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ABSTRACT
Let μ be a non-negative Ahlfors n-dimensional measure on R

d . In
this context we shall consider convolution type operators Tα f = Kα ∗
f , 0 < α < n, where the kernels Kα are supposed to satisfy certain
size and regularity conditions. We prove Welland’s type inequali-
ties for the operator Tα and its commutator [b, Tα ], with b ∈ BMO,
that include the case Tα = Iα . As far as we know both estimates are
new even in the case of the Lebesgue measure. We shall also give
sufficient conditions on a pair of weights that guarantee the bound-
edness of [b, Tα ] between two different weighted Lebesgue spaces
when the underlying measure is Ahlfors n-dimensional.
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1. Introduction and statements of themain results

In many applications in Harmonic Analysis, it is well known that certain inequalities relat-

Q1

ing different operators are important tools in order to derive some continuity properties
of them. Moreover it results interesting to find extensions of these inequalities to other
frameworks, which leads to a deep knowledge of the behaviour of the operator considered.
A very useful example is the Welland inequality that involves two important operators
such that the fractional maximal operator and the fractional integral operator, defined, for
0 < α < d, by

Mαf (x) = sup
B�x

|B|α/d−1
∫
B
|f (x)| dx and Iαf (x) =

∫
Rd

f (x)
|x − y|d−α

dy,

respectively. Concretely, this inequality establishes that, if 0 < ε < min{α, d − α}, then
|Iαf (x)| ≤ (Mα−ε f (x)Mα+ε f (x))1/2.

Thus, by the boundedness properties ofMα we can derive boundedness results for Iα .
On the other hand it is well known the influence of the study of the continuity properties

of the commutators of singular and fractional operators in partial differential equations,
which allow us to obtain integrability properties of the derivatives of the solutions related
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2 G. PRADOLINI AND J. RECCHI

[1–5]. This fact leads to the study of the boundedness of the commutators of integral oper-
ators of fractional type in different contexts and sometimes it involves the study of the
maximal operators that govern the behaviour of them, which are fractional maximal oper-
ators associated to a Young function of L log L type. This control appears not only bymeans
of the norm in the space where these operators act (see, e.g. [6–9]), but also by means of
pointwise inequalities between them [10–13]. Is it this last point where we are interested
in, that is relate the commutator of fractional type operators with maximal operators via
a point-wise inequality and, particularly, it would be interesting to find a Welland type
inequality relating both operators. As far as we know there is no such an estimate so, in
this paper, we shall try to obtain one.

There is a wide class of operator of fractional type Tα which are the convolution with a
kernel satisfying certain size and regularity conditions (see below). These operators were
introduced in [14] and appear in connection with the ergodic theory. They generalize the
fractional integral associated to a multipliers [15] and fractional integrals whose kernels
are associated to a homogeneous function (for more details see [16–18]). The kernels are
less regular than the kernel of the fractional integral operator and the regularity condition
involves Young functions which determine the maximal operators related with them. In
this paper we shall also give a Welland type inequality for the operator Tα which allow
us to give two weighted norm estimates for this operator between Lebesgue spaces with
different integrability. Moreover, and as a consequence, we can derive certainWelland type
inequality for the composition of the sharp maximal operator with the commutator of Tα .
This is a surprising result that can be employed to derive two weighted norm estimates
for the commutator [b,Tα], b ∈ BMO. The techniques used to obtain it are related with
the classical estimates of the sharp maximal function of a commutator in order to reduce
the order of this last operator and then use an induction argument to derive continuity
properties. But at this point we are not interested in reducing the order but we want to
obtain maximal operators which govern the behaviour of [b,Tα]. Then, the Welland type
inequality for Tα plays an important role.

Throughout this paper we shall also be considering the Euclidean context R
d pro-

vided with a non-negative Ahlfors n-dimensional measure μ, that is, a Borel measure
satisfying

c1l(Q)n ≤ μ(Q) ≤ c2l(Q)n (1.1)

for some positive constants c1 and c2 and for any cube Q ⊂ R
d with sides parallel to the

coordinate axes, where l(Q) stands for the side length of Q and n is a fixed real number
such that 0 < n ≤ d. Besides, for r>0, rQ will mean the cube with the same centre as Q
and with l(rQ) = rl(Q).

Given 0 < α < n, the fractional maximal function is defined by

Mαf (x) = sup
Q�x

1
μ(Q)1−α/n

∫
Q

|f (y)| dμ(y).

When α = 0, we writeM0 = M to denote the Hardy–Littlewoodmaximal function with
respect to measure μ.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 3

Given a Young function A, we define LAμ(Rd) as the set of all measurable functions f for
which there exists a positive number λ such that∫

Rd
A
( |f (x)|

λ

)
dμ(x) < ∞.

The fractional type maximal operator associated to a Young function A and measure μ

is defined by

Mα,A(f )(x) = sup
Q�x

μ(Q)α/n‖f ‖A,Q, 0 ≤ α < n,

where, for a cube Q,

‖f ‖A,Q = inf{λ > 0 :
1

μ(Q)

∫
Q
A
( |f (x)|

λ

)
dμ(x) ≤ 1}

is the Luxemburg type average associated to μ. When A(t) = tq, with 1 ≤ q < ∞, then
‖f ‖A,Q = ((1/μ(Q))

∫
Q |f |q dμ)1/q. When α = 0, we writeM0,A = MA.

In this paper, we shall consider convolution type operators Tαf = Kα ∗ f , 0 < α < n,
where the kernels Kα are supposed to satisfy conditions that ensure certain control on
their size and their smoothness. From now on, we adopt the following convention: |x| ∼ s
will stand for the set {s < |x| ≤ 2s} and, for a Young function �, ‖f ‖�,|x|∼s will stand for
‖fχ|x|∼s‖�,B(0,2s).

Definition 1.1: Let B be a Young function and let 0 < α < n. The kernel Kα is said to
satisfy the Sα,B condition, and we denote Kα ∈ Sα,B, if there exists a positive constant C
such that

‖Kα‖B,|x|∼s ≤ Csα−n. (1.2)

When α = 0 we simply write S0,B = SB and when B(t) = t we write Sα,B = Sα .
It is easy to see that, if Kα ∈ Sα,B then the operator Tα is well defined for example for

L∞
c functions. On the other hand, if Kα satisfies condition Sα,B then

‖Kα‖B,Bs ≤ C sα−n,

where Bs denotes a ball of radius s.

Definition 1.2: Let B be a Young function. We say that the kernel Kα satisfies the Lα,B-
Hörmander condition, and we write K ∈ Hα,B, if there exist c ≥ 1 and C>0 (depending
on B and k) such that for all y ∈ R

n and R > c|y|,
∞∑

m=1
(2mR)n−αm‖Kα(. − y) − Kα(.)‖B,|x|∼2mR ≤ C. (1.3)

The operators above are controlled, in some sense, for maximal type operators associ-
ated to the Young function B. For more information see [14].

The following condition is related to the classical Lipschitz condition.
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4 G. PRADOLINI AND J. RECCHI

Definition 1.3: The kernel Kα is said to satisfy theH∗
α,∞ condition if there exist c ≥ 1 and

C>0 such that

|Kα(x − y) − Kα(x)| ≤ C
|y|

|x|n+1−α
, |x| > c|y|.

It is easy to see that H∗
α,∞ ⊂ Hα,B for every Young function B.

Given b ∈ L1loc(R
n), the commutator of Tα is defined by

[b,Tα] f (x) =
∫

Rd

(
b(x) − b(y)

)
Kα(x − y)f (y) dy.

We shall be concerned with commutators with symbols belonging to BMO. A locally
integrable functions b is said to belong to BMO if

‖b‖BMO = sup
Q

1
μ(Q)

∫
Q

|b(x) − bQ| dμ(x) < ∞,

where the supremum is taken over all cubes Q ⊂ R
d and bQ denotes the average of b over

Q.
The following two theorems give Welland’s type inequalities for the operator Tα , that

includes the case Tα = Iα , and for the commutators of Tα , respectively. As far as we know
this last estimate is new even in the case of the Lebesgue measure and Tα = Iα .

We will denote T � H when there exists a constant c such that T ≤ c H.

Theorem 1.4 (Welland type inequality): Let 0 < α < n and Tα be a convolution operator
with kernel Kα such that Kα ∈ Sα,B. Let A, B and C Young functions such that A−1B−1 �
C−1, then

|Tαf (x)| ≤ C(n,α, ε)(Mα+ε,Af (x)Mα−ε,Af (x))1/2,

for almost every x, where 0 < ε < min{α, n − α}.

Remark 1.1: It is important to note that, when Tα = Iα , the hypothesis Kα ∈ Sα,B in the
theorem above is superfluous any Young function C is needed. Thus the theorem holds
with A(t) = t, as it was proved in [11].

Remark 1.2: When C(t) = t and Kα ∈ Sα,B then we have that

|Tαf (x)| ≤ C(n,α, ε)
(Mα+ε,B̃f (x)Mα−ε,B̃f (x)

)1/2 ,
where B̃ is the conjugate function of B. In [14] it was shown that the maximal operators in
the inequality above are precisely those that control Tα .

The sharp maximal function of f is defined by

M�f (x) = sup
x∈Q

inf
a∈R

1
μ(Q)

∫
Q

|f (y) − a| dμ(y).

We will use M�
δ(f ) to denote M�(|f |δ)1/δ . We use the sharp maximal operator defined

above to obtain the Welland type estimate involving the commutator of Tα .
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Theorem 1.5: Let Tα be a convolution operator with kernel Kα , 0 < α < n and b ∈ BMO.
Let A and B be Young functions such that A−1B−1 � t/ log(e + t) and such that A(t)/tn/α
is quasi-decreasing and A(t)/tn/α → 0 as t → ∞. Assume also that there exists 1 ≤ r <

n/α such that A(t)/tr is quasi-decreasing. Then, if Kα ∈ Sα,B ∩ Hα,B, there exists a positive
constant C such that

M�
δ([b,Tα]f )(x) ≤ C‖b‖BMO(Mα+ε,Af (x)Mα−ε,Af (x))1/2,

for almost every x, where 0 < ε < min{α, n − α}.

Remark 1.3: The functionA(t) = (t log(e + t))β with β < n/α satisfies the hypothesis of
the previous theorem.

It is easy to see that if Kα ∈ H∗
α,∞ then Theorem 1.5 holds. Particularly, if Tα = Iα , we

obtain the following corollary.

Corollary 1.6: Let A(t) = t log(e + t) and let μ be an Ahlfors n-dimensional measure.
Given 0 < α < n, b ∈ BMO and a non-negative function f, there exists a constant C such
that

M�
δ([b, Iα]f (x) ≤ C‖b‖BMO(Mα+ε,L log Lf (x)Mα−ε,L log Lf (x))1/2, (1.4)

for almost every x, where 0 < ε < min{α, n − α}.

In the classical Lebesgue context it is well known that the commutator above is con-
trolled, in some sense, for fractional type maximal operators associated to the Young func-
tion A(t) = t log(e + t). Thus, this corollary is another way of control for commutators
with this type of maximal operator.

Before introducing the next result we give some previous definitions and examples.
A doubling Young function B satisfies the Bp condition, 1 < p < ∞, if there is a positive

constant c such that ∫ ∞

c

B(t)
tp

dt
t

< ∞.

For more information [see, 19].

Definition 1.7: A Young function A belongs to the class Lpo,p
α if it satisfies the following

properties:

(i) Aq0/p0 ∈ Bq0 for some 1 < p0 ≤ n/α and 1/q0 = 1/p0 − α/n,
(ii) There exist two Young functions φ and ϕ such that ϕ−1(t)tα/n � A−1(t) �

φ−1(t)tα/n,
(iii) There exist two Young functions H and J such that H−1J−1 � A−1 with J ∈ Bp.

Definition 1.8: A Young function A belongs to the class Lpo,p
α,L log L if A ∈ Lpo,p

α and there
exists a Young function B such that A−1B−1 � t/ log(e + t).

We now give some examples of functions A belonging to the class Lpo,p
α,L log L.
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Example 1.9: Let 1 < p < ∞, 0 < α < n and let A(t) = tr, 1 < r < min{p, po, n/α}.
Then φ(t) = ϕ(t) = trn/(n−αr) and H(t) = trs/s−r with J(t) = ts ∈ Bp, r< s<p satisfies
(ii) and (iii), respectively. By the hypothesis on r, i) is also verified. On the other hand,
if we take B(t) = (t log(e + t))r′ then A = tr belongs to Lpo,p

α,L log L.

Example 1.10: The function A(t) = (t log(e + t))r, 1 < r < min{p, po, n/α} satisfies (i),
as it can be easily proved.Moreover, property (ii) is true by takingφ(t) = ϕ(t) = (t log(e +
t))rn/(n−αr) and (iii) holds by considering H(t) = (t log(e + t))rs/s−r and J(t) = ts ∈ Bp
with r< s<p. Finally, the function B(t) = tr′ allows us to say that A ∈ Lpo,p

α,L log L.

Example 1.11: Let A(t) = tr(log(e + t))γ , r �= γ , 1 < r < min{p, po, n/α} and 0 < γ <

n. It easy to see that (i) is true. Taking φ(t) = ϕ(t) = trn/(n−αr) log(e + t)γ n/n−αr, A satis-
fies (ii). Moreover, ifH(t) = trs/s−r log(e + t)γ s/s−r and J(t) = ts ∈ Bp, r< s<p, then (iii)
is satisfied. On the other hand, the Young function

B(t) =
(

t
log(e + t)γ /n

)r′

allows us to say that A ∈ Lpo,p
α,L log L.

Theorem1.5 is an important tool in order to obtain the next result, which gives sufficient
conditions on a pair of weights that guarantee the boundedness of [b,Tα] between two
different weighted Lebesgue spaces when the measure involved is Ahlfors n-dimensional.

Theorem 1.12: Let 1 < p < q < ∞, 0 < α < n, 1 < p0 ≤ n/α and let μ be an Ahlfors n-
dimensional measure. Let A be a submultiplicative Young function such that A ∈ Lpo,p

α,L log L.
Let Tα a convolution operator with kernel Kα ∈ Sα,B ∩ Hα,B. If (u, v) is a pair of weights for
which there exists r>1 such that for every cube Q,

μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
u(x)rdμ(x)

)1/rq
‖v−1/p‖H,Q ≤ C

and u ∈ A∞, then for every f ∈ Lpμ(v) and b ∈ BMO, there exists a positive constant C such
that

‖[b,Tα]f ‖Lqμ(u) ≤ C‖b‖BMO‖f ‖Lpμ(v)
.

The functions B and H are given in the definition of the class Lpo,p
α,L log L.

Corollary 1.13: Let Tα a convolution operator with kernel Kα ∈ Sα,B ∩ H∗
α,∞ and the same

hypotheses as in the previous theorem. Then for every f ∈ Lpμ(v) and b ∈ BMO, there exists
a positive constant C such that

‖[b,Tα]f ‖Lqμ(u) ≤ C‖b‖BMO‖f ‖Lpμ(v)
.

Remark 1.4: It is easy to check that the fractional integral operator Iα satisfies the
hypothesis of the previous corollary.
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2. Preliminaries and auxiliary theorems

2.1. Orlicz spaces

A functionB : [0,∞) → [0,∞) is a Young function if it is convex and increasing, ifB(0) =
0 and B(t) → ∞ as t → ∞. We also deal with submultiplicative Young functions, which
means that B(st) ≤ B(s)B(t) for every s, t>0. If B is a submultiplicative Young function, it
follows that B′(t) � B(t)/t for every t>0.

Given a Young function B and a cube Q, we define the Luxemburg average of f on Q
associated to μ by

‖f ‖B,Q = inf
{
λ > 0 :

1
μ(Q)

∫
Q
B
( |f (x)|

λ

)
dμ(x) ≤ 1

}
. (2.1)

The Luxemburg average has two rescaling properties which we will use repeatedly.
Given any Young function A and r>0,

‖f r‖A,Q = ‖f ‖rB,Q,
where B(t) = A(tr). By convexity, if τ > 1, ‖f ‖A,Q ≤ τn‖f ‖A,τQ. The complementary
Young function B̃ of a given Young function B, is defined by

B̃(t) = sup
s>0

{st − B(s)}, t > 0.

It is well known that B and B̃ satisfy the inequality t ≤ B−1(t)B̃−1 ≤ 2t. It is also easy to
check that the following version on the Hölder inequality

1
μ(Q)

∫
Q

|f (x)g(x)| dμ(x) ≤ 2‖f ‖B,Q‖g‖B̃,Q
holds. Moreover, there is a further generalization of the inequality above. If A, B and C are
Young functions such that for every t ≥ t0 > 0,

B−1(t)C−1(t) � A−1(t),

then, the following inequality holds

‖fg‖A,Q ≤ K‖f ‖B,Q‖g‖C,Q. (2.2)

The following theoremalso gives a sufficient condition on the functionB that guarantees
the continuity of the fractional typemaximal operatorMα,B between Lebesgue spaceswith
Ahlfors n-dimensional measure.

The following theorem gives sufficient conditions for strong type inequalities forMα,B.

Theorem2.1 ([20]): Let 1 < p < q < ∞, 0 ≤ α < nand letμ be anAhlfors n-dimensional
measure in R

d. Let A be a submultiplicative Young function such that A ∈ Lpo,p
α and (u, v)

is a pair of weights such that for every cube Q,

μ(Q)α/n−1/pu(Q)1/q‖v−1/p‖H,Q ≤ K

then, there exists a positive constant C such that for every f ∈ Lpμ(v).

‖Mα,A(f )‖Lqμ(u) ≤ C ‖f ‖Lpμ(v)
.

The functions B and H are given in the definition of the class Lpo,p
α,L log L.
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8 G. PRADOLINI AND J. RECCHI

The theorem above was proved in [20] in the more general context of upper Ahlfors
n-dimensional measures, generalizing Theorem 3.1 in [11] which is a special case of this
theorem by considering H(t) = trp′

, J(t) = t(rp′)′ and A(t) = t. Examples 1.9, 1.10, 1.11
given previously satisfies the hypothesis of the theorems above.

Proof of Theorem 1.4: We decompose the operator Tα as follows,

|Tαf (x)| ≤
∫

Rn
|Kα(x − y)||f (y)| dμ(y)

≤
∫
B(x,s)

|Kα(x − y)||f (y)| dμ(y) +
∫

Rn\B(x,s)
|Kα(x − y)||f (y)| dμ(y)

= I + II.

Let Sk(x) := B(x, 2ks) \ B(x, 2k−1s). SinceA−1B−1C̃−1 � t then by the generalized Hölder
inequality ( 2.2) and the condition Sα,B we obtain that

I =
∞∑
k=0

∫
S−k(x)

|Kα(x − y)||f (y)| dμ(y)

=
∞∑
k=0

μ(B(x, 2−ks))
μ(B(x, 2−ks))

∫
S−k(x)

|Kα(x − y)||f (y)| dμ(y)

≤ C
∞∑
k=0

μ(B(x, 2−ks))‖χS−k‖C̃,B(x,2−ks)‖Kα‖B,|x|∼2−k−1s‖f ‖A,B(x,2−ks)

≤ C
∞∑
k=0

μ(B(x, 2−ks))
(
2−k−1s

)α−n ‖f ‖A,B(x,2−ks)

≤ CsεMα−ε,Af (x)
∞∑
k=0

2−kε ≤ CsεMα−ε,Af (x).

In order to estimate II we proceed as follows.

II =
∞∑
k=0

∫
Sk+1(x)

|Kα(x − y)||f (y)| dμ(y)

=
∞∑
k=0

μ(B(x, 2k+1s))
μ(B(x, 2k+1s))

∫
Sk+1(x)

|Kα(x − y)||f (y)| dμ(y)

≤ C
∞∑
k=0

μ(B(x, 2k+1s))‖χSk+1‖C̃,B(x,2k+1s)‖Kα‖B,|x|∼2ks‖f ‖A,B(x,2k+1s)

≤ C
∞∑
k=0

μ(B(x, 2k+1s))
(
2ks
)α−n

μ(B(x, 2k+1s))ε/n−ε/n‖f ‖A,B(x,2k+1s)

≤ Cs−εMα+ε,Af (x)
∞∑
k=0

2−kε ≤ Cs−εMα+ε,Af (x).
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 9

Then, for s>0

|Tαf (x)| ≤ C
(
sεMα−ε,Af (x) + s−εMα+ε,Af (x)

)
and the result can be obtained by minimizing this expression in the variable s. �

The proof the following lemma is similar to the case of the Lebesgue measure.

Lemma 2.2: The following are true:

(1) If f ∈ BMO(μ) then

sup
Q

1
μ(Q)

∫
Q
exp

( |f (x) − fQ|
C‖f ‖BMO

)
dμ(x) < ∞.

(2) Let 0 < p < ∞, there exists a constant Cp such that

sup
Q

(
1

μ(Q)

∫
Q

|f (x) − fQ|p dμ(x)
)1/p

≤ Cp‖f ‖BMO.

Remark 2.1: Note that the inequality from 1. in the previous lemma implies that

‖f − fQ‖expL,Q ≤ C ‖b‖BMO.

The following theorem establishes the relation betweenM andM� and the proof can be
found in [9].

Theorem 2.3: Let 0 < p, δ < ∞ and suppose that u ∈ A∞(Rn,μ). Then there exists a
constant C such that the inequality

‖Mδ(f )‖Lp(u) ≤ C‖M�
δ(f )‖Lp(u)

holds for every function f for which the left-hand side is finite.

Lemma 2.4: Given α, 0 < α < n, let A be a Young function such that A(t)/tn/α is quasi-
decreasing and A(t)/tn/α → 0 as t → ∞. If there exists 1 ≤ r < n/α such that A(t)/tr is
quasi-decreasing, then there exists a positive constant C such that

M (
(Mα,Af )s

) ≤ C(Mα,Af )s

for every 0 < s < rn/(n − α).

When μ is the Lebesgue measure, this theorem was proved in [21].
The proof of Lemma 2.4 requires several lemmas. Throughout this part we will assume

without loss generality that all functions f are non-negative.
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10 G. PRADOLINI AND J. RECCHI

Lemma 2.5: Given α, 0 < α < n, let A be a Young function such that A(t)/tn/α is quasi-
decreasing. Then for every Q and x ∈ Q,

Mα,A(fχQ)(x) ≈ sup
x∈P⊂Q

μ(P)α/n‖f ‖A,P, (2.3)

where P is any cube such that P ⊂ Q.

Proof: Fix a function f. Clearly the supremum on the right-hand side is less than or equal
to the left-hand side, so it will suffice to prove the opposite inequality.

Fix x ∈ Q and a cube P �⊂ Q. There are two cases. If l(P) < l(Q) then by translating P
we can find another cube P′ containing x such that P′ ⊂ Q; Q ∩ P ⊂ Q ∩ P′, and μ(P′) =
cμ(P). But then,

μ(P)α/n‖fχQ‖A,P ≤ C μ(P′)α/n‖f ‖A,P′ ≤ C sup
x∈P⊂Q

μ(P)α/n‖f ‖A,P.

Now suppose l(P) ≥ l(Q). Let s = (l(P)/l(Q))n ≥ 1. Since A(t)/tn/α is quasi-decreasing,
for all λ positive,

1
μ(P)

∫
P
A
(
f (x)χQ

λ

)
dx ≤ C

1
μ(Q)

∫
Q
s−1A

(
f (x)
λ

)
dx ≤ C

1
μ(Q)

∫
Q
A
(
C′f (x)
sα/nλ

)
dx.

Therefore,

μ(P)α/n‖fχQ‖A,P ≤ C s−α/nμ(P)α/n‖f ‖A,Q = C μ(Q)α/n‖f ‖A,Q
≤ C sup

x∈P⊂Q
μ(P)α/n‖fχQ‖A,P.

If we take the supremum over all P we get result. �

Lemma 2.6: Given α, 0 < α < n, and a Young function A, then for every Q and for every
x ∈ Q,

Mα,A(fχRn\3Q)(x) ≈ sup
P:Q⊂P

μ(P)α/n‖fχRn\3Q‖A,P.

Proof: The supremum on the right-hand side is less than or equal to the left-hand side,
so it will suffice to prove the opposite inequality holds up to a constant. Fix x ∈ Q and P0
containing x such that (Rn \ 3Q) ∩ Po �= ∅. Then l(Q) ≤ l(P0) and soQ ⊂ 3P0. Therefore,

μ(P0)α/n‖fχRn\3Q‖A,P0 ≤ C μ(3P0)α/n‖fχRn\3Q‖A,3P0 ≤ C sup
P:Q⊂P

μ(P)α/n‖fχRn\3Q‖A,P.

Taking the supremum over all such cubes P0 yields the desired estimate. �

Lemma 2.7: Given α, 0 < α < n, suppose the Young function A is such that A(t)/tn/α is
quasi-decreasing and A(t)/tn/α → 0 as t → ∞. If supp(f ) ⊂ Q0 for some cube Q0, then
μ(Q)α/n‖f ‖A,Q → 0 as μ(Q) → ∞.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 11

Proof: Since ‖f ‖A,Q ≤ C‖f + χQ0‖A,Q, we may assume without loss of generality that
f (x) ≥ 1. Let ‖f ‖A,Q0 = M; then∫

Q
A
(
f (x)
M

)
dx ≤ μ(Q0) < ∞.

Since supp(f ) ⊂ Q0, it follows that the integrand is in L1.
Fix ε > 0, we need to show that there exists N>0 such that if μ(Q) > N, then

μ(Q)α/n‖f ‖A,Q ≤ ε; to obtain this it suffices to see that

1
μ(Q)

∫
Q
A
(
f (x)μ(Q)α/n

ε

)
dx ≤ 1. (2.4)

Since f (x) ≥ 1 and since A(t)/tn/α is quasi-decreasing, for almost every x ∈ Q0 and for
μ(Q) sufficiently large,

1
μ(Q)

A
(
f (x)μ(Q)α/n

ε

)
≤ C

εn/α
A
(
f (x)
M

)
∈ L1.

Since A(t)/tn/α → 0,

1
μ(Q)

A
(
f (x)μ(Q)α/n

ε

)
= (

ε−1f (x)
)n/α A

(
ε−1f (x)μ(Q)α/n)(

ε−1f (x)μ(Q)α/n
)n/α → 0

as μ(Q) → ∞. Therefore, by the dominated convergence theorem,

1
μ(Q)

∫
Q
A
(
f (x)μ(Q)α/n

ε

)
dx → 0,

so there exists N>0 such that if μ(Q) > N, (2.4) holds. �

Lemma 2.8: Given α, 0 < α < n, let A be a Young function such that A(t)/tn/α is quasi-
decreasing and A(t)/tn/α → 0 as t → ∞. Then there exist constant C, c such that for all
cubes Q with μ(Q) = 1, and every λ > 0,

μ({x ∈ Q : Mα,A(fχQ)(x) > λ})(n−α)/n ≤ C
∫

{x∈Q:f (x)≥λ/c}
A
(
f (x)
λ

)
dμ. (2.5)

Similar results were proved in [7,22].

Proof: Wewill first show thatMα,A(χQ)(x) ≤ C for every x ∈ Q. By Lemma 2.5, it suffices
to show that for all cubes P ⊂ Q,μ(P)α/n‖χQ‖A,P ≤ C. Fix such a P; thenμ(P) ≤ μ(Q) =
1 and by the definition of the norm,

μ(P)α/n‖χQ‖A,P ≤ ‖χQ‖A,P ≤ C.

Now write fχQ as f1 + f2 where f1 = fχ{x∈Q:f≤1}. By the above observation, if
x ∈ Q, Mα,Af1(x) ≤ Mα,A(χQ)(x) ≤ C. By Lemma 2.5 it follows that Mα,Af2(x) ≤
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12 G. PRADOLINI AND J. RECCHI

CMQ
α,Af2(x), where

MQ
α,Af2(x) = sup

x∈P⊂Q
μ(P)α/n‖f2‖A,P.

Therefore, there exists a constant C0 > 0 such that

{x ∈ Q : MA,α(fχQ)(x) > 2C0} ⊂ {x ∈ Q : MA,αf2(x) > C0}
⊂ {x ∈ Q : MQ

A,αf2(x) > 1} = E.

For each x ∈ E, there exists a cube Px ⊂ Q containing x such that μ(Px)α/n‖f2‖A,Px > 1.
By Lemma 2.7, μ(Q)α/n‖f2‖A,Q → 0 as μ(Q) → ∞. Therefore, we can adapt the proof
of the fractional Calderón–Zygmund decomposition in Proposition A.7 in Appendix A in
21] to show that there exist a collection of disjoint dyadic cubes {Pj}j such that l(Pj) ≤ 2,
E ⊂ ∪j3Pj, and μ(Pj)α/n‖f2‖A,Pj > β > 0 for some β < 1.

Since A is convex, for each cube Pj,

1 ≤ 1
μ(Pj)

∫
Pj
A

(
μ(Pj)α/nf2(x)

β

)
dx ≤ C

μ(Pj)1−α/n

∫
Pj
A
(
C′f2(x)

β

)
dx.

Therefore, since A(t)/tn/α is quasi-decreasing and the Pj’s are disjoint,

μ({x ∈ Q : Mα,A(fχQ)(x) > 2C0})(n−α)/n ≤ μ(E)(n−α)/n ≤
∑
j

μ(3Pj)(n−α)/n

≤ C
∑
j

∫
Pj
A
(
C′f2(x)

β

)
dx

≤ C
∫

{x∈Q:f≥1}
A
(
f (x)
2C0

)
dx.

Inequality 2.8 follows by homogeneity, replacing f by 2C0f /λ. �

Proof of Lemma 2.4: We will first show that if Q is a cube such that μ(Q) = 1, then for
any x ∈ Q,

1
μ(Q)

∫
Q
MA,α(fχQ)(x)s dx ≤ C‖f ‖sA,Q. (2.6)

By homogeneity we may assume ‖f ‖A,Q = 1, and so, in particular, that

∫
Q
A
(
f (x)

)
dx = 1

μ(Q)

∫
Q
A
(
f (x)

)
dx ≤ 1.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 13

Therefore, by Lemma 2.8, the fact that A(t)/tn/α is quasi-decreasing and 0 < s <

rn/(n − α),

∫
Q
Mα,A

(
fχQ

)
(x)s dx =

∫ ∞

0
sλsμ

({x ∈ Q : Mα,A(fχQ)(x) > λ}) dλ
λ

≤ cs + C
∫ ∞

c
λs

(∫
Q∩{f≥λ/c}

A
(
f (x)
λ

)
dx

)n/(n−α)
dλ
λ

≤ C + C
∫ ∞

c
λs
(∫

Q

1
λr

A
(
f (x)

)
dx
)n/(n−α) dλ

λ
≤ C.

This yields (2.6).
We will now prove via a homogeneity argument that (2.6) extends to arbitrary cubes:

for all Q,

1
μ(Q)

∫
Q
Mα,A

(
fχQ

)
(x)sdx ≤ C μ(Q)sα/n‖f ‖sA,Q. (2.7)

Fix a cube Q; by translation invariance we may assume without loss of generality that Q
is centred at the origin. Let l = l(Q), and let fl(x) = f (lx). If P is any cube contained in Q
with centre xP, let Pl be the cube centred at xP/lwith side-length l(P)/l. Note that l(Q) = 1
and every cube contained in Ql is of the form Pl for some P ⊂ Q. Therefore, if we make
the change of variables x= ly, we get

μ(P)α/n‖f ‖A,P = μ(P)α/n inf
{
λ > 0 :

1
μ(P)

∫
P
A
(
f (x)
λ

)
dx ≤ 1

}

= lαμ(P)α/n inf
{
λ > 0 :

1
μ(Pl)

∫
Pl
A
(
f (x)
λ

)
dx ≤ 1

}

= lαμ(Pl)α/n‖fl‖A,Pl .

Since x ∈ P if and only if x/l ∈ Pl, this identity combined with Lemma 2.5 shows that
Mα,A(fχQ)(x) ≤ ClαMα,A(flχQl)(x/l). hence, if wemake the change of variables y = x/l,
it follows from (2.6)that

1
μ(Q)

∫
Q
Mα,A

(
fχQ

)
(x)sdx ≤ C lsα

1
μ(Q)

∫
Q
Mα,A

(
flχQl

)
(x/l)s dx

= C lsα
1

μ(Q)

∫
Ql

Mα,A
(
flχQl

)
(y)s dy

≤ Clsα‖fl‖sA,Ql

= Cμ(Q)sα/n‖f ‖sA,Q.
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14 G. PRADOLINI AND J. RECCHI

We can now finish the proof. Fix any cube Q. By (2.7) and Lemma 2.6, for every y ∈ Q,

1
μ(Q)

∫
Q
Mα,Af (x)s dx

≤ C
1

μ(3Q)

∫
3Q

Mα,A
(
fχ3Q

)
(x)s dx + 1

μ(Q)

∫
Q
Mα,A

(
fχRn\3Q

)
(x)s dx

≤ Cμ(3Q)sα/n‖f ‖sA,3Q + C

(
sup

P:Q⊂P
μ(P)α/n‖fχRn\3Q‖A,P

)s

≤ CMα,Af (y)s.

�

3. Proof of themain results

Proof of Theorem 1.5: Decompose f as f1 + f2, where f1 = fχQ∗ , and Q∗ is the cube
centred in x which sides are 2

√
d times larger. Let cQ = (Tα((b − bQ∗)f2))Q. Then, since

[b,Tα]f = [b − bQ∗ ,Tα]f ,

(
1

μ(Q)

∫
Q

|[b,Tα]f (y) − cQ|δ dμ(y)
)1/δ

≤
(

1
μ(Q)

∫
Q

|(b(y) − bQ∗)Tαf (y)|δ dμ(y)
)1/δ

+
(

1
μ(Q)

∫
Q

|Tα[(b(y) − bQ∗)f1](y)|δ dμ(y)
)1/δ

+
(

1
μ(Q)

∫
Q

|Tα[(b(y) − bQ∗)f2](y) − cQ|δ dμ(y)
)1/δ

= I1 + I2 + I3.

For I1, by the Hölder inequality with θ = 1/δ and θ ′ = 1/1 − δ

I1 ≤
(

1
μ(Q)

∫
Q

|b(y) − bQ∗ |δ/(1−δ) dμ(y)
)(1−δ)/δ ( 1

μ(Q)

∫
Q
Tαf (y) dμ(y)

)
.

Hence, by Lemma 2.2(2), and Theorem 1.4 with C(t) = t log(e + t),

I1 ≤ C‖b‖BMO
1

μ(Q)

∫
Q

(Mα+ε,Af (y)Mα−ε,Af (y)
)1/2 dμ(y)

≤ C‖b‖BMO

(
1

μ(Q)

∫
Q
Mα+ε,Af (y) dμ(y)

)1/2 ( 1
μ(Q)

∫
Q
Mα−ε,Af (y) dμ(y)

)1/2
.

By Lemma 2.4 with s=1, we get

I1 ≤ C‖b‖BMO
(Mα+ε,Af (x)Mα−ε,Af (x)

)1/2 .
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 15

In order to estimate the second integral, we use that Kα ∈ Sα,B and A−1B−1C̃−1 < t, to get

I2 =
(

1
μ(Q)

∫
Q

|Tα[(b(y) − bQ∗)f1](y)|δ dμ(y)
)1/δ

≤ 1
μ(Q)

∫
Q

[
μ(Q∗)
μ(Q∗)

∫
Q∗

|Kα(y − z)(b(z) − bQ∗)f (z)| dμ(z)
]
dμ(y)

≤ C
μ(Q∗)
μ(Q)

∫
Q

‖Kα(y − .)‖B,Q∗‖b − bQ∗‖C̃,Q∗‖f ‖A,Q∗ dμ(y)

≤ C ‖b‖BMOMα,Af (x),

where in the last inequality we have used (1) of Lemma 2.2.
We now proceed with the estimate of I3. Let Qk = 2k+1Q∗, Sk+1 = 2k+1Q∗ \ 2kQ∗ and

bk = bQk . By the Hölder inequality and condition Hα,B, we obtain that

I3 ≤ 1
μ(Q)

∫
Q

|Tα[(b(y) − bQ∗)f2](y) − (
Tα((b − bQ∗)f2)

)
Q | dμ(y)

≤ 1
μ(Q)2

∫
Q

∫
Q

∞∑
k=0

∫
Sk+1

|b(w) − bk||f (w)||Kα(y − w)

− Kα(z − w)| dμ(w) dμ(z) dμ(y)

+ 1
μ(Q)2

∫
Q

∫
Q

∞∑
k=0

∫
Sk+1

|bk − bQ∗ ||f (w)||Kα(y − w)

− Kα(z − w)| dμ(w) dμ(z) dμ(y)

≤ ‖b‖BMO

μ(Q)2

∫
Q

∫
Q

∞∑
k=0

μ(Qk)‖f ‖A,Qk‖
(
Kα(y − .) − Kα(z − .)

) ‖B,Sk+1 dμ(z) dμ(y)

+ ‖b‖BMO

μ(Q)2

∫
Q

∫
Q

∞∑
k=0

kμ(Qk)‖f ‖A,Qk‖
(
Kα(y − .) − Kα(z − .)

) ‖B,Sk+1 dμ(z) dμ(y)

≤ ‖b‖BMO

μ(Q)2
Mα,Af (x)

∫
Q

∫
Q

∞∑
k=0

kμ(Qk)
1−α/n‖Kα(. − y) − Kα(.)‖B,Sk+1 dμ(z) dμ(y)

≤ C‖b‖BMOMα,Af (x).

Finally, observe that

μ(Q)α/n‖f ‖A,Q = (
μ(Q)α/n‖f ‖A,Q

)1/2 (
μ(Q)α/n‖f ‖A,Q

)1/2
μ(Q)(ε/n−ε/n)1/2

=
(
μ(Q)(α+ε)/n‖f ‖A,Q

)1/2 (
μ(Q)(α−ε)/n‖f ‖A,Q

)1/2
≤ (Mα+ε,Af (x)

)1/2 (Mα−ε,Af (x)
)1/2 .

�
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Proof of Theorem 1.12: Let f ≥ 0 be a bounded function with compact support. Choose
ε such that

0 < ε < min
{
α, n − α,

n
q
, n
(
1
p

− 1
q

)
,
n
qr′

}
.

Since u ∈ A∞, by Theorem 2.3 applying Theorem 1.5, we obtain that

‖[b,Tα]‖Lq(u) ≤ ‖Mδ([b,Tα])‖Lq(u)
≤ ‖M�

δ([b,Tα])‖Lq(u)

≤ C‖b‖BMO

{∫
Rd

(Mα+ε,Af (x)Mα−ε,Af (x)
)q/2 u(x) dμ(x)

}1/q

≤ C‖b‖BMO

(∫
Rd

F(x)G(x) dμ(x)
)1/q

,

where F(x) = (Mα+ε,Af (x)u(x)1/q)q/2 and G(x) = (Mα−ε,Af (x)u(x)1/q)q/2. Let

1
q+
ε

= 1
q

− ε

n
,

1
q−
ε

= 1
q

+ ε

n
, q+ = 2

q+
ε

q
and q− = 2

q−
ε

q
.

From the way we choose ε, we have

1 < p < q−
ε < q < q+

ε < ∞, 1 < q− < q+ < ∞ and
1
q+ + 1

q− = 1.

Thus we use Hölder’s inequality to get,(∫
Rd

F(x)G(x) dμ(x)
)1/q

≤ ‖F‖1/q
Lq+ (μ)

‖G‖1/q
Lq− (μ)

= ‖Mα+ε,Af ‖1/2
Lq

+
ε (u+)

‖Mα−ε,Af ‖1/2
Lq

−
ε (u−)

,

where u+ = uq+
ε /q and u− = uq−

ε /q. Now, we will see that the pair of weights (u+, v)

satisfies the condition in Theorem 2.1 with 1 < q+
ε /q < r and α replaced by α + ε.

μ(Q)(α+ε)/n−1/pu+(Q)1/q
+
ε ‖v−1/p‖Q,H

= μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
u+ dμ

)1/q+
ε

‖v−1/p‖Q,H

≤ μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
uq

+
ε /q dμ

)1/q+
ε

‖v−1/p‖Q,H

≤ μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
ur dμ

)1/rq
‖v−1/p‖Q,H ≤ C.

Note that in the last inequality we have used the hypothesis on the weights u and v. Then,
Theorem 2.1 implies that

‖Mα+ε,Af ‖Lq+ε (u+)
≤ ‖f ‖Lp(v).
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Now, for the second term it is easy to prove the estimate for the weights, since q−
ε /q < 1 <

r, and

μ(Q)(α−ε)/n−1/pu−(Q)1/q
−
ε ‖v−1/p‖Q,H

= μ(Q)1/q+α/n−1/p
(

1
μ(Q)

∫
Q
u− dμ

)1/q−
ε

‖v−1/p‖Q,H

= μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
u

q−ε
q dμ

)q/qq−
ε

‖v−1/p‖Q,H

≤ μ(Q)(1/q+α/n−1/p)
(

1
μ(Q)

∫
Q
ur dμ

)1/rq
‖v−1/p‖Q,H ≤ C.

In this way, the pair of weights (u−, v) verifies the condition with 1 < p < q−
ε < ∞ and

α − ε. By Theorem 2.1,

‖Mα−ε,Af ‖Lq−ε (u−)
≤ ‖f ‖Lp(v).

Then (∫
Rd

F(x)G(x) dμ(x)
)1/q

≤ C‖f ‖Lp(v).

�
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