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Abstract

The Patagonian Andes recorded several episodes of active ridge subduction in the last 80 million years. An analysis of the

spatial and temporal relation between the present segment of collision of the Chile ridge and the digital topography of the

foreland shows a correlation with the beginning of deformation and uplift in the inner sector of the Patagonia fold and thrust

belt. Several magmatic episodes related to the collision such as near trench magmatism, adakite emplacement, OIB plateau

basalts in the retroarc, and the arc volcanic gap, are associated with the uplift and deformation of the Patagonian Cordillera.

Based on these correlations, a collision of the Aluk (or Phoenix)-Farallon ridge during Paleogene times south of 43830V is
identified. Changes in magmatic patterns, molasses deposits, deformation and uplift of the Patagonian Cordillera constrain the

region affected by the collision. Similar evidence implies a third period of collision in the Late Cretaceous, based on the

occurrence of adakitic rocks, arc magmatic gap, and deformation along the southern Patagonian Andes. This earliest

hypothesized collision would require the existence of a new oceanic microplate between the Pacific and the Aluk plates during

Late Cretaceous times.

Present rapid isostatic rebound related to the continental ice cap retreat in the Patagonian Andes is restricted to the region

south of Chile triple junction (46830VS). The uplift rate here is more than two times more rapid than normal isostatic rebounds

recorded in the Northern Hemisphere, and requires an abnormally hot mantle with low viscosity. This abnormal mantle may be

a consequence of several episodes of ridge collision and development of asthenospheric windows that are inconsistent with

periods of cold flat-slab subduction proposed by some authors to explain the arc volcanic gaps.
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1. Introduction

The collision of different segments of the Chile

oceanic seismic ridge and the uplift of the Patagonian

Andes in late Cenozoic times is associated with
(2005) 73–86
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different geologic processes in the foreland. Digital

elevation models from the continental side as well as

the bathymetry of the adjacent ocean floor allow a link

to be established between the present colliding seg-

ment and the topographic contrast with areas imme-

diately north and south of the collided ridge. The

analysis of these processes in the present geologic

setting, where a segment of the Chile ridge is colliding,

may help in identifying older collisions such as the

ones occurred in Paleogene and late Cretaceous times.

The relationship between timing and space of ridge

collision and uplift of the Patagonian Andes has been

proposed by several authors (Ramos, 1989; Forsythe

and Prior, 1992; Ramos and Kay, 1992; Flint et al.,

1994; Ramos et al., 1994; Gorring et al., 1997). The

Patagonian Andes, as a consequence of a series of

ridge collisions, had several pulses of uplift producing
Fig. 1. (a) Bathymetric data in the oceanic side combined with digital topogr

(b) Note the major topographic change in the Patagonian Andes, south and n

Hudson is the last active volcano in a segment where the collision of the C
important crustal stacking in the foreland during late

Cretaceous, Eocene, and late Miocene times. How-

ever, recent studies mainly based on the analysis of

timing and origin of deformation along the Patagonian

fold and thrust belt proposed a different hypothesis,

where seismic ridge collision produced a volcanic gap

as result of flat-slab subduction (Suárez et al., 2000a,

Suárez and de la Cruz, 2001).

In order to evaluate both alternatives, the tectonic

setting and the topographic changes in the present

region of ridge subduction will be analyzed. Fig. 1

illustrates the location in the Patagonian Andes where

seismic ridge subduction is currently taking place,

outlining the major oceanic and continental tectonic

features associated with the collision.

The collision of the Chile ridge against the trench

is taking place at the latitude of the Taitao Peninsula
aphy of the Andes at these latitudes based on U.S.G.S digital models.

orth of the projection into the continent of the Taitao Fault Zone. The

hile Ridge has not occurred yet (based on Forsythe and Prior, 1992).
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(46830VS latitude), just north of Penas Gulf, along the

Pacific margin of southern Chile (Forsythe et al.,

1986; Bourgois et al., 1996; Lagabrielle et al., 1999).

The active volcanic front in the Southern Volcanic

Zone associated with subduction of the oceanic crust

ends at the Hudson volcano (46800VSL) (Stern et al.,

1976). Arc volcanism resumes in the Austral Volcanic

Zone after a gap of about 350 km, at the Lautaro

volcano (48859VSL) showing a strong adakitic sig-

nature, which indicates partial melting of a buoyant

young oceanic lithosphere (Stern and Kilian, 1996).
2. Ridge collision and topography

Bathymetric data from the oceanic crust region

adjacent to the Chile ridge, together with the digital

topography provided by the U.S.G.S., are illustrated

in Fig. 1. The digital elevation indicates an uplift of

more than 2000 m south of the Taitao Fault Zone

along the axis of the cordilleran region. Fig. 2

shows the drastic change in elevation north and

south of the latitude 46830VS, where the collision is

taking place.

The Taitao fault zone limits the northern end of a

segment subducted more than 3 My ago, as estab-

lished by Cande and Leslie (1986). North of that zone

is the segment where present subduction is under way,

colliding the southernmost Chile ridge segment with

the Taitao Peninsula (Forsythe and Prior, 1992). As a

result of that collision, important crustal erosion
-
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Fig. 2. North–south topographic section of the Patagonian Andes where m

edifices. Present Chile ridge collision is taking place at 46830VS.
occurred (Bourgois et al., 1996) and the off-scraping

of the ridge is leading to the tectonic emplacement of

the oceanic crust as an ophiolite (Mpodozis et al.,

1985; Guivel et al., 1999).

The Cerro San Valentı́n massif with its present

elevation of 4070 m a.s.l. is bounded to the north by

a 2000 m decrease in elevation that coincides with

the landward projection of the Taitao Fault Zone

(Fig. 2). On the other hand, to the south of this

mountain are Cerro San Lorenzo (3706 m) and the

mountain chain encompassed by the Hielo Con-

tinental Patagónico Norte (Northern Continental Ice

Cap). Several peaks within this chain are over 3000

m a.s.l. (Cerro Fitz Roy, 3375 m; Cerro Bertrand

3200 m, among others).

The elevation of these granitic mountains indi-

cates a minimum uplift, as these Miocene intrusives

have been unroofed by erosion that eliminated at

least 4 or 5 km of the country rocks, as demonstrated

further south in the Torres del Paine by vitrinite

studies of the sedimentary cover by Skarmeta and

Castelli (1997). Another striking feature is the north–

south trend of these uplifts which is parallel to the

trench (Fig. 1).

The uplift mechanism could be considered as

thermally driven. However, at these latitudes the

collision of this southern segment took place as long

as 6 to 10 million years ago, and the oceanic

asthenospheric window is situated beneath the fore-

land, more than 400 km to the east of these mountains

(Murdie et al., 1993; Gorring et al., 1997). Therefore,
-

-
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the heat produced by the ridge subduction or the

asthenospheric windows has largely been dissipated

beneath this region, and the present topographic

anomaly is difficult to relate to a thermal anomaly.

On the other hand, crustal stacking seems to be a

more appropriate mechanism as there is a spatial

coincidence between this southern segment and the

development of the Patagonian fold and thrust belt

(Ramos, 1989; Alvarez-Marrón et al., 1993; Kraemer

et al., 2002). South of the triple junction there is a

substantial amount of shortening in the foothills

absorbed by the sedimentary cover, that can be

correlated with the basement shortening and uplift of

the inner part of the Patagonian Andes. This orogenic

shortening varies from north to south from 25 to 45

km (Ramos, 1989).

This high topography is maintained 14–12 m.y.

after the ridge collision at these latitudes (Cande and

Leslie, 1986), as it can be seen in the southern

segment of the Patagonian Cordillera in Torres del

Paine area. The elevation of these granitic plutons is

between 2670 m (Cerro Almirante Nieto) and 3050 m

(Cerro Payne Grande) above sea level.

North of the triple junction there is only a modest

deformation, with minor shortening. Crustal stacking

in this region was controlled by partial tectonic

inversion (see Fig. 3), and large areas of the exten-

sional Mesozoic basin are still preserved beneath the

surface at these latitudes (Ramos, 1989).
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is constrained by a seismic reflection line (modified from Ramos, 1999).
3. Arc volcanic gap

Suárez et al. (2000a) proposed an alternative

mechanism to explain the volcanic gap. These authors

suggested that the shallowing of the Wadati-Benioff

zone could have produced flat-slab subduction and

shut off arc magmatism. However, there is abundant

evidence that in areas of present flat-slab subduction

the thermal flux is low, and always flat-slab segments

are associated with cold continental lithosphere, as the

asthenospheric wedge has retreated far away into the

foreland and the subducted plate cools the upper plate

(Barazangi and Isacks, 1976; Henry and Pollack,

1988; Kay and Abbruzzi, 1996; Ramos and McNulty,

2002). Some authors have proposed that as a

consequence of flat-slab subduction slab break off

may occur, and as a result of that hot convecting

asthenosphere produced melting and eruption of

rhyolites, as in the Basin and Range, following the

Laramide episode (see Oldow et al., 1989). None of

these features are observed at these latitudes. Another

feature closely linked to flat-slab subduction is the

strong coupling between the continental and oceanic

lithospheres that leads to basement foreland deforma-

tion as described by Jordan et al. (1983). This disrupts

the foreland causing basement uplifts like the Sierras

Pampeanas.

The thermal state near the triple junction has been

studied by Murdie et al. (1993) and Daniel et al.
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(1996). These authors assumed that the temperature

field required to explain the gravity anomalies

observed in the region indicates an active astheno-

spheric wedge and a higher than normal heat flux.

Petrologic studies on the retroarc plateau basalts

indicate an abnormal heat source in the mantle located

at 80–90 km depth with temperatures of the order of

1400 to 1450 8C (Cheadle and Petford, 1993),

incompatible with the low thermal gradient of a flat-

slab subduction. Geochemical and isotopic models of

the plateau basalts suggest an abnormally hot mantle

(Kay et al., 1993; Le Moigne et al., 1996; Kay and

Gorring, 1999). The estimated volumes of these

plateau basalts require eruptions of 0.2 km3/year,

rates similar to other flood basalt provinces around the

world, as for example the Paraná basalts, character-

ized by high thermal gradients (Petford et al., 1996).

The foreland basement at these latitudes is exposed

in the Deseado Massif, which still preserves the

extensional Mesozoic graben systems and does not

denote any tectonic inversion at surface (Ramos,

2002a) or only has a mild inversion in the subsurface

as seen in the La Golondrina basin further east

(Homovc and Constantini, 2001).

The Wadati-Benioff zone according to the model

elaborated by Daniel et al. (1996) south of the triple

junction has a 308 dip of the oceanic slab which is not

consistent with the flat-slab subduction proposed by

Suárez et al. (2000a) to explain the volcanic gap.

Based on previous considerations, the hypothesis

advanced by Stern et al. (1976) and Mpodozis et al.

(1985) is still a valid alternative to explain the

volcanic gap. These authors related the dehydration

of the oceanic slab in the subduction complex,

producing sediment melting and emplacement of

felsic rocks in the forearc, prior to the interaction

with the asthenospheric wedge as the cause of the

volcanic gap.
4. Timing of deformation

The late Cenozoic episode of ridge collision related

to the Chile Ridge shifted from south to north, starting

14 My ago at 528S latitude, and migrating up to

46830V at present. The effects of this collision are well

documented by off-scraping of oceanic crust and

emplacement of ophiolites associated with subduction
erosion (Bourgois et al., 1996), near-trench felsic and

MORB-like magmatism (Mpodozis et al., 1985;

Forsythe et al., 1986; Lagabrielle et al., 1994; Le

Moigne et al., 1996), adakite emplacement (Kay et al.,

1993), rapid mountain uplift and development of a

fold and thrust belt (Ramos, 1989; Kraemer et al.,

2002), and retroarc OIB magmatism (Ramos and Kay,

1992; Gorring et al., 1997).

However, some authors pointed out that deforma-

tion is not restricted to the time of ridge collision (Ray,

1996; Suárez and de la Cruz, 2001), expressing doubts

about the cause–effect relationship between these two

processes, mainly because they found Paleogene and

even older deformations in several areas of the

Patagonian Cordillera. Although there is no doubt

that major orogenic uplift in the Tres Montes-

Esmeralda segment has occurred at about 6–8 million

years ago, as indicated by new Ar/Ar data on the

granitoids of Cerro San Lorenzo (Welkner, 2000), this

does not mean that it is the only episode of

deformation recorded in the region. The synorogenic

deposits of Rı́o Frı́as and Santa Cruz Formations

began their deposition as far back as 19 million years

ago at these latitudes, as shown by the Ar/Ar ages of

the interbedded tuffs (Feagle et al., 1995). However,

effective topographic uplift, as inferred from isotopic

studies of paleosoils of the Santa Cruz Formation

(Blisniuk and Strecker, 2001), occurred more recently.

A period of rapid convergence started at about 20 My

ago (Pardo Casas and Molnar, 1987), which accounts

for the beginning of deformation, but final uplift

seems to be closely linked with the subduction of this

Chile Ridge segment. The spatial and temporal

correlation between the uplift of Cerro San Lorenzo

and the age of collision proposed by Cande and Leslie

(1986), provides a better fit to isotopic data derived

from paleosoils (Blisniuk and Strecker, 2001). The

time lag between rapid uplift and collision was

interpreted as a result of increased transpression as

young and buoyant oceanic lithosphere was approach-

ing the trench in a regime of low partitioning

(Folguera and Ramos, 2001, 2002).

Further south in the Torres del Paine area there are

also good constraints on the time of deformation and

uplift. In this region, Skarmeta and Castelli (1997)

established the beginning of the Miocene uplift at

about 12 million years in the inner sector, based on

different databases. The subsidence curves from
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stratigraphic sections around Lago Nordenskjold,

together with the well Toro 1-b, show that uplift

started at 12 million years, and that the granites of

Torre del Paine had a cover about 4 to 5 km thick, that

was removed by erosion during uplift. On the other

hand, the emplacement of these granitic bodies is

bracketed between 13F1 Ma and 12F2 Ma (K/Ar in

biotite), and based on structural considerations (Skar-

meta and Castelli, 1997) as well as petrologic analyses

(Michael, 1983), these authors demonstrate that the

intrusions are syntectonic. There is a remarkable

coincidence between the collision of this southern

segment of the Chile ridge between 14 and 12 million

years (Cande and Leslie, 1986) and the deformation of

the cover, the uplift and the emplacement of these

granitic plutons.
5. Paleogene collision

Aside from the well documented Late Cenozoic

collision there is evidence of several previous ridge

collisions registered in the Pacific margin of Patagonia

(Cande and Leslie, 1986, Ramos and Kay, 1992;

Ramos et al., 1994). Among them, the Paleogene

collision is related with the second most important

episode of deformation that produced conspicuous

unconformities in the inner region of the Southern

Patagonian Andes, mainly south of 508S (Skarmeta

and Castelli, 1997; Kraemer et al., 2002), and locally

in the Cosmelli basin at Meseta Buenos Aires latitudes

(Flint et al., 1994).

5.1. Time of deformation

This tectonism is related to a period of rapid

convergence (Pardo Casas and Molnar, 1987) in

general terms associated with the Incaic orogeny, that

controlled the collision of the Farallon-Aluk ridge

against the trench south of 43830V (Cande and Leslie,

1986; Ramos and Kay, 1992). The evidence of

deformation increases to the south of this latitude,

and reaches the maximum deformation at the Fue-

guian Cordillera. Due to the orientation of the

convergence vector in the north–northeast quadrant,

it is evident that those segments more orthogonal to

this trend, such as the Fueguian Andes with a

northwest to east–west direction, have recorded the
largest deformation. For example, the initiation of

foreland basin deposits in the Malvinas basin occurred

during the middle to the late Eocene (Galeazzi, 1996),

at a time when the main deformation is recorded in the

Leticia Formation (Ghiglione et al., 2002). These

authors bracketed the main Paleogene deformation

between 43.6 and 39.2 Ma in the Fueguian fold and

thrust belt along the Atlantic coast (548S), based on

growth strata and progressive angular unconformities

in the synorogenic deposits of the Leticia Formation.

Further north and west along the Darwin Cordillera

(528S), based on fission track data, Nelson (1982)

established the main uplift related to the closure of

Rocas Verdes basin between 43 and 38 Ma, with uplift

rates up to 0.5 mm/year. Further north at the latitude

of Torres del Paine (518S), Skarmeta and Castelli

(1997) recognized the main Paleogene uplift, that

coincided with the involvement of the basement in the

fold and thrust belt, between late Paleocene and late

Eocene times. The unconformity that separates the

Maestrichtian-Danian marine deposits from the con-

tinental member of the lower Rı́o Turbio Formation is

dated in the late Paleocene–early Eocene by Malu-

mián (2002) at 50830V–518SL. The Rı́o Turbio

Formation has important coal seams typical of a

molasses deposit interbedded with shallow marine

deposits that grade upsequence to the continental Rı́o

Guillermo Formation. This unit consists of synoro-

genic deposits of latest Eocene to early Oligocene age.

There are isolated continental deposits of Paleo-

gene age preserved between Lagos Belgrano and

Strobel (approx. 488S) and south of Lago Cardiel

(498S). These deposits bearing coal seams and littoral

shallow facies have been interpreted as molasses

deposits related to some deformation in the inner areas

(Kraemer et al., 2002). These deposits are locally

better developed in the Cosmelli basin (approx. 478S)
where Suárez et al. (2000b) and Troncoso et al. (2002)

described a continental sequence bearing coal seams

of late Paleocene–early Eocene age. This unit defined

as Ligorio Márquez Formation overlies with an

angular unconformity folded rocks of Divisadero

Group (early Cretaceous, Ramos et al., 1982). This

relationship defines an episode of deformation in the

late Paleocene–early Eocene.

The Paleogene basin in the central part of the

Southern Patagonian Cordillera (508SL) shows an

asymmetric section, typical of a foreland basin with a
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rapid thickening towards the west along the foothills

(see Fig. 1 of Malumián, 2002). This foreland basin

reaches a maximum thickness further south where it

attains up to 3600 m at 528SL (Biddle et al., 1986).

The subsidence curve of the basin indicates a rapid

increase of the subsidence rate at about the middle

Eocene (Ramos, 2002a).

Based on the previous evidence it can be estab-

lished that uplift and deformation were recorded in the

Patagonian fold and thrust belt between late Paleocene

and early Eocene times in the northern and central

areas, and up to the middle to the late Eocene in the

southernmost Patagonian Andes.

5.2. Arc volcanic gap and retroarc volcanism

The Patagonian batholith and the satellite bodies

located further east along the foothills recorded a

persistent magmatic activity related to subduction

since the Jurassic up to the Late Cenozoic. However,

there is no dated plutonic activity dated with

Paleocene or Eocene ages (see recent review of

Suárez and de la Cruz, 2001). This is also confirmed

by a volcanic gap that took place during most of the

Paleocene and Eocene times in the magmatic arc

(Ramos et al., 1982).

At the same time as the volcanic arc gap is

recorded, important alkaline basalts are widespread

in the retroarc. These basalts have typical OIB

signature and have been interpreted as evidence of

an asthenospheric window formed during an episode

of ridge collision (Ramos and Kay, 1992; Kay et al.,

2002).

The majority of these retroarc volcanic plateau,

represented by the Posadas Basalt, were erupted

between 448 and 528S latitude, coinciding in time

and space with the region affected by the ridge

subduction (see Figs. 4 and 5). New data from Meseta

Buenos Aires indicate two pulses of activity, one at

43.85F0.8 Ma, 44.30F0.9 Ma and 41.22F0.8 Ma,

and a younger one at 39.43F0.6 Ma and 39.34F0.6

Ma (K/Ar in whole rock, Flynn et al., 2002). The

oldest basalt corresponds to a 58.6F2 Ma reported by

Morata et al. (2000) in the same area.

These dates indicate an Ypresian (53–46 Ma) to

Lutecian (46–40 Ma) age for the Posadas Basalt,

early to middle Eocene after the I.U.G.S. (2000)

time scale. These basalts are associated with
.

extended and densely emplaced essexite dike swells

all along the foothills of the Patagonian Cordillera

between Lago Buenos Aires and Torres del Paine

(Ramos, 2002b).

The ages of the essexites and the Posadas Basalts

overlap indicating a period of maximum activity

between 53 and 43 Ma in the northern sector (Ramos,

1982a). These ages have been confirmed by new Ar/

Ar ages in Lago Pueyrredón (43.0F0.1 Ma, Kay et

al., 2002), similar to old K/Ar ages in the same

locality (43.5F7 Ma, Ramos and Drake, 1987). The

ages of the Posadas Basalt are summarized in Fig. 4.

5.3. Paleogene segmentation of the Patagonian

Cordillera

There is a remarkable segmentation of the Paleo-

gene magmatism in the Patagonian Cordillera (Fig. 5).

A series of calc-alkaline rocks represented by up to

1500 m of dacites, andesites and minor basalts in

lavas, pyroclastic flows, tuffs and volcaniclastic

deposits, constitutes the main arc in the Principal

Cordillera in the region of Collipilli, Ventana, El

Maitén and Corcovado (388 to 438S). These thick

sequences disappear at about 43830VS latitude. Several

petrologic and geochemical studies demonstrated the

subduction related signature of these rocks (Rapela et

al., 1983, 1988).

South of this latitude there is a gap in the arc vol-

canism, occurring at the same time as major basaltic

lavas are extruded in the retroarc. Further south these
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lavas are known as the Posadas Basalt, widely ex-

posed in the foreland region as well as in the

subsurface of the Austral basin (Ramos, 1982a,b).

The change between a continuous Paleogene volcanic

arc and the beginning of the OIB alkaline basaltic

magmatism occurred at the latitude of the Chiloé

Island in the Pacific margin. This latitude was

proposed by Cande and Leslie (1986) as the approx-

imate latitude where the collision of the Farallon-Aluk

(Kula) ridge against the trench happened at about 63

Ma (Fig. 6). The geological evidence in the foreland

can be used to precisely locate the latitude where the

collision took place, which caused a major composi-

tional change in magmatism.

The alkaline magmatism associated with the

volcanic gap permits a plate reconstruction of the

region affected by the collision of the Aluk-Farallon

ridge as far south as 528S latitude. This area has an

extensive magmatism in the foreland, that in sectors

was widespread in the extra-Andean region close to
PACIFIC
PLATE

FARALLON
PLATE

KULA
PLATE

ANTARCTIC
PLATE

60 Ma

50 Ma

Fig. 6. Paleogene ridge collision of the Aluk (or Phoenix)-Farallon ocean

from Cande and Leslie, 1986). Compare the collision site along the marg
the Atlantic coast. This magmatic activity has been

interpreted as produced by the development of

asthenospheric windows related to the collision of

an active oceanic spreading center between 53 and 43

Ma (Ramos and Kay, 1992; Kay et al., 2002). This is

the time span when several molasses basins, associ-

ated with the beginning of foreland subsidence in the

foothills of the Patagonian Cordillera, formed during

the Incaic orogeny. These were subsequently uplifted,

and deformed in the inner sectors of the Patagonian

fold and thrust belt as proposed by Kraemer et al.

(2002). The age and degree of deformation gets

younger and more intense towards the south, parallel

to the south migration of the collision as proposed by

Cande and Leslie (1986). Once more it can be seen

that there is a close correlation in time and space

between the collision of an oceanic spreading center,

deformation in the fold and thrust belt, cessation of

arc volcanism and development of alkaline retroarc

basalts.
52 Ma

42 Ma

ic ridge against the Patagonian Andes continental margin (modified

in between 52 and 50 Ma with paleogeography of Fig. 5.



V.A. Ramos / Tectonophysics 399 (2005) 73–8682
6. Cretaceous collision

The evidence suggesting a Cretaceous collision is

not as well established as the Late Cenozoic or

Paleogene collisions. The best evidence is based on

the isolated exposures of the Puesto Nuevo Adakite

(approx. 498S), similar in isotopic and geochemical

composition to the Cerro Pampa Adakite (12–13

Ma), that clearly indicate melting of young oceanic

crust as demonstrated by Kay et al. (1993) asso-

ciated with the subduction of a segment of the Chile

ridge.

The emplacement of the Puesto Nuevo Adakite

coincides with an important magmatic arc gap as

described by Ramos et al. (1982) and recently

demonstrated by Suárez and de la Cruz (2001) after

79 Ma. The age of subduction is constrained by old

K/Ar dates of the adakites between 84.5F6 Ma and

the 76.7F5 Ma (Riccardi, 1971). The collision could

have taken place at about 80 My ago, as indicated by

the arc gap during most of the Late Cretaceous at

these latitudes (Ramos et al., 1994). There is

evidence of an angular unconformity between the

early Cretaceous rocks and the Puesto Nuevo

Adakite. This corresponds to the widespread defor-

mation recorded during this time interval along the

Fueguian and Patagonian Andes from 52 to 448S,
described as part of the Patagónides deformation (see

review in Ramos, 2002a).

The collision of the Aluk (or Phoenix)-Pacific

oceanic ridge along the Pacific trench of New

Zealand proposed by Bradshaw (1989) for mid

Cretaceous time could be part of the same episode

of collision that produced the volcanic gap and the

Puesto Nuevo Adakite. If not, there is need in the

late Cretaceous for another spreading center-associ-

ated with an unknown oceanic microplate in the

southeast Pacific.
7. Concluding remarks

The collision of the Chile ridge with the trench in

Late Cenozoic times, in addition to all the processes

described above, also triggered the beginning of

glaciation in southernmost South America. The oldest

glaciation in the entire Patagonian Cordillera is

recorded in Meseta Buenos Aires at about 6 million
years (Mercer, 1976) at approximately 478S, within
the segment comprised between Taitao and Esmeralda

fault zones (Ramos, 1989; Gorring et al., 1997).

Collision in this segment occurred 6 million years

ago, and as a consequence, the resulting uplift

produced a topographic barrier athwart of the domi-

nant westerlies winds that triggered the first recorded

glaciation. A similar effect is described for the last

glacial maximum (LGM) at about 19 ka by Wenzens

(2002), that found a close correlation between the

topography originated by ridge collisions and the

extension of the continental ice caps. These studies

together with the Ivins and James (2002) model on the

isostatic response to deglaciation, mainly based on the

last 5 ka mass fluctuation of the Patagonian ice fields,

show that mantle viscosities seem to be lower (on the

order of 5 to 0.2�1018 Pa s) than in normal

continental shields (approx. 1021 Pa s). The results

of the Little Ice age (LIA, 1400–1750 AD) show an

abnormally rapid response, that these authors related

to an abnormally hot mantle as a consequence of slab

window formation due to oceanic spreading center

subduction beneath the Patagonian Cordillera during

the Cenozoic.

Recent GPS measurements of vertical displace-

ments indicate ongoing vertical uplift related to LIA

and younger ice retreats up to 20 mm/year (Bevis et

al., 2002), more than two times the uplift rates

currently recorded in Fennoscandia and Hudson Bay

(5–10 mm/year). This is a clear indication of

abnormal heat flow beneath the Patagonian Cordillera

(Lagabrielle et al., 2000), probably controlling a low

viscosity in the mantle. The thermal setting near the

triple junction has an estimated heat flow higher than

100 mW/m2 which would have enhanced the late

Cenozoic uplift and deformation during the last

Cenozoic seismic ridge subduction. This thermal

state is incompatible with flat subduction, which

implies a cold regime in the mantle and lower crust

(Fig. 7).

There is strong evidence that several spreading

centers have interacted with the trench at the margin

of the South American plate in the last 80 million

years along the subduction zone of the Patagonian

Cordillera. This interaction is documented by abrupt

changes in uplift, deformation, and magmatism. As

the collisions of these active seismic ridges were

associated with periods of rapid convergence in the
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Late Cretaceous, in the Paleogene and the Neogene,

their effects were superimposed to an increase of

orogenic activity generated by acceleration of the

convergence rates. However, the climax of this

deformation and the rapid uplift coincided in time

and space with the ridge collision, as documented in

the most recent interactions between the spreading

center and the trench. These last uplifts triggered

glaciation in the southernmost Andes, as a response to

the topographic barriers to the westerly winds, and

even Little Ice Age deglaciation, had a rapid and

abnormal 20 mm/year uplift controlled by the low

viscosity of the mantle associated with an abnormal

thermal regime as a consequence of the oceanic ridge

collisions.
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