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 21 

Abstract: The TupABC system is involved in the cellular uptake of tungsten and belongs 22 

to the ABC (ATP binding cassette) type transporter systems. The TupA component is a 23 

periplasmic protein that binds tungstate anions, which are then transported through the 24 

membrane by the TupB component using ATP hydrolysis as energy source (reaction 25 

catalyzed by the ModC component).  26 

We report the heterologous expression, purification, determination of affinity binding 27 

constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene 28 

(locus tag Dde_0234) was cloned in the pET46 Ek/LIC expression vector and the construct 29 

was used to transform BL21(DE3) cells. TupA expression and purification were optimized 30 

to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native 31 

polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate 32 

and molybdate ions and has no significant interaction with sulfate, phosphate or 33 

perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was 34 

in agreement with these results but in addition shows that TupA has higher affinity to 35 

tungstate than molybdate. 36 

The protein crystallizes in the presence of 30 % (w/v) polyethylene glycol 3350 using the 37 

hanging-drop vapour diffusion method. The crystals diffract X-rays beyond 1.4 Å 38 

resolution and belong to the P21 space group, with cell parameters a=52.25, b=42.50, 39 
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c=54.71 Å, β=95.43˚. A molecular replacement solution was found and the structure is 40 

currently under refinement. 41 

Keywords: TupA, tungstate, metal transport, Desulfovibrio, sulfate reducing bacteria, 42 

protein-ligand interaction, isothermal titration calorimetry, X-ray crystallography. 43 

 44 

1. Introduction 45 

Molybdenum and tungsten are trace elements used by almost all forms of life. Since Mo and W atoms 46 

share several similar chemical characteristics, biological systems have to develop strategies to 47 

differentiate one metal from the other and avoid the incorrect metal insertion in active site of enzymes 48 

[1-2]. These metals enter the cell as soluble oxoanions, MoO4
2− and WO4

2−, through specific ATP-49 

binding cassette (ABC) transporter systems. In prokaryotes these transport systems are divided in three 50 

different families: Mod, Wtp and Tup. All these systems are composed of a periplasmic protein 51 

(component A), a transmembrane pore forming protein (component B) and a cytoplasmic protein 52 

(component C) which hydrolyzes ATP to generate the energy necessary to transport the oxoanion into 53 

the cell cytoplasm [2-5]. The genes encoding the three components are organized in an operon 54 

(mod/wtpABC) or gene cluster (tupABC) regulated by a transcription factor known as ModE in case of 55 

the ModABC operon. Under excess of molybdate, ModE binds molybdate ions and suffers 56 

conformational changes and dimerizes. This metal–protein complex binds to a specific DNA sequence 57 

(located upstream of the modABC operon) and down-regulates the expression of proteins involved in 58 

molybdenum uptake [4, 6-8]. 59 

Under oxoanion starvation, the component A binds molybdate or tungstate and interacts with the 60 

component B to actively transport molybdate or tungstate from the periplasm to the cystoplasm [4]. 61 

Therefore the Mod/Wtp/TupABC transport system and more specifically the component A should 62 

constitute the first selection gate from which cells should differentiate between Mo and W. The basis 63 

for this selectivity is currently unknown. The periplasmic component of the Mod/Tup/WtpABC system 64 

differs not only in the primary sequence but also in the metal affinity and coordination chemistry of the 65 

molybdate/tungstate [2, 9-16]. Crystal structures of ModA have already been solved, showing a 66 

tetrahedral coordination with five conserved amino acids located at H-bond donating distance from the 67 

oxygen atoms of the oxanions [17-19]. Different from ModA, the tungstate binding protein WtpA 68 

binds tungstate in an distorted octahedral conformation with two carboxylate oxygens from conserved 69 

glutamate (Glu218) and aspartate (Asp160) residues (Pyrococcus furiosus, Pf, numbering), with 70 

several examples in the literature [20]. The oxoanion coordination in TupA protein has not yet been 71 

reported but it is known that the TTTS motif at the N-terminal amino acid sequence is a signature of 72 

this type of tungstate transporters. In this motif, the Thr9 and Ser11 (Geobacter sulfurreducens, Gs, 73 

numbering) are predicted to be interacting with the oxoanion through hydrogen bonds. In addition, a 74 

conserved threonine in the C-terminal domain, Thr124, is postulated to coordinate the oxoanion 75 

through hydrogen bonds [2]. The crystal structure of Gs TupA has been deposited in the Protein Data 76 

Bank (PDB code 3LR1) with a W6+ ion close to the TTTS motif. The binding mode of the ion is not 77 

clear and needs to be further scrutinized. 78 
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Desulfovibrio alaskensis G20 (DaG20) is a sulfate reducing bacterium (SRB) that obtains energy from 79 

sulfate reduction and produces sulfide, a highly toxic and corrosive metabolite [21]. SRB are the main 80 

responsible for a phenomenon known as microbiologically-influenced corrosion (MIC) with very 81 

relevant economic consequences in several industries, including the chemical, paper, power, marine 82 

and petroleum industry [22-24]. Molybdate can be used to control the SRB growth mainly by 83 

inhibition of ATP-sulfurylase, a key enzyme in sulfate activation [25-27]. In addition, we have 84 

observed that high molybdate concentration in cultures of DaG20 affect the expression of proteins 85 

involved in energy metabolism, ion transport, cell cycle, aminoacid, purines, pyrimidines, nucleosides 86 

and nucleotides biosynthesis and other cellular mechanisms. Regarding the proteins involved in ion 87 

transport, we found that not only the periplasmic protein involved in molybdate transport (ModA) but 88 

also the protein involved in tungstate transport (TupA) are down-regulated under these stress 89 

conditions (Nair R.R., manuscript under review).  90 

Despite the presence of several relevant Mo and W containing enzymes in the Desulfovibrio 91 

metabolism, there are no reports about molybdate/tungstate transport systems in this organism. 92 

Genome analysis shows that it codifies both molybdate and tungstate transporters. The tungstate 93 

transport system corresponds to the Tup kind of transporters. Analysis of the primary sequence of the 94 

DaG20 TupA contains all the conserved residues putatively involved in the oxoanion coordination [1] 95 

(Figure 3). 96 

Here we report the expression, purification, determination of affinity binding constants and 97 

crystallization of the DaG20 TupA protein. The high resolution structure (up to 1.4 Å resolution) will 98 

provide useful information about the coordination geometry of the oxoanion to the protein. In addition, 99 

the expression system and purification protocol described are useful to construct mutants that will 100 

make a relevant contribution to the knowledge of the selectivity mechanisms that allow to the cell 101 

differentiate between Mo and W. 102 

2. Results and Discussion 103 

2.1. Cloning and purification of TupA protein 104 

The tupA gene (Dde_0234) was cloned into the pET-46 Ek/LIC vector using the Ek-LIC cloning 105 

system (Novagen) and the protein was expressed in BL21(DE3) cells. The expression level of TupA 106 

and the ratio TupA/contaminants were evaluated by SDS-PAGE at different induction times (3 h, 5 h 107 

and overnight) and 3 h induction was considered the optimum condition for TupA production in 108 

BL21(DE3) cells. SDS-PAGE showed that TupA is present in both soluble and insoluble fraction (data 109 

not shown). Since the amount of TupA in the soluble fraction was considered enough to perform the 110 

studies here described, we proceed to isolate the protein from this fraction. As explained in the 111 

materials and methods section, TupA purification protocol includes two steps, an anionic exchange and 112 

a size exclusion chromatography. TupA elutes from the anionic exchange resin at approximately 200 113 

mM Tris-HCl (pH 7.6) which is in agreement with the isoelectric point calculated for the protein (pI 114 

5.69, ProtParam tool [28]). The degree of purity after each purification step was evaluated by SDS-115 

PAGE (Figure 1). According to the protein sequence the molecular weight of the recombinant protein 116 
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should be approximately 29 kDa. The purification yield was calculated to be approximately 10 mg of 117 

soluble protein per liter of cell culture.  118 

Figure 1. SDS-PAGE stained with Coomassie blue of 1) Molecular weight markers (Biorad; from top: 119 

100, 75, 50, 37, 25, 20, 15 and 10 kDa), 2) Soluble protein fraction, 3) TupA fraction after anionic 120 

exchange chromatography and 4) TupA fraction after molecular exclusion chromatography 121 

(approximately 15 µg of pure protein). 122 

 123 

2.2. UV-visible spectrum and protein sequence. 124 

The UV-visible spectrum of the as-isolated TupA protein is shown in Figure 2. The maximum 125 

observed at 280 nm is due to the six Tyr residues present in the primary structure whereas the shoulder 126 

at 288 nm is probably derived from the four Trp residues (Figure 3, Dde_0234). 127 

The extinction coefficient of TupA at 280 nm (29700 ± 700 mM-1cm-1) was found to be in good 128 

agreement with that deduced from the amino acid sequence of the pure protein (30440 mM-1cm-1). 129 

Multiple sequence alignment of TupA proteins shows that the DaG20 TupA contains the TTTS motif 130 

at the N-terminal region which is the typical signature of this kind of tungstate transporters. The amino 131 

acids suggested to form hydrogen bonds with the oxoanion are Thr–124, Thr–9 and Ser–11 (the last 132 

two residues from the TTTS motif, G. sulfurreducens numbering). In addition, another conserved and 133 

a positively charged Arg–118 is highly conserved not only in the DaG20 TupA but also in TupA from 134 

different Desulfovibrio species. This residue is proposed as the structural element conferring the high 135 

selectivity of the TupA proteins (Figure 3).  136 

Figure 2. UV-visible spectrum of as isolated TupA protein (0.020 µM protein in 50 mM Tris-HCl pH 137 

7.6).  138 
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 140 

Figure 3. Multiple sequence alignment of TupA proteins performed with CLUSTALW [29]. 141 

Dde_0234, Desulfovibrio alaskensis G20; DVU0745, Desulfovibrio vulgaris Hildenborough; 142 

Dde_2876, Desulfovibrio salexigens; Cj1540, Campilobacter jejuni strain NCTC 11168; Dde_1778, 143 

Desulfovibrio desulfuricans ATCC 27774; GSU2700, Geobacter sulfurreducens. Residues putatively 144 

involved in coordination of tungstate are highlighted in black. Symbols: (*) identity, (:) strongly 145 

similar, and (.) weakly similar. 146 

                     10        20        30        40        50        60        70        80        90       100 147 
                      |         |         |         |         |         |         |         |         |         | 148 
Dde_0234     -MR--KLLLVLALVMSLTG-VAYAEAPVLMMATTTSTDNTGLLDDLAPQFTKDTGIELRWTAVGTGKALKMGENCDVDILLVHAPAAEKAFVDAGFGTAR 149 
DVU0745      -MR--RLLFLTCLLAAVISSSAFAADKVLMMATTTSTADTGLLDYLAPLFQKDTGIEVKWTAVGTGKALEMGKNCDVDVLLVHSPSAEAKFIEAGSGIER 150 
Desal_2876   -MKKLKVLLLTFALVSLLVAPGLVKAETLMMATTTSTDNTGLLDELAPKFQKETGIELKWTAVGTGKALKMGQNCDVDVLMVHAPAAEKKNVDMGALKDR 151 
Cj1540       -MK----KIISLALALALS----ASAAELKMATTTSTDNTGLLDALKPLYEKESGNTLKWVAVGTGAALKMGEDCNADVLFVHSPKAEKEFMKKGFGVDR 152 
Ddes_1778    MFRMSRLFLAACVMGLLALAPVARAADVLMMATTTSTQDSGLLEYLEPFFKKETGMELKWVAVGTGKALEIAKNCDADVLLVHAPAAELEFIKAGHGTDR 153 
GSU2700      -MKMYR-SFAATLVALLMLVTVAGAEERLKMSTTTSTQDSGLLKVLLPPFEKKNNVKVDVIAVGTGQALKLGEAGDVDVVFVHARKLEDKFVADGFGVNR 154 
              ::     :    :              * *:***** ::***. * * : *...  :   ***** **::.:  :.*:::**:   *   :  *    * 155 
 156 
 157 
                    110       120       130       140       150       160       170       180       190       200 158 
                      |         |         |         |         |         |         |         |         |         | 159 
Dde_0234     TQLMYNDFVIIGPAADPAGVK-GMTVAAALGRIAADNAVFVSRGDNSGTHKMEKSLWKQIEGSSPEKEAWYVQTGQGMLRTINVAAEKGGYTMTDRGTYI 160 
DVU0745      TQLMYNDFVLVGPVADAAKAA-GKSVDAALKGIAAAKSPFLSRGDKSGTHNLEVKLWEKS-GMAPDKESWYVSTGQGMLRTIAMAAEMGGYTVTDRGTWI 161 
Desal_2876   REVMYNDFVIIGPDSDPAGIK-GLPVVQAMKAVADAKAAFVSRGDNSGTNKKEISLWKVAGMAVPDKAEWYIQTGQGMIKSITVAEERDAYIMTDRGTYI 162 
Cj1540       TPVMYNDFIIIADKSLASKFK-GKNLKESLELIKNEKLTFISRGDKSGTDNKEKSLWKNL-GGVPEKQSWYQQSGQGMLASIKIAEEKKGVILTDRGTYI 163 
Ddes_1778    RQIMYNDFVIVGPKADPAKIA-GKSSAEALGRILKSKAGFVSRGDQSGTHKAEQKLWQQA-GITPDKDPAYFSAGQGMMATLNMAAEKKAYALTDRGTWI 164 
GSU2700      KDVMYNDFVIVGPKNDPAGIAKAKTAAEALKLLATKGATFISRGDKSGTHTKELDLWKSA--GVDPKGNWYVEAGQGMGPVITMATERRAYTLTDRGTYN 165 
               :*****:::.    .:    .     ::  :      *:****:***.. * .**:        *   * .:****   : :* *  .  :*****:  166 
 167 
 168 
                    210       220       230       240       250       260       270       280 169 
                      |         |         |         |         |         |         |         | 170 
Dde_0234     KYEASMDGNPPLKILVEGDKILFNQYSAIPVNPAHCPKVKKDLADKFVNWMASPATQKTIGDFKLMGKALFTPNAE---- 171 
DVU0745      KYESTLNGAPVLKIIVEGDKSLLNQYSGIVVNPAQCPKVKADLAREYIKWMASPAGQKYIGDFLVSGKPLFTPNAGK--- 172 
Desal_2876   KYSANKNGSPELKVLVEGDKSLFNQYSVLAVNPANCKNAKYELATKFSEWMASPSTQKAIGDFKLLGKKLFIPNAK---- 173 
Cj1540       KYEANEKGKPNLVIVNEGDDSLKNFYSVIATNPKHCKNVNYTEASKFIKWVTSDKTLNFIADFKLLNKPLFVIDAKTRKD 174 
Ddes_1778    TFADKAGADNPLAIAMEGDTALFNQYSVITVNPDRCPKVDKALAQKFEDWWVSPSTQQKIADYKLKGKQLFFPNAGK--- 175 
GSU2700      AFKG---AKTDLVILFQGEKGLFNPYGIMAVNPKKFPHVKYDLAMKLIDYVTGPEGLKIISDYKAHGEPVFFIYKK---- 176 
              :     .   * :  :*:  * * *. : .** .  :..   * :  .: ..    : *.*:   .: :*                              177 
 178 

2.3. Metal binding assays 179 

Sequence analysis suggests that DaG20 TupA is a tungstate-binding protein that is able to bind 180 

tungstate and molybdate ions. To test the affinity and specificity of TupA to different anions, native 181 

polyacrylamide gel electrophoresis of samples pre-incubated with different oxoanions (MoO4
2-, WO4

2-, 182 
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SO4
2-, PO4

3-, and ClO4
-) was carried out similar to that described in reference [8]. The samples were 183 

submitted to gel filtration column prior to loading on native polyacrylamide gel in order to separate the 184 

unbound ions and ensure that differences in mobility were only due to the binding of anions to the 185 

protein. As seen in Figure 4, TupA showed a significant mobility shift upon binding to tungstate and 186 

molybdate, but not with the other anions. Both molybdate and tungstate induced similar shifts in the 187 

mobility of TupA and incubation with higher concentrations of anions (100 fold) had no visual impact. 188 

Quantitative studies of molybdate and tungstate binding was then performed using ITC.  189 

Figure 4. Ligand dependent mobility shift assays for TupA protein (14 µM) in the presence of 190 

different oxoanions (10 fold excess). Lane 1: TupA; Lane 2: TupA + MoO4
2-; Lane 3: TupA + WO4

2-; 191 

Lane 4: TupA + SO4
2-; Lane 5: TupA + PO4

3-; Lane 6: TupA + ClO4
-. 192 

 193 

 194 

2.4. Isothermal titration calorimetry (ITC).  195 

 196 

ITC has been proven to be a sensitive method to determine affinity constants for tungstate- and 197 

molybdate-binding proteins, TupA and ModA, in the nanomolar and subnanomolar ranges [10, 12, 198 

16]. It has the advantage that nearly all interactions give rise to a heat change, which can be monitored 199 

with a high-sensitivity calorimeter, and the binding enthalpy (ΔHobs) and dissociation constant can be 200 

derived. The observed behavior of TupA is consistent with an exothermic process at this temperature 201 

(30°C), with a single binding site model of binding. However the thigh nature of these bindings 202 

precluded an accurate fit to determine the KD values. Displacement titrations were done to obtain the 203 

correct affinities. The KD value of a displacement titration in combination with the KD value for the 204 

inhibiting ligand in the absence of strong binding ligand can be used to calculate the actual KD for the 205 

strong binding ligand (equation 1, see section 3.6).  206 

ITC of TupA showed that the protein exothermically binds tungstate and molybdate with a 207 

stoichiometry of 1 mole oxoanion per mole of protein, as deduced from the heat release upon addition 208 

of tungstate or molybdate to the protein solution (Figure 5B). Direct titration of sodium molybdate 209 

against TupA produced an exothermic binding isotherm with a KD value of 6.1 ± 0.9 nM. The value of 210 

1              2             3              4           5              6 
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ΔHobs (~6.6 kcal/mole of injectant) is also significantly less favorable, when compared with the 211 

tungstate binding. In contrast, the binding of tungstate to TupA is much more exothermic (Figure 5A; 212 

Table 1) with ΔHobs being increased to ~14 kcal/mole of injectant (Table 1). The extremely high 213 

affinity of the protein for tungstate resulted in a very steep binding curve, which hampers the 214 

determination of KD. In order to overcome this problem and determine a KD value for tungstate, a 215 

binding competition strategy was adopted. A displacement titration of the molybdate-saturated protein 216 

with tungstate clearly showed that the protein favors the binding of tungstate, even when the binding 217 

site is occupied with a molybdate molecule. The apparent binding constant depends on the 218 

concentration of free molybdate, which was 0.5 mM and therefore  KD for tungstate when the protein 219 

is saturated with molybdate was determined to be 6.30 ± 0.02 pM (Figure 5C, Table 1). The 220 

displacement titration and the extremely low KD value for tungstate indicate the latter should be the 221 

physiological substrate for TupA, as expected. The results obtained are in good agreement with those 222 

obtained for tungstate binding proteins from Campilobacter jejuni [12], P. furiosus [10] and is 223 

approximately 1000 times higher than the KD value obtained for the E. acidaminophilum TupA [11]. 224 

  225 

Table 1 - Data for ITC analysis of oxyanion binding to TupA and ModA proteins at 30 ºC.  226 

 Ligand n KA (M
-1) KD (nM) ∆H (kcal mol-1) 

TupA 
WO4

2- 0.842 ± 0.001 2x109 ± 2x109 0.5 ± 0.4 -13.500 ± 0.005 

MoO4
2- 0.868 ± 0.002 16x107 ± 2x107 6.1 ± 0.9 -6.600 ± 0.003 

TupA + 0.5mM MoO4
2- WO4

2- 0.845 ± 0.003 1600x108 ± 6x108 6.30x10-3 ± 0.02x10-3 -14.60 ± 0.04 

TupA + 0.5mM WO4
2- MoO4

2- No displacement 

in each case 10 mM protein was used for the titrations.  227 
n = measured stoichiometry of binding. 228 
 229 

  230 
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Figure 5 - Isothermal titration calorimetry of ligand binding to TupA. 10 µM of TupA was titrated 231 

with injections of 100 µM tungstate (A) and 100 µM molybdate (B). (C) Displacement titration of 10 232 

µM TupA incubated with 0.5 nM molybdate, with injections of 100 µM tungstate. Data were fitted 233 

with ORIGIN software. The raw ITC data are shown in the top graphs. 234 

 235 

 236 

2.5. Crystallization and data processing 237 

To crystallize TupA from DaG20 several commercial screens were tested in a 96 well plate using the 238 

sitting drop/vapour diffusion method. Plate shaped crystals appeared four days after crystallization 239 

setup when using a solution of 0.2 M magnesium chloride, 0.1 M Hepes pH 7.5 and 30 % (w/v) 240 

polyethylene glycol 3350 as precipitating agent (Figure 6). 241 

The scale-up optimization was achieved by varying protein:precipitant proportion in the crystallization 242 

drop and crystals diffracting up to 1.43 Å resolution were obtained (data collection statistics are 243 

presented in Table 2). The crystals belong to the space group P21 and the Matthews coefficient 244 

calculation (2.09 Å3 Da-1) suggests the presence of one molecule of TupA per asymmetric unit and a 245 

solvent content of 40.84%. The L test for twinning indicates that these correspond to untwined crystals 246 

[30] .  247 
  248 



Int. J. Mol. Sci. 2014, 15 9 

 

 

Figure 6. TupA crystal grown in 0.2 M magnesium chloride, 0.1 M Hepes pH 7.5 and 30 % 249 

(w/v) polyethylene glycol 3350 solution. Each unit in the scale bar correspond to 0.1 mm.   250 

 251 

  252 
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 253 
Table 2. Data-collection and processing statistics for TupA crystal. Values in parentheses correspond 254 
to the highest resolution shell. 255 

∗ 	∑ ∑ | 〈 〉|/ ∑ ∑    	 	 ∑ 1/2	 ∑ | 〈 〉|/∑ ∑  256 

§	 	
1
1/2	 | 〈 〉|/  

Data collection parameters

X-ray Source ID23-1 (ESRF, Grenoble) 

Detector PILATUS 6M-F 

Wavelength (Å) 0.954 

Processing statistics

Unit-cell parameters (Å, ˚) 

a=52.25 

b=42.50 

c=54.71 

β=95.43 

Space group P 1 2 1 1 

Molecules per AU 1 

Matthews coefficient (Å3/Da) 2.09 

Mosaicity (˚) 0.22 

Resolution range (Å) 42.50-1.43 (1.45-1.43) 

<I/σI> 10.3 (2.1) 

Rmerge (%)* 4.1 (33.5) 

Rpim (%)+ 2.7 (23.4) 

Rmeas (%)§ 5.0 (4.1) 

Multiplicity 3.0 (2.8) 

No. of observed reflections 132115 (6040) 

No. of unique reflections 43950 (2151) 

Completeness (%) 99.1 (98.8) 
 257 

2.6. Structure determination 258 

To solve the structure of TupA, sequence alignments were performed in order to find the best 259 

homologous models that could lead to good initial phases obtained by molecular replacement (MR). 260 

The available structures deposited in the PDB, from the three families of transporters ModA, WtpA 261 

and TupA, have low sequence identity but a high degree of three-dimensional homology, with very 262 
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few structural differences. Structure determination was performed with PHASER [31] using as 263 

molecular models: a conserved functionally unknown protein from Vibrio parahaemolyticus RIMD 264 

2210633 (PBD code 3MUQ) and the Gs TupA (PDB code 3LR1). In the first attempts to solve the 265 

phase problem, the two homology models were superposed and the non-conserved aminoacids were 266 

pruned in order to facilitate the rotational and translational searches. Nevertheless, a MR solution 267 

could only be obtained when searching for small sections of the protein separately: section I, from 268 

residues 1 to 81; section II from residues 82 to 188 and finally section III, from residues 189 to 236. 269 

This procedure is commonly used for large, multi-domain or oligomeric proteins, where a high degree 270 

of flexibility is expected between the different domains/subunits. In the present case, it suggests that 271 

DaG20 TupA is also a flexible protein that can adopt multiple conformations. The protein crystal 272 

structure is currently under refinement and details of the putative tungstate/molybdate binding site are 273 

going to be inferred.  274 

3. Experimental Section  275 

3.1. Bacterial strains and plasmids 276 

The DaG20 cells were grown in 100 mL rubber stropped flasks containing 90 mL of medium C from 277 

Postgate [32] at 37 °C under anaerobic conditions. Media preparation includes oxygen removal by 278 

boiling and bubbling with pure argon for 30 min and sterilization at 121 °C at 20 psi for 20 minutes. 279 

The information on the bacteria strain, plasmid and primers used in this study are given in detail in 280 

Table 3.  281 

Table 3. Bacterial strains and plasmids used in this study. 282 

Strain/Plasmid/primer Properties/sequence Source/Reference 

DaG20 

Spontaneously nalidixic acid resistant derivative 

of G100A, isolated from the production fluids of 

offshore oil fields in Alaska.  

Feio, M.J. [21], 

Hauser, L.J. [33] and 

Wall, J.D. [34]. 

pET-46 Ek/LIC vector E. coli cloning vector plasmid Novagen 

NovaBlue GigaSingles cells endA1 hsdR17 (rK12- mK12+) supE44 thi-1 
recA1 gyrA96 relA1 lac [F'proA+B+ 
lacIqZΔM15::Tn10(TcR)] 

Novagen 

 E coli BL21(DE3) F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI 
lacUV5-T7 gene 1 ind1 sam7 nin5]) 

Studier,  F.W.[35] 

TupA_LIC_Fwd (sense) GACGACGACAAGATGCTGGAAGTTCTGTT
CCAGGGGCCCGAAGCACCGGTTCTTATG 

This work 

TupA_LIC_Rev (antisense) GAGGAGAAGCCCGGTTATTCGGCGTTGGG
GGT 

This work 

 283 
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3.2. Cloning of tupA gene and protein expression optimization 284 

The tupA gene (locus tag Dde_0234) was amplified from DaG20 cells using the primers included in 285 

Table 3. DNA template was obtained from DaG20 cells grown until the stationary phase. Briefly, 1 286 

mL of the cell culture was centrifuged and the pellet was resuspended in 30 µL of sterile deionized 287 

water. This suspension was boiled for 5 min in a boiling water bath and then centrifuged at 14000 rpm 288 

for 2 min. A volume of 2 µL of the supernatant was used as DNA template. The amplification reaction 289 

was carried out using FideliTaqTM DNA polymerase (Expand High Fidelity PCR System, Roche) 290 

following the manufacturer’s instructions. The PCR program was as follows: initial denaturation step 291 

for 2 min at 92 °C followed by 25 cycles of 92 °C for 30 s, 55 °C for 30 s and 68 °C for 1 min and final 292 

extension of 68 °C for 5 min. The amplicon (approximately 800 bp) was purified using the QIAquick 293 

extraction kit (Qiagen) and quantified by the UV-visible spectrum. The insert (240 ng) was cloned in 294 

the pET-46 Ek-LIC vector using the LIC cloning system (Novagen) following the manufacturer’s 295 

instructions. NovaBlue GigaSingles competent cells (Novagen) were transformed with the pET46-296 

tupA expression vector and the plasmid was isolated from a single colony using the NZY-Tech 297 

Miniprep kit. The recombinant plasmids were sequenced using an ABI3700 DNA analyzer 298 

(Perkin/Elmer/Applied Biosystems, Stabvida, Caparica, Portugal). The sequences were analyzed and 299 

aligned using the online tool BLASTp [36] and CLUSTAL-W [37]. 300 

BL21(DE3) cells were transformed with the pET46-tupA expression vector and the protein production 301 

was evaluated at different concentrations of IPTG (0, 0.2, 0.5 and 1.0 mM) and induction time (3 h, 5 h 302 

and overnight). To test whether TupA is produced as a soluble protein the BugBuster reagent 303 

(Novagen) was used as per protocol.   304 

3.3. Protein expression and purification 305 

E. coli BL21(DE3) cells containing the pET46-tupA were cultured in sterile Luria Bertanii medium 306 

containing ampicillin (100 µg/mL) at 220 rpm and 37 ºC. When the OD600 reached 0.4 AU, cells were 307 

induced with 0.1 mM IPTG during 3 h at room temperature. The cells were collected by centrifugation 308 

at 7000 rpm for 15 min, washed in 5 mM Tris-HCl buffer, centrifuged at 7000 rpm for 15 min and 309 

resuspended again in 5 mM Tris-HCl buffer containing DNase (5 µg/ml) at a ratio of 2 g cells/ml. The 310 

cell suspension was freeze and thawed thrice before disrupting the cells on a French press cell at 150 311 

psi. The crude extract was centrifuged at 9000 rpm for 30 min, ultracentrifuged (Beckman Coulter 312 

OptimaTM LE-80K) at 45000 for 45 min × g and the soluble fraction was filtered through a 0.45 µm 313 

membrane. Although the pET-46 Ek/LIC expression vector encoded a six-histidine tag at the N-314 

terminal sequence, attempts to purify TupA using Immobilized-metal affinity chromatography (IMAC) 315 

failed to bind the protein to the resin. Hence the strategy to purify TupA was changed to the protocol 316 

followed described. The first purification step involved the loading of the soluble extract into a DEAE 317 

Sepharose Fast Flow (GE-Healthcare) resin equilibrated with 3 column volumes (CV) of 5 mM Tris-318 

HCl (equilibration buffer). After protein loading, the resin was washed with equilibration buffer to 319 

remove the unbound proteins and TupA was eluted using a gradient from 5 mM to 500 mM Tris-HCl 320 

buffer in 8 CV. The protein fractions collected were analyzed by 12 % SDS-PAGE stained using 321 

Coomassie blue. The fractions containing TupA were concentrated and loaded onto a Superdex 75 322 
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HR10/300 GL column (GE-Healthcare) equilibrated with 50 mM potassium phosphate buffer 323 

containing 150 mM NaCl. The fraction containing the pure protein was pooled, concentrated and 324 

stored at -80 °C until further use. All the steps, including cell collection, soluble extract preparation and 325 

purification procedure, were performed at 4 ºC and pH 7.6. 326 

3.4. Extinction coefficient determination. 327 

The extinction coefficient was determined by measuring the absorbance at 280 nm of a pure TupA 328 

protein sample quantified using the Bradford method [38] with bovine serum albumin as standard. UV-329 

visible absorption spectrum was performed on a Shimadzu UV-2101PC split beam spectrophotometer 330 

using 1 cm optical path quarts cells. The value obtained was in agreement with the one determined 331 

using the bioinformatic tool ProtParam from the ExPASy portal [28].  332 

3.5. Protein gel shift assay 333 

TupA gel shift assays were performed following the protocol described by Rech et al [8]. Briefly, 334 

TupA protein samples (14 µM) were incubated with MoO4
2-, WO4

2-, SO4
2-, PO4

3-, and ClO4
-, anions 335 

(140 µM) in 25 mM Tris-HCl (pH 7.5) buffer at room temperature for 25 min. Unbound anions were 336 

separated from TupA with a PD10 desalting column (GE HealthCare). Protein samples were mixed 337 

with 0.25 volume of sucrose solution (30 % w/v) containing bromophenol blue and resolved on a 338 

native 12% polyacrylamide gel buffered with 50 mM Tris-HCl (pH 8.5). The electrophoresis was 339 

carried out at 100 V, 100 A and 4 °C using a 0.1 M Tris-HCl and 0.1 M glycine (pH 8.3) running 340 

buffer. The mobility shift assay after anion binding was visualized through the staining of the gel with 341 

Coomassie Blue staining solution. 342 

 343 

3.6. Isothermal titration calorimetry 344 

 345 

Isothermal titration calorimetry experiments were performed using a VP-ITC calorimeter (MicroCal 346 

GE Healthcare). Prior to experiments, protein was dialysed extensively against the reaction buffer (5 347 

mM Tris-HCl (pH 7.5) made with Milli-Q dH2O). Binding protein (10 µM) was                 348 

equilibrated in reaction buffer at 30 °C in the cell of the calorimeter and subsequently, 20 or 23 349 

injections of 10 µl of a 100 µM sodium tungstate or molybdate solution were performed and the heat 350 

response recorded. After subtraction of the baseline, the integrated heats were fitted to the single 351 

binding site model using the ORIGIN software package supplied with the calorimeter. For competition 352 

experiments, the reaction buffer was supplemented with the stated concentrations of molybdate prior to 353 

the injections with sodium, tungstate or the reverse. The relationship between apparent dissociation 354 

constants and the underlying constants are derived from equation 1:  355 

 356 

	
	

 (Eq1) [39] 357 

 358 
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where KA is the binding constant for the strong binding ligand and KB is that for the competitively 359 

inhibiting ligand. The apparent binding constant depends on the concentration of the free competitively 360 

inhibiting ligand [B] [39]. 361 

 362 

3.7. Crystallization 363 

TupA protein was concentrated up to 7.5 mg/ml in 5 mM Tris-HCl (pH 7.5) with a Vivaspin 20 364 

ultrafiltration device (Sartorius Stedim Biotech S.A.). The final concentration of TupA was determined 365 

from the absorbance at 280 nm, using an extinction coefficient of 30440 M-1 cm-1.  366 

The first crystallization trials were performed at 20 ºC using the sitting-drop vapour diffusion method, 367 

with 0.5 µL of protein: 0.5 µL of precipitant solution on 96 well crystallization plates 368 

(SWISSCI 'MRC' 2-Drop Crystallization Plates, Douglas Instruments). Several commercial screens 369 

were used, namely the PEG/Ion HT (Hampton Research), the JBScreen Classic 1-10 (Jena 370 

Bioscience), and an 80 conditions in-house screen (based on the screen of Jancarik et al. [40]). The 371 

TupA crystallized in only one of the conditions of the in-house screen containing 0.2 M magnesium 372 

chloride, 0.1 M Hepes (pH 7.5) and 30 % (w/v) polyethylene glycol 3350. Colourless plate shaped 373 

crystals appeared within 4 days (Figure 6). 374 

Scale-up and optimization experiments were performed and new crystals with maximum dimensions 375 

of 0.3x0.15x0.06 mm3 appeared in hanging-drops with 2 µL of protein (at 7.5 mg/mL): 1 µL of 376 

precipitant solution on a 24 well crystallization plate. These crystals were used to for data collection.    377 
 378 

3.7. Data collection and processing  379 

The crystals were flash-cooled directly in liquid nitrogen, using paratone as cryoprotectant and 380 

maintained under a stream of nitrogen gas during data collection. 381 

A complete dataset was collected at beamline ID23-1 at the European Synchrotron Radiation Facility 382 

(ESRF, Grenoble, France) and the crystal diffracted up to 1.43 Å at a wavelength of 0.954 Å. The 383 

TupA crystal belongs to the monoclinic space group P21 with the unit-cell parameters: a= 52.25 Å, b= 384 

42.50 Å, c= 54.71 Å and β= 95.43˚. Matthews coefficient was calculated (ca 2.09 Å3/Da) [41] 385 

suggesting the presence of one monomer (α) per asymmetric unit, with a solvent content of 40.84%. 386 

Data was processed with XDS package [42] and AIMLESS [43] from the CCP4 program package v. 387 

6.3.0 (Collaborative Computational Project, Number 4, 1994) [44]. The data collection and processing 388 

statistics are presented in the Table 2. 389 

 390 

4. Conclusions  391 

Transport of tungstate and other analogous oxoanions like molybdate is very relevant in organisms that 392 

contain key metabolic W/Mo-enzymes like Desulfovibrio species. Despite of this, there are no reports 393 

about characterization of molybdate/tungstate uptake systems from these SRB. Analysis of 394 

Desulfovibrio genome annotated to date show that molybdate and tungstate transporters are encoded in 395 

the chromosome of these organisms and belong to the Mod and Tup family of proteins, respectively 396 

[1]. Although Mo and W have similar biochemistry [45], molybdate and tungstate transporters can 397 
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differentiate between them. The molecular basis of the selectivity by the Tup and Mod transporters 398 

remain to be understood. Valuable information can be derived from the biochemical and structural 399 

characterization of the TupA protein and particularly from organisms that contain both (Mod and Tup) 400 

kind of transporters. In this work we report the expression, purification, preliminary characterization, 401 

crystallization and structure determination of DaG20 TupA. In order to attest the binding of molybdate 402 

and tungstate to DaG20 TupA gel shift assays were also carried out. Different from the TupA from 403 

Eubacterium acidaminophilum [9], DaG20 TupA not only efficiently binds tungstate but also 404 

molybdate anions. In order to quantitatively determine the binding affinity of TupA towards the two 405 

oxoanions, isothermal titration calorimetry was carried out. The obtained data show that TupA binds in 406 

a 1:1 stoichiometry the two anions but has much higher affinity to tungstate than to molybdate (around 407 

1000 times lower KD value for tungstate anions). Furthermore, in a competitive binding assay, the 408 

protein is capable of displacing the molybdate in order to bind what we think is its physiological 409 

partner, tungstate. In order to understand the specificity of TupA, site directed mutagenesis is under 410 

way where some of the putative key residues for binding are going to be inspected.  411 

Conditions to crystallize TupA were found and the crystals diffracts up to 1.43 Å. The high resolution 412 

structure will allow detailed characterization of the ligand pocket, coordination geometry and 413 

conformational changes upon metal binding which will help to better understand the mode of action of 414 

these transporters.  415 
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