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This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares
Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivar-
iate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the
PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the
models derivedwith PLSR andYX-PCA (i.e., PCAof the joint input–output variables) are presented; and regarding
to processmonitoring applications, the specific PLSR andYX-PCA fault detection indices are compared.Numerical
examples are used to illustrate the relationships between latent models, output prediction models, and fault
detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with
regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for
enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the
fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are
given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have
similar capacity for fault detection, but PLSR is recommended for processmonitoring because it presents a better
diagnosing capability; 2) PLSR ismore reliable for output prediction purposes (e.g., for soft sensor development);
and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Principal Component Analysis (PCA) [1] and Partial Least Squares
Regression (PLSR) [2] techniques allow the numerical adjustment of a
linear model for describing the main relationships among process
variables. These techniques are especially useful for reducing high-
dimension multivariate systems that include collinear variables,
thus minimizing the problems associated with the treatment of ill-
conditioned datasets [3]. As ordinary least squares andprincipal compo-
nents regression, PLSR can also be considered as a particular case of
other more general regression approaches [4,5].

In recent years, many studies have shown how PCA and PLSR can
successfully be used for calibration of multivariate models [6,7], control
of batch processes [8], control of quality variables that cannot be mea-
sured online [9], development of soft-sensors [10], detection of faults
and process anomalies [11], treatment of missing values in the dataset
[12],monitoring the performance of industrialmodel-predictive control
systems [13], and latent variable model predictive control (LV-MPC)
[8,14,15].

Several multivariate techniques, such as PCA [1] and Independent
Component Analysis (ICA) [16], are based on the underlying correlation
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among variables only, while PLSR is also adequate to explicitly expose
the existence of causal relationships [2,17]. For instance, PLSR is often
used in chemometrics applications to infer process causality from ex-
perimental data [18]. Based on these techniques, the processmonitoring
strategies initially fit the latent variable models to later define the fault
detection indices. Today, such strategies have remarkable possibilities of
industrial applications [7,19].

In a multivariate process, input measurements (X) are typically
associatedwith recipe conditions,manipulated variables, undesired dis-
turbances, etc.;while outputmeasurements (Y) are normally associated
to production and quality variables. In particular, for monitoring varia-
tions and abnormal situations with the input measurements (X) only,
a PCA decomposition of theX space (X-PCA) can be performed. Howev-
er, a more important objective of process monitoring is to ensure good
product quality when this can be impacted by the process operating
conditions. In general, the quality variables (Y) are affected by process
conditions that can be partially disclosed by themeasuredX-data. Addi-
tionally, some Y variables are often difficult to measure, or are available
with significant measurement delays. For monitoring changes in vari-
ables that are relevant to the product quality it seems convenient to per-
form PLSR decomposition of the X-space; this is because PLSR produces
an output-conditioned decomposition of the X-space, while X-PCA pro-
duces an orthogonal decomposition. PLSR has been widely used for
monitoring complex industrial processes where the quality variables
are important [3]; however, more details seem necessary to make

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2013.11.008&domain=pdf
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1 In comparison to Ref. [27], the following equivalent notations are used: eYx ≡ eY1; eY ≡eY2.
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clear how Y affects the decomposition of the X-space, and the outcome
of themonitoring task. Besides, the relationships between PCA and PLSR
have not been formally established so far, as suggest recent review arti-
cles where these two techniques are presented as completely different
[3,20,21].

This paper first investigates some properties and analogies of PLSR
and PCA as multivariate statistical techniques, and then recommends
which of them would be more appropriate for latent pattern analysis,
output prediction, ormonitoring purposes. The paper is organized as fol-
lows: Section 2 summarizes the modeling strategies based on PLSR and
YX-PCA (i.e., PCA of the joint input–output variables). Section 3 describes
and compares the space decompositions and the fault detection indices
based on PLSR and YX-PCA. In Section 4, both modeling techniques are
compared. In particular, Section 4.1 describes the geometric properties
and the decomposition structure of PLSR in relation to X-PCA and Y-
PCA. Section 4.2 describes some analogies between PLSR and YX-PCA
models. In Section 4.3, the fault detection indices of bothmodeling tech-
niques are compared. For a better comprehension, Section 5 includes nu-
merical examples that illustrate the analysis and present some
simulation tests where the analogies and differences are visualized and
discussed. Finally, the main conclusions are presented in Section 6.

2. Latent variable modeling by PLSR and YX-PCA

A process with collinear variables can be modeled through YX-PCA,
without differentiating outputs from inputs. Alternatively, the same
dataset can be analyzed by PLSR, which explicitly considers the exis-
tence of intrinsic causal relationships among process variables. Also,
PLSR allows the identification and subsequent elimination from the
original dataset of interfering input variables to get an improved
model [10,22]. Therefore, we might expect that the PLSR technique
yields a model closer to the intrinsic structure of a multi-input multi-
output process [6].

Consider a process with m measured input variables plus p mea-
sured output variables. Assume that N measurements of each variable
are collected while the process is operating under normal conditions.
In order to build a model, the N multivariate measurements are ar-
ranged into a predictor matrix X = [x1 … xN]′ (N × m) consisting of N
samples of m variables per sample, and a response matrix Y = [y1 …
yN]′ (N × p) with N samples of p variables per sample. Then, PLSR can
be used to find a regression model between the measurement vectors
x = [x1…xm]′ and y = [y1…yp]′. This technique produces a projection
of X and Y into low-dimension spaces defined by A latent variables
which are then regressed [23,24].

Alternatively, the same multivariate process can be modeled by ap-
plying PCA to all input and output variables together, as a single dataset.
In other words, given a data matrix Z = [Y X] = [z1 … zN]′
(N × (p + m)), consisting of N samples of p + m variables, PCA can
be used to find a latent model of Z that describes the correlations
among the variables included in the vector z = [y′ x′]′. Let us assume
that this PCA approach produces a projection of Z into a space with
the same low-dimension A as determined when modeling through
PLSR. Notice that this alternative space of latent variables should also
explain the underlying correlation between Y and X [11,24,25].

2.1. Extended PLSR modeling

The PLSR model is typically derived by the application of the PLSR-
NIPALS algorithm [26], and produces one internal and two external
models. The two external models respectively decompose X and Y
into score vectors (ta and ua), loading vectors (pa and qa), and residual
error matrices (eX and eY), as follows [26]:

X ¼ TP′ þ eX; P ¼ p1…pA½ �;T ¼ t1…tA½ �; ð1Þ

Y ¼ UQ ′ þ eY; Q ¼ q1…qA½ �;U ¼ u1…uA½ �; ð2Þ
where the matrices T and U are orthogonal by columns. In the internal
model, these score matrices are related through the following regres-
sion model [26]:

U ¼ TBþ Ue; B ¼ diag b1…bAð Þ; Ue¼ ue
l…
ue
A

h i
: ð3Þ

Call R and S the pseudo-inverses of P′ and Q′ respectively, where
P′R = I and Q′S = I. Then, T and U can be calculated from the original
data X and Y respectively, as follows [27]:

T ¼ XR; R ¼ r1…rA½ �; ð4Þ

U ¼ YS; S ¼ s1…sA½ �: ð5Þ

Since the row space of eX (Eq. (1)) belongs to the null space of R, theneXR ¼ 0. Similarly, eY (Eq. (2)) belongs to the null space of S, and conse-
quentlyeYS ¼ 0. Hence, by combining Eqs. (2)–(4), the following decom-
position is obtained:

Y ¼ XRBQ ′ þ eUQ ′ þ eY ¼ Ŷ þ eYx þ eY; ð6Þ

where Ŷ is the X-based output prediction and eYx is the error originated
by the internal regression. This description has been called the “extend-
ed PLSR modeling” [27]1 because the projection of Y to U (Eq. (5)) was
added, which induces the decomposition of the prediction error in two
terms: eYx and eY.
2.2. YX-PCA modeling

The YX-PCA modeling alternative (typically obtained through the
NIPALS algorithm [24,26]) produces a latent model that decomposes
Z = [Y X] into score vectors (taz), loading vectors (pa

z), and residual
errors (eZ), as follows [11]:

Z ¼ TzPz þ eZ; Tz¼ t
z
l…t

z
A

� �
; Pz ¼ pz

l…pz
A

� �
; ð7Þ

where Tz is orthogonal by columns and Pz is orthonormal by columns
(i.e., Pz′Pz = I). The scores Tz can be represented in terms of the original
data Z as follows:

Tz ¼ ZPz ¼ Y X½ � Py
Px

� �
¼ YPy þ XPx; ð8Þ

since the row space of eZ (Eq. (7)) belongs to the null space of Pz, henceeZPz ¼ 0. The matrix Pz unambiguously defines the decomposition of Z
as follows: Z is projected to the latent space through Pz (Eq. (8)), and
it is reconstructed by means of Pz′ (Eq. (7)). In summary, PCA involves
the decomposition of the complete data set Z along the directions of
maximum variability.

3. Process monitoring based on latent variable models

Consider an industrial process operating around the desired condi-
tions. Then, if a sufficiently large amount of measurements of the most
important variables is available, the correlation structure underlying in
the measured data can be reasonably described by PCA or PLSR data
processing techniques. These modeling alternatives decompose the
space of measured data into subspaces, and then the process anomalies
or faults can be detected bymonitoring these subspaces. Typically, spe-
cific functions like the squared prediction error (SPE), the Hotelling's T2

and some combined forms can be used as indices to alert about the pres-
ence of possible anomalies during the process operation [3,20]. An
alarm signal typically appears when an index exceeds its predefined
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control limit. In this section we summarize these space decompositions
and fault detection indices originated from both, PLSR and YX-PCA.

3.1. Fault detection indices induced by PLSR

Once the extended PLSR model is available, the following decompo-
sition of new data samples x and y is obtained [27]:

x ¼ x̂ þ ex; x̂ ¼ PR′x; ex ¼ I−PR′
� �

x; ð9Þ

y ¼ ŷ þ eyx þ ey; ŷ ¼ QBR′x; eyx ¼ QS′y−ŷ; ey ¼ I−QS′
� �

y; ð10Þ

where x̂ and ex are oblique projections of x; ŷ and eyx denote the
prediction and prediction error, respectively; and ey is the oblique pro-
jection of y on the residual subspace. These terms can be measured by
the following four non-overlapped indices:

T2
PLS ¼ Λ−1=2R′ x̂

��� ���2; SPEx ¼ ex�� ��2; SPEyx ¼ eyx�� ��2; SPEy ¼ ey�� ��2;
ð11Þ

where T2 is the score distance, the three SPEs are Euclidean distances to
themodel, and Λ = diag(λ1…λA), with λa being the estimated variance
of the a-th latent variable ta in the score vector t ¼ R′x̂. Then, these four
statistics are combined into a unified detection index, given by

ITC ¼ T2
PLS

τ2α
þ SPEx

δ2x;α
þ SPEyx

δ2yx;α
þ SPEy

δ2y;α
¼ y′ x′
h i

ΦPLSR
y
x

� �
; ð12Þ

where τα2, δx,α2 , δyx,α2 , and δy,α2 are the control limits [27]. The vector
arrangement on the right of Eq. (12) is derived from Eqs. (9)–(11) to
explicitly show that the resulting index depends on the extended vector
[y′ x′]′.

3.2. Fault detection indices induced by YX-PCA

An YX-PCA model induces on new data sample z = [y′ x′]′ the
following decomposition [11]:

z ¼ ẑþ ez; ẑ ¼ PzP
′
zz; ez ¼ I−PzP

′
z

� �
z ð13Þ

where ẑ and ez are the orthogonal projections of z. These terms can be
measured through

T2
PCA ¼ Λ−1=2

z P′
z ẑ

��� ���2; SPEz ¼ ez�� ��2 ð14Þ

where Λz = diag(λ1z…λAz) and λa
z (a = 1…A) is the estimated variance

of the a-th latent variable ta
z of the score vector tz ¼ P′

z ẑ. Then, these
two statistics are combined in a unique detection index that maintains
the same structure with Eq. (12), as follows:

IC ¼ T2
PCA

τ2α
þ SPEz

δ2z;α
¼ z′ΦPCAz ¼ y′ x′

h i
ΦPCA

y
x

� �
: ð15Þ

The control limits of these statistics (TPCA2 , SPEz and IC) are described
elsewhere [25].

4. Relationships between PCA and PLSR

4.1. Geometric relationships between PLSR and X-PCA plus Y-PCA

In this section, the geometric interpretation of the PLSR-
decomposition is described in relation to X-PCA and Y-PCA. In particu-
lar, the effect of Y on the PLSR-decomposition of the X-space can be re-
vealed by comparing with the decomposition of X-PCA. Section 2.1
showed that the PLSR-decomposition of X into the model and residual
subspaces (SMX and SRX, respectively) is defined by the matrices R and
P, i.e., the matrix X is projected onto the latent space by R (Eq. (4)),
while the modeled part is reconstructed by P′ (Eq. (1)). These projec-
tions and reconstructions induce the angles ϕa (a = 1…A) between
the vectors pa and ra, which are generally non-zero [17]. This is a direct
consequence of the PLSR modeling procedure that forces all the pa and
ra to yield the best description of Y.

Let us now represent the X-PCA decomposition by

X ¼ TxV
′
; Tx ¼ tx1…txA

� �
; V ¼ v1…vA½ �; A ¼ rank Xð Þ≤m; ð16Þ

where vi (i = 1…A) are the eigenvectors associated with the nonzero
eigenvalues λ1

x ≥ ⋯ ≥ λA
x of the covariance matrix X′X = VΛxV′, with

Λx = diag(λ1x…λAx).
For a hypothetical process, Fig. 1 represents the model subspace SMX

spanned by the loading vectorspa, ra or va. The anglesψa (a = 1…A) be-
tween the vectors va and ra represent the difference between theX-PCA
and PLSR decompositions of X. Note that any vector ra can be written as
a linear combination of the X-PCA vectors va, as follows:

ra ¼ rak k
XA
i¼1

αa
i vi ¼ rak kV αa

1…αa
A

� �′ a ¼ 1…Að Þ; ð17Þ

where αi
a are weight coefficients satisfying ∑

A

i¼1
αa
i

	 
2 ¼ 1 and hence

αa
a = cos ψa. The α i

a's determine the ra-direction and are given by
(see proof in Appendix A):

αa
i ¼ λx

i

	 
−1txi
′ua ba rak kð Þ−1 i ¼ 1…Að Þ: ð18Þ

Eq. (18) shows that eachαi
a is the correlation coefficient between the

i-th principal component ofX (inX-PCA) and the a-th PLSR-component
of Y. Furthermore, for a better interpretation of Fig. 1, note that the
angles between the loading vectors va and pa are given by (see proof
in Appendix A):

∠ va;pað Þ ¼ cos−1

λx
aα

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXA

i¼1

λx
i

	 
2 αa
i

	 
2vuut
26664

37775≥ cos−1 αa
a

	 
 ¼ ψa; a ¼ 1…Að Þ:

ð19Þ

Eq. (19) shows that each angle∠ (va,pa) increases when the λax's be-
come more different, i.e., when the X-covariance becomes more ellip-
soidal. Also, if all λa

x's are equal, then ∠ (va,pa) = ψa and ϕa = 0.
Additionally, note that if ra becomes an eigenvector of X′X, then
Eq. (17) yields: α i

a = 0 (i ≠ a) and α a
a = 1, in which case ψa = 0

and pa = ra = va.
Concerning the relations between PLSR and Y-PCA, recall that the

PLSR-NIPALS algorithm maximizes the covariance among the compo-
nents present in the X and Y spaces. Therefore, X affects the PLSR-
decomposition of Y as in the previous case (see Appendix B).

In summary, when the PLSR-components of Y (or X) are strongly
correlated with the principal components of X (or Y), then the PLSR-
and PCA-decompositions ofX (or Y) are similar; otherwise such decom-
positions might be quite different.

4.2. Relationships between PLSR and YX-PCA models

Consider first the YX-PCA model of Eqs. (7) and (8) expressed in
terms of a single sample z = [y′ x′]′, as follows:

ẑ ¼ Pztz ¼ Py
Px

� �
tz ¼ Py

Px

� �
P′
y P′

x

h i y
x

� �
: ð20Þ



eu;

Fig. 1. A low dimension example of PLSR-decomposition of the X-space in relation to X-PCA. The model subspace SMX is spanned by P = [p1 p2], R = [r1 r2] or V = [v1 v2].
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Now, let us derive an analogous model using the PLSR matrices for
the same number of latent variables. The PLSR model of Eqs. (1)–(3)
can be written in terms of the new measurements as follows:

x ¼ Ptþ ex; ð21Þ

y ¼ Quþ ey; ð22Þ

u ¼ Btþ eu; ð23Þ

where the latent vectors of Eqs. (4) and (5) are given by:

t ¼ R′x; u ¼ S′y: ð24Þ

FromEqs. (9) and (10), the PLSR estimation of the augmented vector
[y′ x′] from t is given by:

ŷ
x̂

� �
¼ QB

P

� �
t: ð25Þ

From Eqs. (23) and (24), the vector t can be connected with vectors
x and y, as follows:

t ¼ ω B−1S0y−B−1eu� �
þ 1−ωð ÞR0x ¼ ωB−1S0 1−ωð ÞR0

h i y
x

� �
−ωB−1

ð26Þ

with a weighting factor ω b 1. By substituting Eq. (26) into Eq. (25),
one obtains:

ŷ
x̂

� �
¼ QB

P

� �
ωB−1S0 1−ωð ÞR0
h i y

x

� �
−ω QB

P

� �
B−1eu; ð27Þ

In order to get a closer comparison betweenEqs. (20) and (27), let us
assume an ideal PLSR model with an almost exact internal regression
(Eq. (23)); i.e., with the rather infrequent condition eu→0 . Then,
Eq. (27) can be rewritten as follows (for simplicity, ω = 1/2 was arbi-
trarily chosen):

ŷ
x̂

� �
¼

ffiffiffiffiffiffiffiffi
1=2

p
QBffiffiffiffiffiffiffiffi

1=2
p

P

� � ffiffiffiffiffiffiffiffi
1=2

p
B−1S0 ffiffiffiffiffiffiffiffi

1=2
p

R
0

h i y
x

� �
;

ŷ
x̂

� �
¼

ffiffiffiffiffiffiffiffi
1=2

p
QBDyffiffiffiffiffiffiffiffi

1=2
p

PDx

" # ffiffiffiffiffiffiffiffi
1=2

p
D−1

y B−1S0 ffiffiffiffiffiffiffiffi
1=2

p
D−1

x R0
h i y

x

� �
;

ẑ� ¼ Pb
zP

c
z

0
z ¼ Pb

zt
�
z;

ð28Þ
where Dy = B−1diag(‖s1‖ ⋯ ‖sA‖) and Dx = diag(‖r1‖ ⋯ ‖rA‖) were
included to obtain unitary norms in the rows of Pz

c′ and to satisfy
Pz
c′Pz

b = I. Note that the projectormatrices Pz
b and Pz

c′ are built withma-
trices of the PLSR model. In such a sense, Eq. (28) can be seen as an
“analogous PCA model” of z = [y′ x′]′, but obtained on the basis of the
PLSR matrices. In Eq. (28), the “analogous PCA scores” are

t�z ¼ Pc
z
′ y
x

� �
¼

ffiffiffiffiffiffiffiffi
1=2

p
diag 1= s1k k⋯1= sAk kð ÞBþ diag 1= r1k k⋯1= rAk kð Þ½ �t;

ð29Þ
where

Pc
z
′ ¼ ffiffiffiffiffiffiffiffi

1=2
p

diag 1= s1k k⋯1= sAk kð ÞS′
ffiffiffiffiffiffiffiffi
1=2

p
diag 1= r1k k⋯1= rAk kð ÞR′

h i
ð30Þ

are the “analogous principal directions”. Eqs. (29) and (30) indicate that
theYX-PCA and the ideal PLSRmodel have the same latent space, except
for some differences in the score scales.

From Eq. (28), the residual of the extended vector z = [y′ x′]′ in the
ideal PLSR model is

ye
xe
" #

¼ y
x

� �
− ŷ

x̂

� �
¼ I−Pb

zP
c
z

0� � y
x

� �
;

ze� ¼ I−Pb
zP

c
z

0� �
z;

ð31Þ

which is analogous to the YX-PCA residuals ez in Eq. (13).
In summary, Eqs. (28)–(31) present the analogies between the YX-

PCA and ideal PLSR models. However, it should be noticed that in a
real case the last term of Eq. (27) can be significant. Hence, a measure
of the dissimilarity between the PLSR and YX-PCA models could be
evaluated from the norm of this last term; or simply from eu�� �� ¼
S′y−BR′x
�� ��, which would in turn be calculated on the basis of the cur-
rent measurements. Also, it is worthwhile noting that if an accurate
PLSR fit were available, then the expected value of eu would be close to
zero, and therefore the expected values of the predictions provided by
the PLSR and YX-PCA models would be equivalent.

4.3. Relationships between PLSR and YX-PCA fault detection indices

This section aims at comparing the components of the combined in-
dices ITC (Eq. (12)) and IC (Eq. (15)) that can be utilized for process
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monitoring in PLSR and YX-PCA respectively. As in Section 4.2, let us
start assuming an ideal PLSR model with eu→0. Then, by substituting
the analogous PCA scores tz⁎ (Eq. (29)) and its corresponding covariance
matrix Λz⁎ = 0.5 Λ[diag(1/‖s1‖ ⋯ 1/‖sA‖)B + diag(1/‖r1‖ ⋯ 1/‖rA‖)]2

into the PCA-statistic TPCA
2 /τα2 = ‖Λz

−1/2tz‖2/τα2 of IC (Eqs. (14) and
(15)), one obtains ‖Λ−1/2t‖2/τα2, which coincides with the PLSR-
statistic TPLS

2 /τα2 of ITC (Eqs. (11) and (12)). Therefore, themodel compo-
nents TPLS2 /τα2 and TPCA

2 /τα
2 in the combined indices are analogous, i.e.:

Λ−1=2
z tz

��� ���2zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{YX−PCA

τ2α
≡

Λ−1=2t
��� ���2zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{PLSR

τ2α
: ð32Þ

Similarly, by substituting the analogous PCA residuals ez� (Eq. (31))
into the PCA-statistic SPEz=δ2z;α ¼ ze�� ��2=δ2z;α of IC (Eqs. (14) and (15));

and taking into account that ez��� ��2 ¼ ex�� ��2 þ ey�� ��2 and δz,α2 = δy,α2 + δx,α2

[3,28], the following can be written:

SPEz
δ2z;α

zfflffl}|fflffl{YX−PCA

≡
ez��� ��2
δ2z;α

zfflfflffl}|fflfflffl{PLSR

b
SPEx
δ2x;α

þ SPEy
δ2y;α

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{PLSR

: ð33Þ

Note that the early assumption eu→0 also implies eu�� �� ¼ S0eyx�� ��→0
(or equivalently, eyx�� ��→0); and then Eqs. (32) and (33) together with
Eqs. (12) and (15) indicate that IC b ITC. However, in a real case eyx�� ��N
0; then allmembers in Eq. (33)will be altered, and the inequality IC b ITC
can no longer be ensured.

5. Simulation examples

A synthetic example representing a hypothetical process, with an ar-
bitrary chosen internal data structure, is simulated for better interpreta-
tion and comparison of the modeling methodologies. The normal
operation of the chosen process follows a sequence of four internal
Fig. 2. Scatter plots for the t and u observations corresponding to: a) the true sequences of th
quences obtained by two independent PCAmodels, one forX and the other for Y. The dash-dot a
respectively.
states, which are represented by the following four points in the latent
space (t-scores): {(t10,t20)}1…4 = {(1,1),(1,3),(3,3),(3,1)}. The “multivar-
iate measurements” of the external variables, x and y, are generated by
adding zero-mean Gaussian random noises (εi, i = 1…4) to the PLSR
correlation structure characterized by the arbitrarily-selected process
matrices P, Q, and B, as follows:(
t ¼ t0 þ ε1; ε1 ∼N 0;0:12 I2

� �
;

u ¼ Btþ ε2; B ¼ diag 2;0:5ð Þ; ε2 ∼N 0;σ2
uI2

� �
; σu ¼ 0:03

x ¼ Ptþ ε3; P ¼ p1 p2½ �; ε3 ∼N 0;0:052 I7
� �

;

y ¼ Quþ ε4; Q ¼ q1 q2½ �; ε4 ∼N 0;0:052 I3
� �

;

8<:
ð34Þ

with:

pi ¼ p0
i = p0

i

��� ���; p0
1 ¼ 1:5;0;2;1;0:5;0;2:5½ �′; p0

2 ¼ 0;2:5;0:5;−0:5;−1;1:5;0½ �′;
q j ¼ q0

j = q0
j

��� ���; q0
1 ¼ 1:5;0:5;1½ �′; q0

2 ¼ 0;−1;0:5½ �′:

Fig. 2a shows several realizations of the sequence of the four internal
states followed by the process. The datasets are obtained by collecting
36 observations of x and y into the matrices X and Y, respectively.

5.1. Comparison of the PLSR and PCA models

To visualize differences and analogies, the PLSR and PCAmodels are
compared. The PLSR model is fitted to centered data in order to identify
a centered sequence of the latent process. The selection of A = 2 is de-
termined bymonitoring the simultaneous deflation of Xa and Ya [10]. In
this way, the errors regarding the “true”matrices Q, B, and P are negli-
gible (note that the opposite signs of vectors p2 and q2 with respect to
those in the true loading vectors are not meaningful). Fig. 2b shows
the latent coordinates, (t1, t2) and (u1, u2), corresponding to x and y
PLSR-projections. Note that the t and u scores are correlated (as indicat-
ed by their similar alignment) and that the scatter plots are centered
versions of the true latent variables of Fig. 2a.
e internal states, b) the score sequences obtained by the PLSR model, and c) the score se-
nd dash lines in the subfigure a) are theX-PCA and Y-PCAmaximumvariability directions,
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On the other hand, X-PCA and Y-PCA models are independently
fitted by using centered data, to illustrate the differenceswith the latent
model identified by PLSR. Fig. 2c shows the scores estimated through
independent PCA models for X and Y; i.e., the X and Y data projected
in the X-PCA and Y-PCA directions, respectively. The figure suggests a
lack of alignment (or correlation) between the t (by X-PCA) and u (by
Y-PCA) scores. This is because X-PCA looks for orthogonal maximum
variability directions in X (diagonal lines 1–3 and 2–4 in Fig. 2a),
which are not correlated with the orthogonal maximum variability di-
rections in Y (lines 1′–2′ and 1′–4′, which are parallel to the square
sides in Fig. 2a). By contrast, PLSR adjusts the X-projecting directions
so that the t scores are correlated with u scores (Fig. 2b). In summary,
maximum variability directions (dash-dot lines) in X-PCA are 45°
from the PLSR latent directions in X (dot lines parallel to dash lines).

To further analyze the differences illustrated in Fig. 2, we resort to
biplot representations [24]. A biplot is an effective tool for visualizing
the magnitude and sign of the contribution of each variable to the first
two or three principal components. Also, in this plot each observation
is represented in terms of the corresponding scores. This provides a
framework for understanding the displacements of the latent variables
in relation to the original ones. Usually, the biplot representation im-
poses a sign convention, forcing the elementwith the largestmagnitude
in each loading vector to be positive.

Fig. 3a and b shows the PLSR biplot of X and Y, respectively; i.e., the
latent coordinates of the x and y projections through R′ and S′, respec-
tively; and the directions (and magnitudes) of all the variables in
these spaces. Fig. 3c shows the X-PCA biplot; i.e., the latent coordinates
of the x projections through V′ for the same datasetX, together with the
contribution of each variable to the two principal components. The di-
rections of the variables in Fig. 3c are quite different from those in the
PLSR biplot of X (Fig. 3a), because the maximum variability directions
in X-PCA are rotated 45° from the PLSR latent directions in X (see
Fig. 2). Therefore, the loadingmatrix R is different from the loadingma-
trix V; and consequently their biplots are different too (compare Fig. 3a
and c). By contrast, the principal components of Y (Fig. 3d) and the
PLSR-components of Y (Fig. 3b) are similar since the directions of
Fig. 3. Biplots based on: a) PLSR-components of X (R′). b) PLSR-components of Y
maximum variability in Y (given by Y-PCA) match the latent directions
in Y that are correlated to the latent directions inX. Therefore, the direc-
tions of the Y-PCA loading vectors (wa) are quite similar to the
sa-directions and thus also their components (see Fig. 3b and d).

In order to illustrate the equivalence of the PLSR latent model re-
garding the YX-PCA latent model, their biplots are compared. Fig. 4a
shows the PCA biplot of Z = [Y X]; and Fig. 4b shows the biplot created
with analogous Pz

c′ directions and Tz⁎ scores, as obtained from PLSR
(Eqs. (29) and (30)). The difference between Pz′ and Pz

c′ is negligible,
and consequently the biplots are identical. Hence, all these results con-
tribute to support the claim thatYX-PCA and PLSRprovide analogous la-
tent models, which is in turn quite reasonable because both techniques
model the samedataset, evenwhen they use different calibration proce-
dures. However, there is a key difference between YX-PCA and PLSR in
the estimation of the latent variables. The first method uses all the var-
iables (Eq. (8)), while the second one uses the inputs (Eq. (4)) or the
outputs (Eq. (5)) only. When a causal process is identified, a PLSR
model may be closer to the true system structure than a PCA model
[24]; however, the latter explains the causal relationships as correla-
tions (see Eq. (28)). Note that Fig. 4b coincides with the overlap of
Fig. 3a and b (after inversion of the sign of the latent variable t2).

Fig. 5 shows the (t1, t2) model plane in the (y1, y2, y3) space and the
dispersion of the observations around it. This plane was found by mini-
mizing the distances of the scatter observations to a common plane. The
directions of the variables x1,…, x7 are represented in relation to co-
linearity with the original variables y1, y2, and y3 (see Fig. 3a and b).
This representation includes all the variables present in z = [y′ x′]′ in
order to illustrate the similarity found between YX-PCA and PLSR.
Note that Fig. 4 could be obtained by centering and projecting the obser-
vations and the variable directions of Fig. 5 on the plane model.
5.2. Comparison of the PLSR and PCA monitoring strategies

A frequent application of YX-PCA and PLSR consists on predicting y
from x. For example, it is used in LV-MPC [8,14] where once the
(S′). c) Principal components of X (V′). d) Principal components of Y (W′).



Fig. 4. Biplot representations based on: a) principal components of Z = [Y X] (Pz′). b) Analogous principal components of Z obtained with the PLSR model (Pz
c′).
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YX-PCAmodel (Eq. (20)) is available, then y can be predicted from x as
follows [12]:

ŷ ¼ Py P′
xPx

� �−1
P′
xx: ð35Þ

Similarly, when LV-MPC is based on a PLSRmodel [15], then y can be
predicted from x as follows (Eq. (10)):

ŷ ¼ QBR′x: ð36Þ

According to Section 4.2, no meaningful differences would be ex-
pected when using an YX-PCA prediction model (Eq. (35)) or a PLSR
prediction model (Eq. (36)) for estimating y. Note that by analogy be-
tween Pz (Eq. (20)) and Pz

b (Eq. (28)), one obtains Py ≡
ffiffiffiffiffiffiffiffi
1=2

p
Qdiag
Fig. 5. The bi-dimensional projection plane. The measurements of x and y projected by
PLSR, and the measurements z = [y′ x′]′ projected by PCA lie on this plane.
s1k k⋯ sAk kð Þ and Px ≡
ffiffiffiffiffiffiffiffi
1=2

p
Pdiag r1k k⋯ rAk kð Þ. Then, the PCA and PLSR

prediction matrices (Eqs. (35) and (36)) are analogous, i.e.:

Py P′
xPx

� �−1
P′
x ≡Qdiag s1k k= r1k k⋯ sAk k= rAk kð Þ P′P

� �−1
P′ ¼ QBR′

: ð37Þ

However, as PLSR and YX-PCA utilize different algorithms, then a
numerical comparison was carried out to verify the equivalence of
both predictive models (Eq. (37)). To this effect, the process described
by Eq. (34) was independently adjusted through: a) the PLSR model
by using the PLSR-NIPALS algorithm, and b) the YX-PCA model by
using the NIPALS algorithm. Then, the goodness of fit of each calibration
algorithm was evaluated for decreasing signal-to-noise ratios, which is
simulated increasing the variance of ε2 (Eq. (34)). Table 1 shows the
Mean Squared Error (MSE) for the YX-PCA and PLSR methods, for in-
creasing degradations in the inner causal relationships (see σu in
Eq. (34)). Such MSEs are defined as: MSEx ¼ E x−x̂ð Þ′ x−x̂ð Þ

h i
; MSEy ¼

E y−ŷð Þ′ y−ŷð Þ
h i

, and MSEz ¼ E z−ẑð Þ′ z−ẑð Þ
h i

. Table 1 shows that the

prediction errors (MSEy) of bothmethods are similar for moderate deg-
radations even when the PCA calibration shows a smaller calibration
error (MSEz).

From Table 1, the following conclusions are obtained: (i) since the
calibration error MSEz b MSEy + MSEx, then more precise estimates of
the latent variables are obtained through YX-PCA; and (ii) the PLSR-
NIPALS algorithm produces smaller prediction errors than NIPALS algo-
rithm, thus allowing better prediction model adjustments. It should be
noted that the PLSR-NIPALS algorithm is able to efficiently identify
quite degraded causal relationships (last row of Table 1).
Table 1
Comparison of goodness of fit and predictive ability of YX-PCA versus PLSR.

Internal
perturbation

Method Calibration error Prediction
error

σu var ε2k k2f g
var Btk k2f g

MSEz MSEx + MSEy MSEy

0.00 0.00 PLSR – 0.0271 0.0143
YX-PCA 0.0189 – 0.0143

0.03 4.23 10−4 PLSR – 0.0317 0.0194
YX-PCA 0.0206 – 0.0195

0.30 4.23 10−2 PLSR – 0.1890 0.1774
YX-PCA 0.0968 – 0.1798

3.00 4.23 PLSR – 12.3682 12.3576
YX-PCA 1.5263 – 105.017



Table 2
Simulated scenarios of anomalies.

Anomaly/fault Location Magnitude of the change/fault

1 k = 11 ΔB22 = 0.25
2 k = 19 Δp2 = [0 0.28 0 0 –0.07 0.14 −0.14]′
3 k = 27 Δq1 = [−0.05−0.05 −0.1]′
4 k = 35 Δx = [0.3 0 0 0 0 0.25 0]′ (multiple sensor fault)
5 k = 43 Δy = [0.4 0 0]′ (single sensor fault)
6 k = 51 Δt = [0 6]′

189J.L. Godoy et al. / Chemometrics and Intelligent Laboratory Systems 130 (2014) 182–191
To verify the equivalences between the fault detection indices based
on YX-PCA and PLSR (Section 4.3), the process was disturbed according
to six anomalous scenarios (see Table 2): a) the anomalies 1, 2, and 3
were implemented by altering the processmatrices; b) the sensor faults
4 and 5were simulated by disturbing themeasurements x and y; and c)
the anomaly 6 consisted in adding up to t (Eq. (34)) a change Δt, such
that the combined index is greater than the control limit. Each fault
was simulated by affecting only one sample point (at a discrete time,
Fig. 6. Temporal evolution of the combined indices and of their componen
k); and immediately the anomaly was canceled from k + 1 onwards.
These anomalies represented a hard test for evaluating the ability of
the PLSR and YX-PCA methods and allow displaying the relationships
between their statistics (Eqs. (32) and (33)).

Fig. 6 shows the time evolution of the combined detection indices
and of their component statistics for the two methods. In Fig. 6a (or
Fig. 6b), the alarm condition is triggered at a given sample k, when the
IC (or ITC) global index overpasses the 100(1-α)% confidence (control)
limit. The index IC (or ITC) proved to be effective for detecting all simu-
lated anomalies. The patterns of alarmed component statistics recorded
in Fig. 6b allowed an efficient characterization of each fault type and
could be used to diagnose the root causes [27].

A detailed analysis of Fig. 6a and b can help to better interpret the in-
equality ITC N IC suggested in Section 4.3. Note that such inequality was
verified at five fault locations (k = 19, 27, 35, 43, 51), while it failed at
k = 11. Then, three different situations can be analyzed: (i) at k = 35,
43, 51, eyx�� ��→0, and hence Eq. (33) allows us to ensure ITC N IC; (ii) at
k = 19, 27, ITC N IC is still valid even when eyx�� ��N0, probably because
t statistics for the six simulated faults. a) PCA indices. b) PLSR indices.
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the new ITC term SPEyx/δyx,α2 is lesser than SPEx/δx,α2 + SPEy/δy,α2 , and
Eq. (33) is only slightly altered; and (iii) at k = 11, IC N ITC because
SPEyx/δyx,α2 is the only significant term of ITC, and Eq. (33) is no longer
valid. On the other hand, at the location k = 51 the exact equivalence
(Eq. (32)) between the T2 based on YX-PCA and PLSR is verified (see
TPCA
2 /τα2 and TPLS

2 /τα2 in Fig. 6a and b, respectively).
On the basis of the simulation results, it was verified that: i) if an

YX-PCA or PLSR model is used for estimating latent variables, then it is
advisable to use the YX-PCA model adjusted through the NIPALS
algorithm (see Table 1); and ii) if the model is used for either output
prediction or process monitoring, then the PLSR-NIPALS algorithm is
preferable for the fitting task (see Table 1) and the PLSR approach for
the monitoring strategy (see Fig. 6).

6. Conclusions

From a formal point of view, this work contributes to a better inter-
pretation of two well-known multivariate statistical techniques: PCA
and PLSR. Particularly, some geometric properties of the decomposition
induced by PLSR of the X-space and Y-space relative to X-PCA, Y-PCA,
YX-PCA, are revealed. The present proposal provides specific criteria
for selecting PLSR or PCA as the more appropriate data treatment tech-
nique, according to the pursue objective of latent variable estimation,
output prediction, or process monitoring.

Similarities between PCA and PLSR are rather intuitive and have
somehow been disclosed in the literature. In particular, previous exten-
sions of the PLSR modeling strategy provided us a formal framework to
reveal novel underlying equivalences. In this sense, newPLSR geometric
properties and its relation with PCA are defined, and also equivalences
and differences between the use of PLSR and PCA for modeling and
monitoring multivariate processes are disclosed.

To the best of our understanding, three main features can be
confirmed through the analysis reported in this work. 1) PLSR and
YX-PCA present similar capacity for fault detection, while PLSR shows
a better diagnosing capability, and hence the last one is recommended
for process monitoring. 2) PLSR is more reliable for adjusting a model
for output prediction, like in soft sensor development. 3) YX-PCA is
more precise for estimating latent variables, and hence it is recom-
mended for the analysis of latent patterns imbedded in datasets. In
fact, the last two points confirm the traditional usage in the specialized
literature.
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Appendix A. Proofs of the subsection 4.1

In order to find the αi
a coefficients in Eq. (18), let us assume thateU ¼ 0 in Eq. (3), i.e. U = TB. Then, multiplying Eq. (6) by SB−1 and

recalling that Q′S = I, the following expression is obtained for each
a-th column (or each ra):

Ysab
−1
a ¼ Xra: ðA1Þ

By substituting Eq. (17) into Eq. (A1) the αi
a's can be solved as

follows:

αa
1…αa

A

� �′ ¼ V′ X′X
� �−1

X′Ysa ba rak kð Þ−1 ¼ Λ−1
x T′

xua ba rak kð Þ−1
: ðA2Þ

Since in real cases eU≠0, a term−eua is added toua in Eq. (A2) reducing
the correlation coefficients between ua and the tix's (where i = 1…A).
However, for a good PLSR fit, the a-th internal regression error follows a
Gaussian distribution with mean zero and variance much less than the
variance of the a-th latent variable. In such case, eua does not significantly
affect the coefficients (Eq. (A2)). In summary, for an acceptable fit,
Eq. (A2) allows estimating the α i

a's with enough accuracy.
In order to deduce Eq. (19), notice that pa = Xa′Xara/‖Xa′Xara‖, X′

a

Xara ¼ X′Xra ¼ rak k∑
A

i¼1
λx
i α

a
i vi [27] and ‖va‖ = ‖pa‖ = 1, then the

angle ∠ (va,pa) can be expressed as follows:

∠ va;pað Þ ¼ cos−1 v′apa

h i

¼ cos−1

v′a
XA
i¼1

λx
i α

a
i viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXA

i¼1

λx
i α

a
i v

′
i

 ! XA
i¼1

λx
i α

a
i vi

 !vuut

26666664

37777775

¼ cos−1

λx
aα

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXA

i¼1

λx
i

	 
2 αa
i

	 
2vuut
26664

37775: ðA3Þ

Appendix B. PLSR-decomposition in relation to Y-PCA

Let us represent the Y-PCA decomposition by:

Y ¼ UyW
′
; Uy ¼ uy

1…uy
A

� �
; W ¼ w1…wA½ �; A ¼ rank Yð Þ ≤ p; ðB1Þ

where wa (a = 1…A) are the loading vectors and ua
y the associated

scores. Then, a loading vector sa of PLSR is written as linear combination
of the Y-PCA vectors wa; i.e.,

sa ¼ sak k
XA
i¼1

βa
i wi ¼ sak kW βa

1…βa
A

� �′ a ¼ 1…Að Þ; ðB2Þ

where βi
a are such that∑

A

i¼1
βa
i

	 
2 ¼ 1; and hence∠ (wa,sa) = cos −1(βi
a).

By substituting Eq. (B2) into Eq. (A1) the βi
a's are obtained as follows:

βa
1…βa

A

� �′ ¼ W′ Y′Y
� �−1

Y′Xraba sak k−1 ¼ Λ−1
y U′

ytaba sak k−1
: ðB3Þ

Therefore, the βi
a's determine the sa-direction and are given by:

βa
i ¼ λy

i

	 
−1uy
a
′taba sak k−1 i ¼ 1…Að Þ: ðB4Þ

where λi
y is the i-th eigenvalue nonzero of the covariance matrix

Y′Y = WΛyW′, associated with eigenvector wi (see Eq. (B1)). Besides,
the angles between the loading vectors wa and qa are given by:

∠ wa;qað Þ ¼ cos−1

λy
aβ

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXA

i¼1

λy
i

	 
2 βa
i

	 
2vuut
26664

37775 a ¼ 1…Að Þ: ðB5Þ

The Eq. (B5) is deduced in a similar way to Eq. (A3). Note also that
the Eqs. (B2), (B4) and (B5) are interpreted in similar manner to
Eqs. (17)–(19).
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