
and v. It follows that there are exactly k− 1 edges inM neighboring u and k− 1 edges inM neighboring v. Since k− 1 ≥ 3,
by Lemma 5 there is a Gk−1 centered on u and a Gk−1 centered on v. It follows that the vertex set ofM∩ C(e) induces Hk. □
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Table 1
Random graphs with n = 100 and 100 ≤ m ≤ 1000.

Apx OPT OPT/Apx LP/Apx ∆

994.235 1313.783 1.321 1.981 16
586.682 1046.750 1.784 3.730 20
569.141 987.044 1.734 3.900 23
779.096 1071.847 1.376 2.735 20
531.683 979.944 1.843 4.280 29

Table 2
20-regular graphs with n = 40.

Apx OPT OPT/Apx LP/Apx ∆

166.859 291.569 1.747 5.669 20
180.933 268.522 1.484 5.108 20
187.330 288.790 1.542 5.012 20
99.695 286.538 2.874 9.232 20
187.891 279.431 1.487 4.971 20

Table 3
5-regular graphs with n = 40.

Apx OPT OPT/Apx LP/Apx ∆

490.066 625.157 1.276 1.548 5
418.108 628.044 1.502 1.905 5
436.627 568.391 1.302 1.724 5
459.120 654.537 1.426 1.717 5
336.008 587.630 1.749 2.294 5

Table 4
Bipartite graphs with n1 = 20, n2 = 30 and Prob[uv ∈ E] = 0.2.

Apx OPT OPT/Apx LP/Apx ∆

470.472 745.622 1.585 1.735 9
540.191 701.684 1.299 1.501 10
473.746 719.346 1.518 1.839 9
647.261 647.896 1.001 1.224 9
430.503 667.672 1.551 1.988 13

Table 5
Bipartite graphs with n1 = 20, n2 = 30 and Prob[uv ∈ E] = 0.8.

Apx OPT OPT/Apx LP/Apx ∆

175.597 287.360 1.636 6.260 29
196.746 287.731 1.462 5.588 27
184.185 268.497 1.458 5.802 27
185.272 352.590 1.903 5.929 28
198.288 266.653 1.345 5.671 29

Corollary 3. If G is (Gk,Hk, chair)-free (k ≥ 4), then the greedy algorithm has performance ratio k− 1.

Corollary 4. If G is (Gk, chair)-free (k ≥ 3), then the greedy algorithm has performance ratio k.

Corollary 5. If G is (K1,k, chair)-free (k ≥ 3), then the greedy algorithm has performance ratio k.

4. Experimental results

Because of its simple structure, it is of interest to analyze the practical behavior of Algorithm 1. The first thing to observe
is that the linear program solved at the first iteration is of size |E|×|E|, which is themost expensive step in the computation.
This imposes a practical limit on the size of the problem to be solved.

We explored the approximation behavior for randomly generated graphs, bipartite graphs and regular graphs. The
weights were picked randomly with a uniform distribution between 1 and 100. The results are shown in Tables 1–5.

The gap between our solution values and the optimal ones is much smaller than the approximation factor. This suggests
that the algorithmperforms verywell in practice, disregarding the gapwith respect to the linear relaxation. It isworth noting
that we computed the optimal values only for small instances, which means we cannot claim good behavior with respect to
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the optimal value for large instances. Furthermore, we observe that the denser the graph, the bigger is the integrality gap.
This is expected to be so due to the local nature of the constraints in the linear program. Finally, we note that the gap with
respect to the linear relaxation for random graphs is usually much smaller than ∆. However, as we have seen in Remark 2,
there are instances where this gap is ∆− 1.
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