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Abstract 

A numerical investigation on the harmonic disturbances in 
low-voltage cables feeding large LED loads is reported. A 
frequency domain analysis on several commercially-
available LEDs was performed to investigate the signature 
of the harmonic current injected into the power system. 
Four-core cables and four single-core cable arrangements 
(three phases and neutral) of small, medium, and large 
conductor cross sections, with the neutral conductor cross 
section approximately equal to the half of the phase 
conductors, were examined. The cables were modelled by 
using electromagnetic finite-element analysis software. High 
harmonic power losses (up to 2.5 times the value 
corresponding to an undistorted current of the same rms 
value of the first harmonic of the LED current) were found. 
A generalized ampacity model was employed for re-rating 
the cables. It was found that the cross section of the neutral 
conductor plays an important role in the derating of the 
cable ampacity due to the presence of a high-level of triplen 
harmonics in the distorted current. The ampacity of the 
cables should be derated by about 40 %, almost independent 
of the conductor cross sections. The calculation have shown 
that an incoming widespread use of LED lamps in lighting 
could create significant additional harmonic losses in the 
supplying low-voltage lines, and thus more severe harmonic 
emission limits should be defined for LED lamps.  

1. Introduction 

With the technological advancement in semiconductors, 
light-emitting diode (LED) lamps are becoming in a 
promising lighting technology due to its superior energy-
efficiency and longer life-time compared to most of the 
conventional light sources [1,2]. 

In general lighting applications, a compact ac/dc 
(alternating current/direct current) converter [3,4] should be 
used to supply dc current to LEDs, which introduce 
nonlinearity to the system. As nonlinear loads, LEDs might 
produce highly-distorted currents. These distorted currents 

are injected into the power system thus producing a large 
number of problems, such as additional power losses in 
conductors, which are dependent on the harmonic frequency 
[5]. The magnetic field generated by harmonic currents 
flowing in the conductor induces on the conductor itself 
eddy currents, which modify the current distribution 
displacing it toward the periphery; this “skin effect” 
phenomenon increases the value of the resistance (as 
compared to the dc resistance) in proportion to the root of 
the harmonic frequency, thus increasing the conductor 
power losses [6,7]. This same phenomenon can also be 
generated by the “proximity effect” due to currents flowing 
in nearby conductors which cannot be neglected when the 
distances of the nearby conductors are of the same order as 
the conductors radii [6,7]. These additional losses caused by 
harmonic currents must be accounted for by proper derating 
of the ampacity of the cable [6-8]. 

A large number of works were conducted on LEDs as 
an energy efficient lamp, but most of them have been 
devoted to the internal driver circuit design [3,4]. Several 
other works have concentrated on the light distribution and 
visual performance of LED lamps (e.g., [9]). A few 
contributions focused on harmonic emissions of LED lamps 
[10-11]. 

Although the input power of a single LED is quite low, 
an incoming widespread use of them in lighting could create 
significant additional harmonic losses in the existing low-
voltage lines. Since several national standards allow for the 
neutral conductor reduced sizing with respect to the phase 
conductors, many of these existing low-voltage installations 
have the cross section of the neutral conductor 
approximately equal to the half of the phase conductors. 

This work investigates the harmonic disturbances in 
low-voltage installations having the neutral cross section 
approximately equal to half of the phase conductors when 
used for feeding large LED lighting loads. Four-core cables 
and four single-core cable arrangements (three phases and 
neutral) were examined. The cables were modelled by using 
the QuickField Lite, which is a commercially available 
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electromagnetic finite-element analysis software 
manufactured by Tera Analysis Ltd.  

2. LED harmonic signature 

The measured current waveform (I) of a commercial LED (8 
W Philips Master lamp) together with the applied voltage 
(V) is shown in Fig. 1. As it can be seen, the current is 
highly-distorted. A frequency domain analysis of the current 
harmonics (Ipu(h)) produced by several commercially-
available LEDs, is presented in Fig. 2. In this figure Ipu(h) 
was expressed in per-unit of the fundamental current 
harmonic (h = 1 corresponding to a harmonic frequency of f 
= 50 Hz, being h the order of the harmonic). The power and 
the commercial trade-mark of each examined LED were also 
indicated in Fig. 2. The experimental data can be 
approximately described by the power law 

( ) mh
I

hI =
)1(

,                                   (1) 

being m = – 1.2 ≤ 0.2. The formula (1) was indicated by a 
solid line in Fig. 2. The relationship (1) defines the harmonic 
signature of the examined LED lamps. Note that the data 
corresponded to LEDs from 3 to 120 W. 

 
Figure 1: Current and voltage waveform of a (8 W) 
commercially-available LED lamp. 

 

 
Figure 2: Frequency domain analysis of the current 
harmonics on several commercially-available LEDs. The 
blue line represents the power-law (1) with m = 1.2.  

A digital circuit monitor (Schneider Electric 
PowerLogic CM 4000) was used for the measurements 
presented in Figs. 1 and 2.  

3. Cable types and configurations 

Two different types of cables were examined. The first type 
was an arrangement of four single-core cables in contact 
with each other, as they were specified by IEC 60502-1 [12]. 
The schematic of the used cable arrangement is shown in 
Fig. 3, while its geometric dimensions are summarized in 
Table 1. As the conductors in all cables were assumed solid 
in the modelling, the conductor dimensions showed in Table 
1 are slightly smaller than the actual dimensions. This 
assumption leads to results that are on the conservative side. 
Cases where the conductors were copper and the cross 
section of the neutral conductor was approximately equal to 
the half of the phase conductors were modelled. 

 
Figure 3: Layout of the examined single-core arrangement 

The second type corresponded to four-core cables as 
they were specified by CENELEC Standard HD603 [13]. In 
this case, a large cross-section sector-shaped cable, namely, 
3 ä 240 + 120 mm2; was examined. 

Table 1: Dimensions of the modelled cable arrangement. 
 Nominal cable cross-section [mm2] 
Dimensions [mm] 

3 
ä

 3
5 

+ 
16

 

3 
ä

 7
0 

+ 
35

 

3 
ä

 1
20

 +
 7

0 

3 
ä

 2
40

 +
 1

20
 

Phase-conductor 
radius, Rp 

3.3 4.7 6.2 8.8 

Neutral-conductor 
radius, Rn 

2.3 3.3 4.7 6.2 

Thickness of phase-
conductor insulation, 
tp 

2.6 2.8 3.1 4.0 

Thickness of neutral-
conductor insulation, 
tn 

2.4 2.6 2.8 3.1 

Distance L 8.4 10.6 13.1 18.0 
Distance Y 6.5 8.2 10.5 12.7 

4. Electromagnetic model 

In a conductor where the conductivity is sufficiently high, 
the displacement current density can be neglected, and the 
conduction current density is given by the product of the 
electric field and the electrical conductivity (ohm’s law). 
With these simplifications, the Maxwell’s equations are 
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E
B σ
µ

=







×∇ ,                                (2) 

t

B
E

∂
∂−=×∇ ,                                (3) 

where B  is the magnetic field, µ is the magnetic 
permeability, σ is the conductor electrical conductivity, and 
E  is the electric field. Introducing the magnetic vector 
potential A  ( AB ×∇≡ ) in (3), E  can be expressed as 

t

A
VE

∂
∂−∇−= ,                              (4) 

(being V the electrostatic potential) and (2) becomes 

t

A
V

A

∂
∂−∇−=







 ×∇×∇ σσ
µ

.                   (5) 

The electromagnetic software solved the diffusion 
equation (5) to obtain the spatial distribution of the total 
current density ( J ) over each conductor’s surface (S), 
having as input the measurable current in the conductor [14] 

( )
∫ ⋅

∂
∂−=

∫ ⋅+=∫ ⋅=

Sd
t

A

R

V

SdJJSdJI

dc

eddy

σ

0

,                 (6) 

where I is the total current, and Rdc is the dc conductor 
resistance. ( 0J  is the spatial-average current density 
generated by potential electric fields, while eddyJ  is the 
(eddy) current density induced by rotational fields). The 
Equation (6) assumed a uniform electrical conductivity over 
the conductor surface. This is justified because simple 
estimates showed that the temperature variations over the 
conductor’s surface, due to the non-uniform distribution of 
the joule heat caused by the skin and proximity effects, are 
very small because of the large value of the thermal 
conductivity. For instance, in order of magnitude, the 
temperature variation (∆T) along the diffusion length Λ, is 
given by 

2
2

ET σ
κ
Λ≈∆ ,                                (7) 

(being κ the conductor thermal conductivity) which is much 
less than 1 K for a circular copper conductor ( 4.2R≡Λ , 
being R ~ cm, its radius) with a joule heat density of about 
105 W/m3. 

At each harmonic frequency, the software calculates the 
losses per-unit length in each conductor using the integral 

( ) ( ) dShJhP ∫= 21
σ

,                         (8) 

where P(h) is the harmonic losses per unit conductor length 
and J(h) is the current density corresponding to the harmonic 
of order h. 

5. Simulation parameters 

The cables were modelled in two dimensions assuming that 
at each harmonic frequency, balanced, three-phase, and 
sinusoidal currents flow through them. The three-phase 
conductors were assumed carrying the following currents 

( )hpL tfhII ϕπ += 2cos1 ,                    (9-a) 








 +−= hpL htfhII ϕππ
3
22cos2 ,            (9-b) 








 ++= hpL htfhII ϕππ
3
22cos3 ,            (9-c) 

being Ip the current peak value, jh the angle phase of the 
harmonic order h, and L1, L2 and L3 the three phases. 

For nontriplen harmonic (h ≠ 3 N, with N = 1, 2, 3,…) 
the neutral conductor only carries the eddy currents 
calculated by the software. Notice that in this case, h = 3 N + 
1 represents the direct sequence harmonics while h = 3 N – 1 
represents inverse sequence harmonics. For triplen 
harmonics the current in the neutral conductor was assumed 
as 

( )ππ += tfhII pN 2cos3 .                  (10) 

In order to obtain an accurate distribution of the current 
density over the conductor sections, it was checked that the 
size of the local numerical mesh was less than half the 
characteristic skin penetration length 

fhπµσ
δ 1≡ ,                          (11) 

for each harmonic order. The study domain for the case of a 
sector-shaped cable, showing the non-uniform numerical 
grid (with up to about 4000 mesh cells) is presented in 
Figure 4. At the boundary of the domain (at a radius up to 10 
times the cable size) it was assumed that 0=A  because the 
magnetic field vanishes at a large distance (as compared to 
the cable size) from the cable. 

 
Figure 4: Non-uniform numerical grid generated by the 
software for the case of a four-core sector-shaped cable. 

The simulations results presented in Section 6 were 
obtained for µ = 4 π ä 10-7 H/m (non magnetic material was 
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considered). The copper electrical conductivity at 20 ºC was 
taken as σ = 5.8 ä 107 W-1 m-1 according to IEC 60028 [15]. 
The σ value was correspondingly corrected for other cable 
operating temperatures. 

6. Simulation results and discussion 

Figure 5 illustrates the spatial distribution of the root-mean-
square (rms) value of the total current density over the 
conductors of cables of large and small sections, submitted 
to fifth-order (h = 5) harmonic current. The magnetic field 
lines produced by the current are also shown.  

 
Figure 5: Spatial distribution of the rms current density for 
the fifth-order (h = 5) harmonic in a sector-shaped cable of 3 
ä 240 + 120 mm2, a); and in four single-core cables, 3 ä 240 
+ 120 mm2, b) and 3 ä 35 + 16 mm2, c). 

Fig. 5 a) corresponds to a 3 ä 240 + 120 mm2 sector-
shaped cable, while Fig. 5 b) corresponds to an arrangement 

of four single-core cables (3 ä 240 + 120 mm2). In both 
cases the fifth-order harmonic current was 15 A (peak 
value). A noticeable reduction in the effective area of 
current circulation due to the skin and proximity effects is 
observed in both cases (although a more marked distortion 
on the current density seems to appear for the sector-shaped 
cable); thus causing a considerable increase of the ac 
conductor resistance, Rac, (as compared to the dc resistance, 
Rdc), which in turn results in high-heat losses. Figure 5 c) 
corresponds to an arrangement of four single-core cables (3 
ä 35 + 16 mm2). In this case the fifth-order harmonic current 
was 5 A. As is observed, the influence of the eddy currents 
is very small and the current density over the conductors is 
almost not distorted.  

To calculate the acR conductor resistance, an ac steady-
state harmonic analysis was employed. Only the odd 
harmonics, up to the 29th, were considered. A higher value 
of this upper-limit did not appreciable impact the obtained 
results. Due to the geometry of the cables, the losses in the 
phase conductors are not identical. In fact, the losses in 
phase conductors L1 and L3 (Fig. 3) are the same, but, those 
in L2 are different. The losses per-unit length in the three-
phase conductors, when a symmetrical current of rms value 
Irms(h) and of frequency hf  flows through them, can be 
defined as ( )hPL1 , ( )hPL2 , and ( )hPL3 ; for L1, L2 and L3, 
respectively. The uneven heat generation inside the cable is 
a fact that also needs to be considered when calculating the 
derating of cable ampacity. According to [16], the average 
cable temperature but also the temperature at any point 
along the insulation of the cable should not exceed the 
maximum permissible one. Therefore, for derating of the 
cable ampacity, the maximum conductor losses should be 
considered and not their average. For nontriplen harmonic (h 
≠ 3 N) the neutral conductor only carries the eddy currents 
calculated by the software, so the maximum cable losses can 
be represented by an effective conductor resistance per unit-
length Reff(h) for the harmonic order h, which was defined as 

( ) ( )hRhIhPhP effrmsNL
2

max 3)()(3 ≡+ ,         (12) 

where 

( ) ( ) ( ) ( ){ }hPhPhPhP LLLL 321max ,,max≡ .          (13) 

When triplen harmonics are present, the neutral 
conductor picks up current. An effective resistance, that 
reflects the maximum losses of the phase conductors 
( ( )hReff

~ ), and another resistance ( ( )hR Nac ) that reflects the 
losses of the neutral conductor, were defines as 

( ) ( )hRhIhP effrmsL
~3)(3 2

max ≡ ,                 (14) 

( ) ( )hRhIhP NacNrmsN
2)( ≡ ,                   (15) 

where  
( ) ( )hIhI rmsNrms 3≡ ,                       (16) 

is the neutral conductor current for the harmonic current 
of order h. The resistances ( )hReff  and ( )hReff

~ , will be 
referred, from now on, as ( )hRac . For comparative purposes 



54 
 

Fig. 6 shows the ratio ( ) dcac RhR  of the phase conductors 
of the cables described in Table 1 and for a 3 ä 240 + 120 
mm2 four-core cable. As expected, the ratio increases with 
both frequency and conductor cross section due to skin and 
proximity effects. The curve is not smooth but presents 
spikes at triplen harmonics. This is mainly due to the 
increased losses in conductors L1 and L3 when zero-
sequence currents flow in the phase conductors and thereby 
in the neutral.  

 
Figure 6: Variation with the harmonic order of the ratio 

( ) dcac RhR  of the phase conductors of various examined 
cables. 

Figure 7 shows the ratio for the neutral conductor of the 
cables analyzed in Fig. 6. The ratio is shown only for triplen 
harmonics, because only when triplen harmonics are present 
the neutral conductor picks up current (other than eddy 
currents). It is evident from Fig. 6 and 7 that the ratio of the 
neutral conductor is much smaller than that of the respective 
phase conductors. This occurs because the zero-sequence 
currents decrease the proximity effect significantly on the 
neutral conductor when its position, relative to the phase 
conductors, is as shown in Fig. 3. 

 
Figure 7: Variation with the harmonic order of the ratio 

( ) NdcNac RhR  of the neutral conductor of various 
examined cables. 

The simulation results corresponded to a conductor 
operating temperature of 70 ºC, which is the maximum 
conductor temperature for PVC-insulated cables according 

to IEC 60502-1 [12]. It was checked that large variations in 
this temperature value (in the range 10 to 70 ºC) only render 
slightly variations (less than 10 %) in the conductor 
resistance ratio). 

The results of the employed electromagnetic model 
were validated by comparison to: a) the numerical model 
developed in [7], and b) the formulae given in the standard 
IEC 60287-1-1 [17] for 3 single-core cables arrangements. 
The differences in the calculated ratios ( ) dcac RhR were in 
both cases less than 3 % in the whole considered frequency 
range. 

The cable losses can be approximately calculated by the 
following formula 

( ) ( ) ( )( ) ( )∑+∑=
==

27

3

229

1

2 33
Nh

Nacrms
h

acrmsloss hRhIhRhIP , (17) 

where the first term on the right hand side represents the 
losses in the phase conductors, and the second term is the 
losses in the neutral conductor. This second term is present 
only when triplen harmonics are considered (i.e., h = 3, 9, 
15, 21, 29). The values of ( )hRac  and ( )hR Nac  were shown 
in Figs. 6 and 7.  

It is important to compare the above calculated cable 
losses (17) with the losses produced in an identical cable but 
carrying an undistorted electric current of a rms value of 

( )1rmsI . To do this, the cable losses ratio defined as 

( ) ( )113 2
acrms

loss

RI

P≡ξ ,                           (18) 

was calculated by using the harmonic signature given by (1) 
for the cables described in Table 1 and for a 3 ä 240 + 120 
mm2 four-core cable as was specified by CENELEC 
Standard HD603 [13]. The results obtained for the upper-
bound of m (= – 1.0) are shown in Table 2. The assumption 
on the m value leads to results that are on the conservative 
side. 

Table 2: Calculated cable losses ratio ξ of various examined 
PVC-insulated low-voltage cables feeding LED-type loads. 

Cable type Nominal cable 
cross-section [mm2] 

ξ 

Arrangement of 
4 single-core 
cable 

3 ä 35 + 16 2.1 

3 ä 70 + 35 2.1 
3 ä 120 + 70 2.0 
3 ä 240 + 120 2.3 

4-core cable 3 ä 240 + 120 2.5 

As is observed in Table 2, for a four-core cable with a 
cross-section of 3 ä 240 + 120 mm2, the power losses 
reaches 2.5 times the value corresponding to an undistorted 
current of the same rms value of the first harmonic of the 
LED current. Even for cables with relatively small cross 
sections, such as 3 ä 35 + 16 mm2, this ratio reaches about 
2.1. Furthermore, if the skin and proximity effects are 
neglected in the cable losses (17) (the conductor radius is 
small as compared to the characteristic skin penetration 
length and the distances of the nearby conductors are large 
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as compared to the conductor radius) and thus ξ is not 
dependent on the cable cross-section; the losses ratio still 
reaches 2.0 for m = – 1.0. The increase in the losses is 
mainly owing to the harmonic content of the distorted 
current. 

As shown Table 2, large LED-like loads generate huge 
harmonic losses resulting in additional conductor heating. 
This heating will result in a higher temperature rise of the 
cable which can exceed its rated temperature; thus requiring 
the derating of the cable ampacity. By the way, it should be 
noted that the results of Table 2 are slightly lower than the 
actual losses ratio values due to the raise of the conductor 
resistance with the temperature. 

When significant zero-sequence harmonic currents are 
present in the neutral, it becomes in an additional heat 
generating conductor and must be considered in the 
ampacity calculation. In such a case, the usual 
approximation for derating the cable ampacity [6,7] should 
be not accurate enough, because it only ensures that the 
phase conductors does not exceeds the maximum safe value, 
but the neutral should be overheating. The model developed 
in [18] should be employed instead, for re-rating the cable. 
In accordance to this model, the following matrix equations 
must be solved for the conductor temperatures to obtain the 
cable ampacity 
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here, indices 1, 2, 3, 4 and 5 are attributed to phase 
conductors L1, L2 and L3, to the neutral conductor, and to 
the surrounding environment; respectively. Tα is the 
temperature of the medium α (= 1–5). For the computation 
of the thermal resistances Rij, the Eqs. (17) to (23) in [18] 
and Eq. (42A) in [19] were employed assuming a cable 
suspended in still air (Ta = 40 ºC) and a contact angle 
between conductors of 0.35 radians. The Eq. (19) was 
solved for the cables described in Table 1 by assuming a 
distorted current with a harmonic signature given by (1) (for 
m = – 1.0) and for ( ) kII rms 11 ≡ ; being I1 the maximum safe 
value of the undistorted current under the considered 
conditions (i.e., the cable rated-current) and k the derating 
factor. The derating factor varies in the range 0 < k ≤ 1, a 
unity derating factor means that no derating of the cable’s 
ampacity is needed. For each examined cable the derating 
factor k was obtained such that the temperature of any 
conductor of the cable did not exceed 70 ºC. The results 
were summarized in Table 3. 

To check the accuracy of (19), the ampacities of five 
arrangements of 3 single-core cables (3 ä 35, 3 ä 50, 3 ä 70, 
3 ä 120, and 3 ä 240 mm2) in contacting each other, and in 
air; were compared to the ampacities given in the standard 

IEC 60364-5-523:1999. The maximum difference was 
within ≤ 3 %.  

Table 3: Calculated derating factor k for PVC-insulated low-
voltage cables as described in Table 1feeding large LED-

like loads. 
Cable type Nominal cable 

cross-section [mm2] 
k 

Arrangement of 
4 single-core 
cable 

3 ä 35 + 16 0.60 

3 ä 70 + 35 0.59 
3 ä 120 + 70 0.66 
3 ä 240 + 120 0.58 

The results showed that in all the examined cables the 
neutral conductor resulted severely overloaded due to the 
presence of significant zero-sequence harmonics in the 
distorted current. As is observed in Table 3, the ampacity of 
the cables should be derated by about 40 %; almost 
independent of the conductor cross sections. The derating 
decreases to 34 % for a cable of 3 ä 120 + 70 mm2 because 
in such a case the neutral size is larger than half of the phase 
conductors. 

It should be noted that for the examined lamps having 
an active input power § 25W, the third harmonic current 
does not exceed the limit established by the IEC 61000-3-2 
Standard [20]; which assesses the harmonic emission limits 
for lighting equipments. Hence, in accordance with the 
present results, this criterion should be more severe 
considering an incoming widespread use of LED lamps in 
lighting.  

7. Conclusions 

Calculation of harmonic disturbances in existing low-
voltage installations having the neutral cross section 
approximately equal to half of the phase conductors when 
used for feeding large LED lighting loads was reported. The 
cables were modelled by using electromagnetic finite-
element analysis software. A generalized ampacity model 
was employed. Four-core cables and four single-core cable 
arrangements (three phases and neutral) of small, medium, 
and large conductor cross sections were examined. This 
study has shown that: 
(1). The derating of the cable ampacity resulted about 40 %, 

almost independent of the conductor cross sections. If 
the derating is not accomplished, very high power 
losses up to 2.5 times the value corresponding to an 
undistorted current of the same rms value of the first 
harmonic of the LED current, were found. 

(2). The cross section of the neutral conductor plays an 
important role in the harmonic losses, and thus in the 
derating of the cable ampacity, due to the presence of a 
high-level of triplen harmonics in the distorted current.  

(3). An incoming widespread use of LED lamps in lighting 
could create significant additional harmonic losses in 
the supplying low-voltage lines, and thus more severely 
harmonic emission limits should be defined for LED 
lamps. 
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