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ABSTRACT 47 

 48 

Estimating epidemiological cutoff endpoints (ECVs/ECOFFS) may be hindered by the 49 

overlap of MICs for mutant and non-mutant strains (harboring or not harboring mutations, 50 

respectively). Posaconazole MIC distributions for Aspergillus fumigatus SC were collected from 51 

26 laboratories (Australia, Canada, Europe, India, South/North America, Taiwan) and published 52 

studies. Distributions that fulfilled CLSI criteria were pooled and ECVs were estimated. The 53 

sensitivity of three ECV analytical techniques (ECOFFinder, NRI, derivatization) to the inclusion 54 

of MICs for mutants was examined for three susceptibility testing methods (CLSI, EUCAST, and 55 

Etest®). The totals of posaconazole MICs for non-mutant (no known cyp51A mutations) and 56 

mutant A. fumigatus isolates were: by CLSI, 2,223 and 274; by EUCAST, 556 and 52; by the 57 

Etest®, 1,365 and 29 respectively; 381 Sensititre™ YeastOne™ (SYO) MICs with unknown 58 

mutational status were also evaluated. We observed an overlap in posaconazole MICs among 59 

non-mutant and cyp51A mutants. At the commonly chosen percentage of the modeled wild-type 60 

population (97.5%), almost all ECVs remained the same when the MICs for non-mutant and 61 

mutant distributions were merged: ECOFFinder ECVs 0.5 μg/ml (CLSI) and 0.25 μg/ml 62 

(EUCAST and Etest®); NRI ECVs: 0.5 μg/ml for all three methods. However, the 95% 63 

ECOFFinder CLSI ECV for non-mutants was 0.25 μg/ml. The tentative SYO ECOFFinder ECV 64 

was 0.06 μg/ml (data from 3/8 laboratories). Derivatization ECVs with or without mutant 65 

inclusion were either 0.25 μg/ml (CLSI, EUCAST, Etest) or 0.06 μg/ml (SYO). It appears that 66 

ECV analytical techniques may not be vulnerable to overlap between presumptive wild-type and 67 

cyp51A mutants when up to 11.6% of the estimated wild-type population includes mutants. 68 
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 69 

INTRODUCTION 70 

 71 

 Among the species of filamentous fungi (moulds), Aspergillus fumigatus is the most 72 

prevalent species causing severe infections; the attributable mortality rate for aspergillosis is as 73 

high as 47%, which is dependent on both patient population and age (1-4). Although A. 74 

fumigatus frequently affects the lung and sinuses, Aspergillus can infect other organs, including 75 

the central nervous system and the heart (4,5). Posaconazole is recommended as salvage 76 

therapy in patients failing first-line treatment for invasive aspergillosis, as well as empirical, 77 

prophylactic, and/or adjunctive therapies (5). While routine antifungal susceptibility testing 78 

([MICs [minimal inhibitory concentrations]) is not recommended during initial aspergillosis 79 

therapy, susceptibility testing has an important role in identifying potentially resistant isolates, 80 

e.g., for isolates from patients failing therapy (5). Ideally, MICs ought to be obtained using a 81 

reliable antifungal susceptibility assay for which breakpoints (BPs) and/or epidemiological cutoff 82 

values (ECVs/ECOFFs) have been established (e.g., susceptibility testing reference methods). 83 

Method-dependent and species-specific ECVs are based on MIC/MEC data derived from 84 

multiple laboratories and are also the first step for establishing breakpoints (6-9). ECVs are 85 

particularly important when limited clinical data have precluded the development of BPs, which 86 

is the case for many fungal species. 87 

 88 

 Two reference methods are available for testing the susceptibilities of moulds to 89 

posaconazole and other agents: the M38-A2 by the Clinical and Laboratory Standards Institute 90 

(CLSI) and a similar microdilution method by the Antifungal Subcommittee of European 91 

Committee on Antimicrobial Susceptibility Testing (EUCAST) (10,11) 92 

(http://www.eucast.org/ast_of_fungi/). EUCAST has listed a susceptible BP (0.12 µg/ml) as well 93 

as an ECV (ECOFF, 0.25 µg/ml) for posaconazole and A. fumigatus. The CLSI has not listed or 94 

approved interpretive endpoints for this species/agent (8). A perception has emerged that the 95 

suggested posaconazole ECV (either 0.25 or 0.5 µg/ml), which was based on CLSI data from 96 

four laboratories, is not suitable in separating the non-mutant from the mutant isolates, e.g., 97 

those harboring cyp51A gene mutations.  An overlap between MICs for presumptive WT and 98 

mutant isolates has been recently documented by the EUCAST 99 

(http://www.eucast.org/ast_of_fungi/). Other interpretive endpoints (susceptible BP: 0.06 µg/ml; 100 

ECV: 0.12 µg/ml; the PK/PD breakpoint: 0.25 µg/ml) have been proposed for posaconazole and 101 
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A. fumigatus using CLSI MICs, PD data, genetic mutations, animal studies or a combination of 102 

these parameters (13,14).  103 

 104 

 Among the commercial antifungal susceptibility methods (15-17), the broth colorimetric 105 

microdilution Sensititre YeastOne (SYO®; Trek Diagnostic System, Cleveland, Ohio) and 106 

especially the agar-diffusion Etest® (bioMérieux, Marcy l’Etoile, France) methods have been 107 

evaluated for testing the susceptibilities of moulds to posaconazole and other agents (18-20). 108 

More recently, these studies have incorporated mutant A. fumigatus strains (21-23). However, 109 

the testing parameters provided by the manufacturers are more specific for Candida spp. and 110 

both package inserts list CLSI endpoints as interpretive categories (10,15,17). Therefore, there 111 

is a need to further investigate these issues by evaluating available posaconazole MICs for A. 112 

fumigatus species complex (SC) by these four susceptibility methods. 113 

  114 

The objectives of the present study were: (i) to pool the MICs for isolates of A. fumigatus 115 

SC obtained by four antifungal susceptibility testing assays (CLSI, EUCAST, Etest and SYO) 116 

that were collected from 26 independent worldwide laboratories and published studies 117 

(13,21,24,25); (ii) to define method-dependent posaconazole MIC distributions for non-mutant 118 

and mutant isolates by each susceptibility method; (iii) to examine the suitability of these 119 

distributions for each method-dependent ECV setting, including the evaluation of interlaboratory 120 

modal agreement; (iv) to evaluate the overlap of MICs for mutants and non-mutant isolates; and 121 

(v) to compare the sensitivity of three ECV analytical approaches (ECOFFinder, NRI 122 

[Normalized Resistance Interpretation] and the derivatization method) (9,26,27) to the inclusion 123 

of MICs for mutant isolates in each non-mutant posaconazole MIC distribution to be analyzed 124 

when the distribution comprised >100 MICs that originated in 3 to 15 laboratories. The CLSI 125 

MIC distributions for two Aspergillus cryptic species (55 A. lentulus and 21 A. udagawae 126 

isolates) collected from three laboratories also were provided. The mutant data from participant 127 

laboratories originated mostly from European laboratories in addition to data from Australia, 128 

Argentina, and Thailand; by adding data from a published study (25), we also collected data 129 

from China. 130 

 131 

RESULTS AND DISCUSSION  132 

  133 

The recommended major predictor of clinical response to antimicrobial therapy is the 134 

method and species-dependent BP. In lieu of BPs for mould testing, the CLSI has approved 135 
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ECVs for various triazoles and species of Aspergillus, but not for posaconazole and A. 136 

fumigatus (8,12). Etest ECVs are available for amphotericin B and the echinocandins and 137 

Aspergillus isolates (28), but Etest or SYO ECVs for Aspergillus spp. and the triazoles have not 138 

been proposed. Therefore, we collected available CLSI, EUCAST, Etest and SYO 139 

posaconazole MICs from 26 laboratories and re-evaluated the definition of method-dependent 140 

posaconazole ECVs for A. fumigatus SC using CLSI and EUCAST MIC distributions for non-141 

mutant and mutant isolates that originated in 15 and 6 laboratories, respectively, including 142 

published studies (13,24,25). Using the same methods, we propose posaconazole Etest and 143 

SYO ECVs for A. fumigatus SC based on Etest MIC distributions for non-mutant and mutant 144 

isolates and SYO data for non-differentiated isolates from 8 and 3 laboratories, respectively. 145 

The total number of MIC values for mutants by the CLSI, EUCAST and Etest methods 146 

originating from published studies versus participant laboratories were: 227 versus 47 147 

respectively (82.8% and 17.2%]; 3 versus 49 (6% and 94%) (13,24,25) and 5 versus 24 (17% 148 

and 83%) (21) (Table 3). In addition, our ECVs were estimated by the ECOFFinder, NRI and 149 

derivatization procedures to compare their sensitivity to the presence of MICs for mutants within 150 

each mixed MIC distribution of non-mutant and mutant isolates. We also examined the overlap 151 

between our posaconazole MICs for non-mutant versus mutant isolates of A. fumigatus SC 152 

using a substantial number of MICs for mutants (n=355) by three of the four susceptibility 153 

methods (CLSI, EUCAST and Etest). To our knowledge, there are no other species/agent 154 

combinations with such large number of MIC data for mutants and non-mutants to test the 155 

effectiveness of the different analytical methods:  156 

 157 

The criteria for ECV definition have been recently postulated by the CLSI and 158 

summarized elsewhere (6,7,9). Those criteria were met for the minimum of 100 MIC/MEC 159 

values in a pool of data points for ECV definition analysis (Table 1); the minimum number of 160 

isolates for an individual non-mutant distribution by the three methods was 24, higher than the 161 

acceptable 5 (CLSI) or 15 (EUCAST) (EUCAST Standard Operating Procedure; EUCAST SOP 162 

10.0 -http://www.eucast.org/documents/sops/). The maximum number of isolates in individual 163 

distributions before pooling was 449 or 20% of the total 2,223 non-mutant data points by the 164 

CLSI method (Table 1). Thus, there was no need to weigh the distributions used for the 165 

analysis, because none of the single distributions included > 50% of the entire non-mutant 166 

population evaluated by three of the four methods (the smallest number of isolates in the pool 167 

was 25 or 1%); the exception was a single distribution by the SYO method that included 56% of 168 

the data points used to define the tentative SYO ECV. 169 
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Among the 2,223 non-mutant isolates for which CLSI MICs were available, 58% (1,289 170 

data points) were A. fumigatus sensu stricto (SS) and 42% A. fumigatus SC isolates (e.g., 171 

identification confirmed by either molecular [e.g., MALDI-TOF and β-tubulin and calmodulin 172 

sequencing] and/or morphological methods) (29,30). After pooling of non-mutants, there was no 173 

observable difference in the MIC distributions between SC and SS strains. All mutant isolates 174 

were A. fumigatus SS (Table 1). Of the four distributions evaluated in the prior study (12), the 175 

largest was excluded due to an aberrantly low mode (1,152 data points). The analysis of modal 176 

variability indicated that of the CLSI posaconazole MICs collected from 18 independent 177 

laboratories, 13 had acceptable distributions. These were pooled with data from two previous 178 

studies for further analyses (13,24); the modes from the 15 laboratories ranged between 0.06 179 

and 0.12 μg/ml, an acceptable distribution pool for ECV definition according to the CLSI criteria 180 

for this purpose (7,8). The excluded distributions from five laboratories were truncated, had no 181 

clear mode, or had modes at least two dilutions either below (0.016 μg/ml) or above (1 μg/ml) 182 

the global mode of 0.12 μg/ml (6,7). Similar screening has been performed for other CLSI ECVs 183 

with comparable exclusion rates; e.g., 4 of 13 distributions were not pooled for the definition of 184 

the CLSI ECV for Candida albicans versus fluconazole due to aberrant distributions (6). The 185 

mode for the merged 274 A. fumigatus SS mutants (47 versus 227 isolates, study laboratories 186 

and previous studies, respectively) was higher, 0.5 μg/ml (13,24). CLSI posaconazole MICs for 187 

the 55 A. lentulus isolates ranged between 0.12 to 4 μg/ml (mode 0.5 μg/ml) and for the 21 A. 188 

udagawae between 0.25 to 1 μg/ml (mode 0.25 μg/ml) (29,30). Responses to the survey 189 

indicated that the CLSI MICs were determined according to the M38-A2 testing conditions 190 

(described below). Overall, MICs for the quality control (QC) isolates were within expected MIC 191 

limits (10), the exceptions were that 4.5% of posaconazole MICs for the QC isolates C. krusei 192 

ATCC 6258 and C. parapsilosis were one dilution lower than the expected limits (0.06-1 μg/ml 193 

and 0.03-0.25 μg/ml, respectively). It is noteworthy that the CLSI has lowered the posaconazole 194 

MIC limit for the QC isolate C. parapsilosis ATCC 22019 from 0.06-0.25 to 0.03-0.25 μg/ml 195 

(CLSI, minutes of the annual meeting, 1/8/2011, Orlando, Fla). 196 

 197 

EUCAST posaconazole MICs for 556 non-mutant and 52 mutant A. fumigatus SS 198 

isolates were pooled from five independent laboratories and merged with published  data (25) 199 

(Table 1). The modes for the six individual distributions were comparable with an overall mode 200 

of 0.12 μg/ml or the same as that for the CLSI data. Therefore, all collected distributions were 201 

included for further ECV analysis. The MIC ranges for non-mutant and mutant isolates were 202 

slightly more discriminatory by the EUCAST than by the CLSI method (non-mutant <0.016 to 203 
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0.5 μg/ml versus mutant 0.03 to >16 μg/ml). The EUCAST method seemed to provide a better 204 

split of the MICs for non-mutant and mutants, with a mode for the mutants of 1 μg/ml versus the 205 

CLSI mode of 0.5 μg/ml. There was a noticeable difference between the EUCAST and CLSI 206 

wild-type distributions: similar mean (log2: -3.94 versus -3.86, respectively), but a lower standard 207 

deviation (log2: 0.897 versus 1.124, ECOFFinder analysis) by the EUCAST method. These 208 

differences may be due to the smaller number of laboratories and EUCAST MICs in the total. 209 

 210 

Etest posaconazole MICs for 1,394 isolates of A. fumigatus SC (a total of 450 [33%] of 211 

the 1365 non-mutant isolates and the 29 mutants were A. fumigatus SS) were acceptable from 212 

7 of 9 independent laboratories and were merged with those of a previous study (21) (Table 1). 213 

The two excluded distributions were either truncated or had an unacceptable low mode (0.03 214 

μg/ml), two dilutions below the global mode of 0.12 μg/ml, and the same mode as that for both 215 

reference methods. The responses to the survey from each of the nine laboratories revealed 216 

that Etest posaconazole MICs were obtained by using solidified RPMI medium supplemented 217 

with 2% dextrose and that MICs were determined after 24 h, but mostly at 48 h of incubation 218 

(absence of growth in the inhibition ellipse). Again, MICs were outside (4.6%, one dilution lower 219 

values) the expected limits for both QC isolates C. parapsilosis ATCC 22019 (0.03-0.25 μg/ml) 220 

and C. krusei ATCC 6258 (0.12-0.25 μg/ml) as per the manufacturer’s table (17). There was 221 

also a difference between the Etest and CLSI non-mutant distributions: the former method had, 222 

a higher geometric mean (log2: -4.042 versus -3.86) and a lower SD (log2: 0.779 versus 1.124). 223 

These discrepancies could be due to the different susceptibility methodologies (broth 224 

microdilution versus agar gradient diffusion). 225 

 226 

Only 3 of the 8 submitted single SYO posaconazole MIC distributions for 381 A. 227 

fumigatus SC isolates (29% [110 data points], A. fumigatus SS) were pooled for further ECV 228 

analyses. The global modal MIC was 0.03 μg/ml or much lower than by the other three 229 

susceptibility methods (Table 1). The five excluded distributions were mostly truncated or had 230 

no obvious mode. Although SYO posaconazole data for mutant isolates of A. fumigatus have 231 

been documented (22,23), the non-mutant MIC distributions were not comparable to our pooled 232 

MIC distribution. One possible reason for the discrepancy is the fact that different MIC 233 

determination criteria and incubation times have been utilized in this and previous studies 234 

(18,19,22,23). SYO MICs for the QC isolates C. parapsilosis ATCC 22019 (0.06-0.25 μg/ml) and 235 

C. krusei ATCC 6258 (0.06-0.5 μg/ml) were all within the accepted MIC limits (17). Responses 236 

to the surveys indicated that the SYO MICs from these three laboratories were obtained using 237 
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the basic conditions for this broth colorimetric microdilution assay: color change from blue to red 238 

(instead of growth inhibition) after 48 h of incubation.  239 

 240 

Table 2 depicts the ECOFFinder and NRI 95% and 97.5% posaconazole ECVs, as well 241 

as the single ECVs by the derivatization method for the different CLSI, EUCAST, Etest and SYO 242 

MIC distributions for A. fumigatus SC that were evaluated. The ECOFFinder and NRI CLSI 243 

97.5% ECVs were 0.5 μg/ml when the MICs for mutant and non-mutant distributions were 244 

merged. However, the CLSI 95% ECOFFinder ECV was one dilution lower (0.25 μg/ml) when 245 

the MIC distribution for only non-mutant isolates was analyzed. For the EUCAST and Etest 246 

methods, both 95 and 97.5% ECOFFinder ECVs were 0.25 μg/ml. Therefore, although the 247 

inclusion of EUCAST and Etest MICs for mutants did not impact the ECV calculation, it 248 

impacted the 95% ECOFFinder CLSI result. In our study, that could be due to the fact that the 249 

ECOFFinder used more data points, while the NRI only utilizes the left-hand side of the bell 250 

curve and, obviously, the number of CLSI MICs for mutants was much higher (274) than those 251 

by the EUCAST and Etest (52 and 29, respectively) (Table 1 and Figure 1). The smaller number 252 

of mutants was less likely to modify the ECV. For that reason, although the 97.5% ECVs are the 253 

preferred CLSI susceptibility endpoints, the 95% ECOFFinder posaconazole ECV of 0.25 μg/ml 254 

could be a more useful endpoint for this species/agent combination. Given that only 3 of the 8 255 

available SYO MIC distributions were suitable for ECV analysis, we are proposing a tentative 256 

ECOFFinder ECV of 0.06 μg/ml, until more SYO posaconazole data are gathered. The 257 

derivatization method also yielded ECVs of 0.25 μg/ml for the different CLSI, EUCAST and 258 

Etest MIC distributions evaluated and an ECV of 0.06 μg/ml for the SYO method. It is 259 

noteworthy than an ECV of 0.25 μg/ml was the endpoint previously proposed for the CLSI 260 

method (12), and is advocated by the EUCAST. (http://www.eucast.org/ast_of_fungi/).  261 

 262 

The most frequent resistance mechanisms in A. fumigatus are the modifications in the 263 

azole target enzyme CYP51A (30). The primary role of the ECV is to assist the laboratory in 264 

identifying isolates with phenotypically-expressed acquired resistance mechanisms (6,7,9). 265 

Given that the ECV does not predict response to therapy, a “non-WT may or may not respond to 266 

therapy” with the agent being evaluated, in this particular case, posaconazole (7). For 267 

posaconazole, it is clear that some mutations do not affect the phenotype to the same extent as 268 

that of other triazoles; alternatively, it could be that some mutations might actually be simple 269 

(silent) polymorphisms (30).  270 

 271 
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A total of 355 posaconazole MICs for mutant isolates were collected (Table 3 and Fig. 272 

1). The integration of a tandem repeat of 34pb at the cyp51A promoter, along with a mutation 273 

that produced the substitution of the leucine 98 for a histidine at the Cyp51Ap (TR34/L98H), was 274 

the most frequent cyp51A mutation observed in the strains included in this study (~68%), 275 

followed by the amino substitutions at glycine 54 (G54/E/R/W: 9%) or at methionine 220 276 

(M220/I/R: ~6%). The percentage of TR46/Y121F/T289A mutants among the three methods 277 

was ~6%. Although most cyp51A alterations reduce the susceptibility phenotype to itraconazole 278 

(MICs >8 μg/ml), there is some selection/specificity regarding their effect on the other triazole 279 

MICs (30). In our study, we observed an overlap between MICs for mutant (e.g., isolates linked 280 

with the following mutations: TR34/L98H, G54E, M220/I/T, G448S, G138C and others) and non-281 

mutant isolates, that is MICs <0.25 μg/ml by the three methods (Table 1 and Table 3). A similar 282 

overlap is also reported in other studies, not only for posaconazole, but with voriconazole and to 283 

a lesser amount with itraconazole by both reference methods (MIC ranges for cyp51A  mutants: 284 

0.06->8 μg/ml), while MICs for non-mutants could have data points above the ECVs for these 285 

three agents (0.06->8 μg/ml) (13,31-34).    286 

 287 

Another reason for proposing the lower ECOFFinder ECVs of 0.25 μg/ml (also the same 288 

with the derivatization method) is that selecting the lower percentage of the modelled MIC 289 

distribution should increase the probability that the ECV would capture a higher proportion of 290 

mutants (9). If the objective is to enhance the detection of likely cyp51a mutants in particular, 291 

then based on the current data, a CLSI-based ECV of 0.5 μg/ml would misclassify 1.8% of non-292 

mutants as non-wild type, and 70.1% of mutants as wild type, compared to 5.8% and 25.2% 293 

respectively if the ECV is set at 0.25 μg/ml. Lowering the ECV even further would increase the 294 

likelihood of capturing mutants, but at the risk of greatly increasing the number of wild type 295 

isolates that would be misclassified and subjected to more complex mutation testing. 296 

  297 

In conclusion, our abundant aggregated posaconazole MIC data for A. fumigatus SC 298 

from multiple laboratories and published studies provided a unique opportunity to examine the 299 

major overlap in MICs between mutants and non-mutants; it also demonstrated that there is 300 

some degree of interlaboratory variability (e.g., aberrant distributions, especially among MICs 301 

determined by the SYO method). The CLSI 97.5% ECOFFinder ECV and all NRI endpoints of 302 

0.5 μg/ml are too high if the main aim is to identify isolates with cyp51A mutations regardless of 303 

their phenotype. The observed overlap between MICs for non-mutant and mutant isolates was 304 

more evident with the ECVs of 0.5 μg/ml (higher number of posaconazole MICs <0.5 μg/ml for 305 
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WT isolates). Therefore, although some overlap is still present, the lower posaconazole 306 

ECOFFinder ECV of 0.25 μg/ml for CLSI, EUCAST and Etest methods could be more clinically 307 

relevant; this value has been previously proposed for both reference methods. While we are 308 

proposing a tentative ECOFFinder SYO ECV of 0.06 μg/ml, the evaluation of the SYO MIC 309 

distributions from individual laboratories indicated that this method yields less reliable and much 310 

lower MICs than those by the reference methods, possibly due to different MIC determination 311 

criteria used by the laboratories. At this stage, the SYO method should probably not be used for 312 

routine testing in the clinical laboratory for this species/agent combination.  313 

 314 

MATERIALS AND METHODS 315 

 316 

Isolates: The isolates evaluated were recovered from deep infections, sterile and other 317 

sites (mostly [>90%] bronchoalveolar lavage fluids, sputum, and other respiratory related clinical 318 

specimens) at the following medical centers: VCU Medical Center, Richmond, VA, USA; 319 

Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 320 

Majadahonda, Madrid, Spain; Hôpital Européen Georges Pompidou, Paris, France; Laboratorio 321 

de Micología y Diagnóstico Molecular-Facultad de Bioquímica y Ciencias Biológicas-322 

Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y 323 

Tecnológicas (CONICET), CCT, Santa Fe, Argentina; Servicio de Microbiología Clínica y 324 

Enfermedades Infecciosas-VIH, Hospital General Universitario Gregorio Marañon, and Instituto 325 

de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; National Mycology Reference 326 

Centre, SA Pathology, Adelaide, Australia; Servicio de Microbiología, Hospital Universitario 327 

Central de Asturias, Asturias, Spain; Institute of Microbiology, Università Cattolica del Sacro 328 

Cuore, Rome, Italy; Département de Bactériologie Virologie Hygiène Mycologie Parasitologie, 329 

Créteil, France; Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana 330 

Cayetano Heredia, Lima, Peru; Department of Medical Microbiology, Postgraduate Institute of 331 

Medical Education & Research, Chandigarh, India; Department of Medical Mycology, 332 

Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; Klinisk mikrobiologi, 333 

Karolinska, Universitetlaboratoriet, Karolinska, Universitetssjukhuset, Stockholm, Sweden; 334 

Instituto Nacional de Enfermedades Infecciosas “Dr. C. G. Malbrán”, Buenos Aires, Argentina; 335 

Universidad Autonóma de Nuevo León, Monterrey, Nuevo León, México; Mycology Unit Medical 336 

School, Universitat Rovira i Virgili, Reus, Spain; Mycology Reference Laboratory, Public Health 337 

England, Bristol, UK; Public Health Ontario, Ontario, Canada; National Mycology Reference 338 

Centre, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 339 
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Innsbruck, Austria; Universidad de Córdoba, H. G. U. Reina Sofía, Córdoba, Spain; Hospital 340 

Valme, Seville, Spain; Universidade Federal de São Paulo, Laboratório Especial de Micologia, 341 

São Paulo, Brazil; University of Iowa College of Medicine, Iowa City, Iowa, USA and the 342 

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.  343 

 344 

Posaconazole MICs were collected for a total of 5,276 A. fumigatus complex isolates. 345 

The number of non-mutant MICs in each distribution were as follows: CLSI MICs for 2,223 346 

isolates from 13 participant laboratories and two previous studies (13,24); EUCAST MICs for 347 

556 isolates from five participant centers and one prior study (25); Etest MICs for 1,365 isolates 348 

from 7 laboratories and one prior study (21) and SYO MICs for 381 isolates from three 349 

participant laboratories. In addition, we pooled CLSI, EUCAST and Etest MICs for 274, 52, and 350 

29 (respectively) well-characterized mutant isolates (harboring cyp51A gene mechanisms of 351 

resistance, e.g., TR34/L98H, TR46/ Y121F/T289A and others from both participant laboratories 352 

and former studies) (13,21,24,25). CLSI posaconazole MICs also were collected for 55 A. 353 

lentulus and 21 A. udagawae isolates from three laboratories. The isolates were identified at 354 

each medical center by conventional and molecular methodologies that included macro- and 355 

microscopic morphology, thermotolerance (incubation at 50°C), MALDI-TOF and β-tubulin and 356 

calmodulin sequencing (29,30). Since molecular identification was not performed for all the 357 

isolates evaluated in the present study, we listed the non-mutant isolates in Tables 1, and 2 and 358 

Figure 1 as A. fumigatus SC. The percentage of A. fumigatus SC versus A. fumigatus SS is 359 

provided above; most of the mutant isolates were identified in the individual laboratories 360 

submitting data at the level of A. fumigatus SS; the exceptions were 10 mutants among the 361 

Etest data. Those isolates suspected of harboring cyp51a mutations were screened in the 362 

individual laboratories submitting data using published protocols (30). 363 

 364 

At least one of following quality control (QC) isolates: C. parapsilosis ATCC 22019, C. 365 

krusei ATCC 6258 and Paecilomyces variottii ATCC MYA-3630 and/or reference isolates A. 366 

fumigatus ATCC MYA-3626 and A. flavus ATCC MYA-204304 were evaluated by the different 367 

methods in each of the participant laboratories (10,11,15,17). 368 

 369 

Antifungal susceptibility testing. Posaconazole MICs were obtained by the four 370 

antifungal susceptibility methods by following the specific testing conditions as per answers to 371 

the survey described below (10,11,15,17): the CLSI M38-A2 broth microdilution method (1–5 × 372 

104 CFU/ml inoculum suspensions, RPMI 1640 medium [0.2% dextrose]) and the EUCAST 373 
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broth microdilution method (1–5 x 105 CFU/ml inoculum suspensions, RPMI 1640 medium [2% 374 

dextrose]). MICs by the two reference methods were determined after 48 h of incubation at 375 

35ºC (first well showing complete inhibition of growth or optically clear). The Etest MICs were 376 

determined as per manufacturer’s guidelines and the MIC was the lowest drug concentration at 377 

which the border of the growth-free elliptical inhibition intercepted the scale on the antifungal 378 

strip, after 24 and mostly 48 h of incubation and the SYO MICs by the manufacturer’s 379 

guidelines, the SYO MIC was the first blue well after 48 h. Other specific details, including data 380 

for QC isolates, have been discussed above.  381 

 382 

Definitions. The following definitions have been widely described elsewhere as well as 383 

above (6,7,28). The ECV is the highest MIC/MEC distribution of the WT population and is 384 

established by using reliable MIC/MEC distributions from at least three laboratories. A non-WT 385 

organism usually shows reduced susceptibility to the agent being evaluated compared to the 386 

WT (no phenotypic resistance) population. In addition to MIC distributions, the ECV calculation 387 

takes into account each laboratory distribution mode, the inherent variability of the test (usually 388 

within one doubling dilution), and that the ECV should encompass 95 to 97% of isolates. Most 389 

published ECVs are based on reference MIC distributions, and ECVs based on other methods 390 

could be different. We used the same criteria and requirements for establishing proposed CLSI 391 

EUCAST, Etest and SYO method-dependent ECVs. 392 

 393 

Surveys. As mentioned above, to investigate the possible causes of modal variability, 394 

the 26 participant laboratories providing the different sets of MIC data (Table 1) responded to 395 

specific parameters for each method. Overall the questions were: (i) was the medium 396 

formulation as indicated for each method; (ii) were the MICs always read at the optimal 397 

incubation and time for each method and (iii) what was the growth inhibition criteria used to 398 

determine MICs for each method? 399 

 400 
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Table 1. Pooled posaconazole MIC distributions of Aspergillus fumigatus SC from between 3 and 15 laboratories determined by four 
susceptibility methods1. 
 

Type of 
MIC distribution 
and method

3,4
 

No. labs No. 
isolates 

No. of isolates with MIC (µg/ml) of:
2
 

<0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 >16 

CLSI  
Non-mutants 15 2,223 39 332 597 762 365 89 26 5 2 2 4 
Mutants 6 274 1 3 3 5 57 123 51 16 3 1 11 
Merged data 15 2497 40 335 600 767 422 212 77 21 5 3 15 

 
EUCAST  
Non-mutants 6 556 7 60 195 214 73 7      
Mutants 6 52  1  1 10 12 16 5 1 0 6 
Merged data 6 608 7 61 195 215 83 19 16 5 1 0 6 

 
Etest  
Non-mutants 8 1,365 56 105 529 572 75 14 5 6 1 0 2 
Mutants 5 29     2 2 6 8 2 1 8 
Merged data 8 1,394 56 105 529 572 77 16 11 14 3 1 10 

 
SYO 3 381 134 157 45 20 11 7 4 2 0 0 1 

 
  
               
               

1
Posaconazole MICs were obtained by following both CLSI and EUCAST reference microdilution methods as well as the commercial Etest 

agar diffusion and SYO broth dilution colorimetric assays (10,11,14,16,17).  
2
The highest number in each row (showing the most frequently obtained MIC or the mode) is indicated in boldface. 

3
WT:

 
Pooled posaconazole MICs for non-mutants; Mutants: pooled posaconazole MICs for isolates harboring cyp51A gene mutations; 

Merged data: aggregated posaconazole MIC distributions for non-mutants and mutants.
 

4
Among the WT isolates, 58%, 33% and 29% MICs were for A. fumigatus sensu stricto (SS) by the CLSI, Etest and SYO methods, 

respectively. All EUCAST data were for A. fumigatus SS isolates.  
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Table 2. ECVs by two analytical techniques for A. fumigatus SC 
based on MICs determined by four susceptibility testing methods 
and originating from 3 and 15 laboratories. 

 

 
 

Distribution 
and method1  

 
 
 

No. isolates 

ECV calculations by:2 
ECOFFinder NRI 

 
≥ 95/97.5% 

 
≥ 95/97.5% 

CLSI  
Non-mutants 2,223 0.25/0.5 0.5/0.5 
Merged data 2,497 0.5/0.5 0.5/0.5 
    
EUCAST  
Non-mutants 556 0.25/0.25 0.5/0.5 
Merged data 608 0.25/0.25 0.5/0.5 
    
Etest  
Non-mutants 1,365 0.25/0.25 0.5/0.5 
Merged data 1,394 0.25/0.25 0.5/0.5 

SYO  
Unknown 
mutant status 

381 0.06/0.06 0.12/0.12 

1
WT: Pooled posaconazole MICs for non-mutant isolates; Merged data: 

aggregated posaconazole MIC distributions for mutants and non-mutants. 
2
ECVs comprising >95% and > 97.5% of the statistically modeled 

population by ECOFFinder and NRI calculations and based on MICs 
determined by four susceptibility methods (9-11,14,16,17,26). 
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Table 3. Posaconazole MICs for 355 Aspergillus fumigatus SS cyp51 Mutants as Determined by Three Susceptibility Methods1 
 

Mutation2 Method MIC (µg/mL) 

  0.016 0.03 0.06 0.125 0.25 0.5 1 2 4 8 >=16 Totals 

TR34/L98H CLSI 1 1 0 3 53 109 30 8 1  0 206 

 EUCAST     4 10 5 4   1 24 

 Etest      1 2 5 1  4 13 

G54E/R/W CLSI     1 6 2 5   7 21 

 EUCAST      1  1   4 6 

 Etest        1 1  3 5 

TR46/Y121F CLSI      1 7 1    9 

 EUCAST     1  9     10 

 Etest       1     1 

M220I/R/V/K CLSI   1  2 3 4 1   2 13 

 EUCAST     1  1    1 3 

 Etest     1   1  1 1 4 

G448S CLSI    1   5     6 

 EUCAST    1 4       5 

 Etest     1 1 3     5 

G138C CLSI   1      2 1 1 5 

 EUCAST         1   1 

 Etest            0 

Other2 CLSI  2 1 1 1 4 3 1   1 14 

 EUCAST  1    1 1     3 

 Etest        1    1 
1
MICs determined by the CLSI M38-A, EUCAST and Etest methods (10,11,17).  The postulated ECV is 0.25 µg/ml 

2
Includes F219I, 1301T, M172, P216L, Y431, TR34/L98H+M172V, unknown; (most common G54E, M220I); mutant data from study laboratories 

and previous studies (13,21,24,25)  
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Fig. 1. Posaconazole MIC distributions for mutant (clear section of the bar) and non-mutant isolates of A. fumigatus SC (isolates 

harboring cyp51A mutations bold section of the bar) by three susceptibility methods showing the MIC overlap between both MIC 

distributions. The number of non-mutant isolates by each MIC concentration is above the corresponding bar. 

 

 

0 
0 

1 

0 

1 

10 

12 16 
5 1 0 6 0 

0

50

100

150

200

250

N
u

m
b

e
r 

o
f 

st
ra

in
s 

MIC (mg/L) 

EUCAST method 

No Mutants

 on F
ebruary 15, 2018 by U

niversiteitsbibliotheek U
trecht

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/

