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1. Introduction

The 6th International Symposium on Andean Geodynamics (ISAG)
was held in Barcelona on September 12–14, 2005. Like previous
editions, it provided an opportunity to some 250 scientists frommost
fields of the Earth Sciences to expose and discuss recent progresses in
the understanding of the Andes. As much as 218 communications
were presented (abstracts can be downloaded from http://irdal.ird.fr/
article.php3?id_article=1575), manifesting that the interest of the
geoscientific community for this outstanding orogen is not only high,
but also growing. This interest has been furthermore illustrated by the
recent publication of three books, respectively edited by Kay and
Ramos (2006), Oncken et al. (2007), and Moreno and Gibbons (2007),
that bring together many noteworthy contributions.

The prefaces to the Tectonophysics special issues published as
sequels to the Oxford 1993 ISAG (Dewey and Lamb, 1996), Göttingen
1999 ISAG (Jaillard et al., 2002), and Toulouse 2002 ISAG (Gerbault and
Hérail, 2005), reviewed the concepts, models and issues prevailing
about the Andes. In the last years some views have started to evolve
under the growing perception and concern that current models do not
always reflect reality satisfactorily, especially in the Central Andes
(e.g., Sempere, 2000; Wörner and Seyfried, 2001; Sempere et al.,
2004; Hartley, 2005; Garzione et al., 2006; Sempere and Jacay, 2006,
2007). This situation somehow makes that some shifts in the
dominant paradigm, which for this region is best illustrated by
Isacks's (1988) landmark paper, have to be expected in the forth-
coming years. We therefore take the opportunity to briefly review
here some selected issues that are emerging—cautioning that topics
dealt with and references mentioned below are by no way exhaustive,
much more being available in the papers and books cited herein.

2. Gradients and segmentation along the Andes

The Andes have long been viewed as a prime example of an orogen
produced by subduction of an oceanic plate beneath a continental
margin. However, the tectonic and magmatic evolution of this
outstanding mountain belt is still rather far from being satisfactorily
understood. In particular, it has become increasingly evident that the
Andes actually consist of contrasted segments that have been shaped
by specific sets of processes and have therefore undergone dissimilar
evolutions (e.g., Jordan et al., 1983; Kley et al., 1999). The reasons for
these differences are only partially identified at the present time.

The first-order genetic distinction separates the Northern Andes,
which basically extend north of the Gulf of Guayaquil, from the rest of
the Cordillera (Fig. 1). Unlike the Central and Southern Andes, which
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were built along the active continental margin of western South
America since at least Early Mesozoic times, the evolution of the
Northern Andes has been dominated since the Late Cretaceous by the
major, protracted, collisional to transpressional deformation produced
by the eastward motion of the Caribbean–Colombian Oceanic Plateau
(CCOP) against northwestern South America. The evolution of the
Central and Southern Andes, in contrast, has apparently developed in
a “pure” ocean–continent subduction setting, i.e. without collisional
processes involving either another continental mass or an oceanic
plateau. Although some authors described the Central Andean
mountain build-up as the result of an “ocean–continent collision”
(e.g., Russo and Silver, 1996; Yuan et al., 2000), this concept is arguable
and debated by Andean geoscientists, in particular because the crustal
thickness and buoyancy of the downgoing oceanic plate is signifi-
cantly lower than that of a continental mass or oceanic plateau.

An intriguing and long-known paradox is that the crustal thickness
in the Central Andes, in spite of an orogenic evolution devoid of
collisions, reaches values similar to those in the Himalayas–Tibet,
which were indeed achieved through continent–continent collision.
This apparent similarity inmaximum crustal thickness has affected for
several decades our scientific thinking about the processes that result
in crustal thickening, tending to emphasize observations and inter-
pretations common to the Andes and Himalayas (see examples in
Gerbault and Hérail, 2005), and thus to envisage the Andes as another,
albeit particular, case of “collisional” orogen. A further apparent
paradox, however, may be discerned in the fact that the orogenic
volume produced by ~80 Myr-long collision-related tectonics in the
Northern Andes is intriguingly much lower than that in the Central
Andes although these were not affected by true collisional processes
(Fig. 1). Furthermore, the Andean orogenic volume exhibits significant
longitudinal gradients, primarily opposing the Central Andes, where
orogenic volume is highest, and the Southern Andes, where it is
considerably lower, although these segments evolved in a similar
subduction context and grade into each other (Fig. 1). The Central
Andes are in turn segmented by other gradients (see below).

The papers included in this Special Issue relate to the Northern
Andes (3 papers) and Central Andes (10 papers), and we detail
hereafter specific aspects relative to these two segments.

3. Collisional interaction of an oceanic plateau along a continental
margin: the Northern Andes

The Northern Andes have been built along and “around” the
northwestern margin of South America. Their complex structure have
been dealt with by many studies and shown to be related to the
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Fig. 1. Location of study areas of the papers included in this Special Issue. The contrasts
in topography along the orogen are believed to reflect dissimilar geological evolutions
driven by different combinations of tectonic andmagmatic processes of varied ages and
intensities.
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interaction of the Caribbean plate with northwest South America (e.g.,
Pindell and Barrett, 1990; Erlich and Barrett, 1990; Freymueller et al.,
1993; Meschede and Frisch,1998; Lallemant and Sisson, 2005; Montes
et al., 2005). Before orogeny the eastern and western regions of
northwest South America had underwent contrasted evolutions, as
the former first evolved as a passive margin created in the Jurassic by
the separation of North and South America (in fact, West Gondwana),
whereas the latter had functioned as an active margin maintained by
the subduction of Panthalassan (Pacific) oceanic plates beneath the
continent since at least the Paleozoic (e.g., Jaillard et al., 1990, 1995;
Pindell et al., 2005, 2006).

The Caribbean–Colombian oceanic plateau (CCOP) was built on a
Panthalassan oceanic plate starting ~91 Ma, presumably by activity of
the Galapagos hot spot (e.g., Kerr et al., 2002, 2003; Kerr and Tarney,
2005; Luzieux et al., 2006). Driven by plate motions, collision of the
CCOPwith the northwesternmargin of South America began to develop
in the early Campanian (~85–80 Ma: Kerr et al., 2002; Jaillard et al.,
2004; Spikings et al., 2005) or in the late Campanian (~75 Ma: Vallejo
et al., 2006; ~73 Ma: Luzieux et al., 2006). Significant interchanges of
terrestrial biota between North America and South America started in
the Campanian, suggesting that collision had built by ~80–75Ma a land
bridge between the two continentalmasses (Gayet et al.,1992). Collision
produced accretions of oceanic and arc terranes along the Ecuador–
Colombian margin during the Late Cretaceous and Paleogene (McCourt
et al.,1984; Reynaud et al.,1999; Spikings et al., 2001, 2005; Jaillard et al.,
2004; Toro-Álava and Jaillard, 2005) and becamemore tangential as the
CCOPmoved along the northwestmargin of South America. Intense and
long-lasting tectonic interaction of the Caribbean plate (i.e., the
deforming CCOP) along adjacent northwest South America has
produced a variety of deformational features (e.g., Dengo and Covey,
1993; Taboada et al., 2000; Guillier et al., 2001; Gómez et al., 2005),
including compressional to transpressional inversion of ancient exten-
sional structures (e.g., Kellogg and Vega, 1995; Colletta et al., 1997;
Acosta et al., 2004; Mora et al., 2006). The resulting orogenic units,
however, exhibit markedly lower volumes and average elevation than
the Central Andes.

In this issue Schmitz et al. document the variations in crustal
thickness in Venezuela on the basis of deep seismic observations, and
thus provide a major advance in our knowledge of the Venezuelan
segment of the Northern Andes. They show that crustal thickness
overall steadily decreases from ~45 km in the vicinity of the Guyana
Shield to ~35 km on the coast, as expected from the regional
geological history. In addition Schmitz et al.'s (2008-this issue) study
highlights the existence of two anomalous regions: the eastern part of
the Eastern Venezuela Basin is characterized by a crustal thickness up
to 50 km as well as velocity anomalies in the local lower crust, both
resulting from the tectonic interaction of the Caribbean plate with the
continent; in contrast, the crustal thickness beneath the Falcón Basin
of western Venezuela remarkably thins from 35 to 27 km, and this
anomaly extends eastwards into the Bonaire Basin.

Jácome et al. (2008-this issue) complement Schmitz et al.'s study
by providing an integrated seismic, flexural and gravimetric modelling
of the north-central region of Venezuela (Coastal Cordillera thrust belt
and Guárico Basin). They conclude that loading of the South American
lithosphere by the Coastal Cordillera generated the subsidence
observed in the Guárico Basin. Shortening in the Coastal Cordillera
decreases from ~44 km in the west to ~10 km in the east, whereas the
Moho is N35 km-deep there and shallows to ~30 km near the
Caribbean Sea.

The Mérida Andes of western Venezuela are primarily a compres-
sional to transpressional basement uplift, the altitude of which is
locally N5000 m. This mountain belt has grown since the Neogene in
response to the ongoing displacement of the Maracaibo block
relatively to the South American craton, which in turn is produced
by the westward motion of the Caribbean plate (Hervouët et al., 2001,
2005; Audemard and Audemard, 2002; Audemard, 2003; Chacia et al.,
2005; Backé et al., 2006; Duerto et al., 2006). The NE-striking Boconó
fault is a major wrench structure that occurs in the axis of the Mérida
Andes, and its new trench investigation by Audemard et al. (2008-this
issue; Fig. 1) complements previous sismological and paleosismolo-
gical studies in Venezuela (Audemard et al., 1999, 2005; Audemard,
2005). In particular it confirms the Holocene activity of the Boconó
fault at the Apartaderos pull-apart basin, which is bounded by a
northern strand of the fault where earthquakes recur every 1200–
1350 yr and a southern strand where they occur every 400–450 yr. An
older activity is documented by slumping, rotational sliding, and
numerous earthquake-triggered liquefaction features.

4. Collision-free evolution of a major continental arc: the Central
Andes

4.1. Continental arcs

Continental arcs are mountain belts (orogens) typically produced
by the subduction of an oceanic plate beneath a continental margin.
Their build-up evidently involves tectonic and magmatic processes,
but the detailed ranges, interactions and consequences of these two
categories of processes remain a matter of debate. Continental arcs
being one particular class of orogens, a short comparative overview of
orogenic types and processes may be useful to highlight the main
issues typical of the Central Andes.
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The characteristic high topography of continental mountains and
plateaux may result from crustal thickening, which isostatically
increases surface altitudes, and/or from mantle upwelling, which
dynamically uplifts the crust (but does not thicken it). Because most
orogens present a thickened crust, a major current issue in geology
concerns the processes involved in crustal thickening. In the case of
the Andes, high altitudes are believed to be a primary consequence of
a thickened crust, but it has been proposed that lithospheric thinning
(by delamination) and related asthenospheric upwelling have played a
significant role in uplift (Isacks, 1988; Kay and Kay, 1993; Kay et al.,
1994; McQuarrie et al., 2005; Garzione et al., 2006; Molnar and
Garzione, 2007).

The classic type of crustal thickening is illustrated by collisional
orogens, which are produced during continental collision through
the superposition (= “continental subduction”) and/or imbrication
of two crustal masses. Crustal growth and thickening, however, is
also known to develop by magmatic addition above ocean–ocean
and ocean–continent subduction zones, resulting in arc orogens
(oceanic and continental arcs, respectively; Tatsumi and Eggins,
1995; Dimalanta et al., 2002; Turner et al., 2003; Busby, 2004;
Tatsumi, 2005; Tatsumi and Stern, 2006; Kodaira et al., 2007; Lee
et al., 2007).

Because many major orogens (such as the Himalayas, Alps,
Appalachians, Caledonides, Pyrenees, New Zealand Southern Alps,
etc.) have resulted from frontal (Himalayan-type orogens) to tangen-
tial (New Zealand-type orogens) continental collisions and related
tectonic shortening, the currently prevailing view is that collision-like
processes can be generalized to arc orogens. Thus, arc orogens where
some tectonic shortening is observed are sometimes described as
resulting from “ocean–continent collision” (e.g., Russo and Silver,
1996; Yuan et al., 2000, in the case of the Central Andes).

However, magmatism is abundant in arc orogens but only minor
during continental collisions, implying that arc and collisional orogens
should be formally distinguished on this basis, as they are in terms of
metamorphic processes (Ernst, 2005). In the early years of the plate
tectonics paradigm it was proposed that arc orogens are primarily
formed through subduction-related magmatic accretion, and since
then this idea has been abundantly confirmed in island arc contexts
(e.g., Busby, 2004; Tatsumi and Stern, 2006). Crustal growth by
magmatic accretion has also been illustrated at continental arcs (e.g.,
Lee et al., 2007). Although this type of interpretation was initially
applied to the Central Andes (e.g., James, 1971a,b; Thorpe et al., 1981),
it has found limited support since the mid-1980s, mainly because
most authors have concentrated on the existence of tectonic short-
ening in this orogen (see below). However, the hypothesis of Andean
crustal growth by magmatic accretion has not been convincingly
discarded and does remain an interpretative option as well as amatter
of study (e.g., Kono et al., 1989; Rogers and Hawkesworth, 1989;
Sandeman et al., 1995; James and Sacks, 1999; Haschke et al., 2002a;
Haschke and Günther, 2003). Furthermore, the deformational pro-
cesses at depth are known to be decoupled from those observed in the
upper crust, the latter passively following the former (England and
Molnar, 1991). In this light, the possible role of ductile lower crustal
flow in modulating Andean crustal thickness has attracted some
attention since a few years (e.g., Husson and Sempere, 2003; Yang
et al., 2003). The genetic relationships between subduction and non-
collisional crustal thickening thus remain imprecise and controverted;
more work, and in particular more interdisciplinary integration, are
needed to advance this issue.

Arc orogens present two interesting and complementary
aspects. First, they provide a framework to estimate how and how
much extraction and transfer of material from the mantle, as
demonstrated by geochemical studies (e.g., Faure, 2001), participate
in thickening the crust above subduction zones (e.g., Reymer and
Schubert, 1984; Tatsumi and Stern, 2006), and what is the bearing
of this mass transfer on the evolution of the orogen. Second, because
Himalayan-type collisions are also driven by subduction of an oceanic
plate, a continental arc has generally developed before collision along
the margin of one of the colliding continents, resulting in distinct
crustal evolutions and structures of the two continents. Thus a
Himalayan-type orogen is generally preceded by an Andean-type
orogen along the overriding margin of a subduction-driven system
that ultimately results in collision.

A puzzling character of active continental arcs is that they present
a variety of morphological, tectonic, and magmatic features, most
notably along the rim of the Pacific Ocean. The Central Andes, in
particular, profoundly contrast with all other Neogene ocean–
continent subduction orogens on Earth in that their crustal thickness
reaches values comparable to those in the Himalayas–Tibet. The
evident and pronounced dissimilarity between subduction orogens
east and west of the Pacific Ocean has been related to large-scale
mantle dynamics and flow (e.g., Doglioni et al., 1999, 2007) and
subducting slabwidth (Schellart et al., 2007). This intriguing variety of
subduction orogens worldwide makes more crucial the need to better
understand what are the processes and parameters that control
crustal growth and deformation in continental arcs and, in particular,
the Central Andes.

4.2. Anatomy of the Central Andes

As underlined above, the Andes show considerable longitudinal
variations. Its largest and most voluminous segment is formed by the
Central Andes, which transitionally grade to the south into the
Southern Andes, and more rapidly to the north into the Northern
Andes (Fig. 1). It is widely agreed that the Central Andes provide an
extreme recent case of arc orogen, as it is recognized that they have
only been built by tectonic and magmatic processes produced by the
subduction of an oceanic plate beneath western South America. The
Central Andes are characterized by the dominance of protracted
magmatic activity in the west (widely distributed around theWestern
Cordillera, i.e. the arc) and of tectonic shortening in the east (in the
Eastern Cordillera and adjacent areas), with the foreland extending
east of the latter, and the forearc west of the former. As a whole, the
Central Andes form a major segment of continental arc and display
extraordinary characteristics and noteworthy internal longitudinal
gradients.

Variations in orogenic volume make that the ~4000 km-long
Central Andes are in turn segmented into the northern Central Andes
(NCA, 5°30'S–~13°S; entirely located in Peru), the Central Andean
Orocline (CAO, ~13°S–28°S; over southern Peru, Bolivia, northern
Chile, northwestern Argentina), and the southern Central Andes (SCA,
28°S–37°S; over central Chile and west-central Argentina). The CAO
covers an area of ~1,300,000 km2 and its orogenic volume is by far the
largest of the entire Andes. Orogenic volume strikingly decreases
north and south of the CAO (Fig. 1). The transition between the CAO
and NCA is formed by the Abancay deflection, a peculiar sub-segment
where the Andean structural strike exhibits a significant rotation
(Roperch et al., 2006).

The Central Andean Orocline was initially named “Bolivian
Orocline” due to its oceanward concavity and geographic location,
but it largely extends outside Bolivia and is best characterized by its
considerable crustal thickness. In some areas the width of the CAO,
between the subduction trench and the sub-Andean front, is
N850 km, and its crustal thickness is N70 km (Lyon-Caen et al.,
1985; Kono et al., 1989; Beck et al., 1996; Schmitz et al., 1999; Yuan
et al., 2000, 2002). The origin and apparent persistence of such a
crustal thickness in the CAO are intriguing given that the orogen does
not result from continent–continent collision and displays significant
tectonic shortening mainly along its eastern half. The CAO thus
provides the most extreme Neogene case of crustal thickening among
the varied and contrasted segments of arc orogens known along the
Pacific Ocean margins.
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4.3. The Central Andes under the weight of a paradigm

Scientific activity and production take place under the light of
paradigms (Kuhn, 1962) and, evidently, the geosciences make no
exception. Paradigms orient research at all scales and are notoriously
long-lived. Plate tectonics—the paradigm that currently governs our
large-scale understanding of the Earth—was formalized and accepted
by a majority of geoscientists, more than 50 years after Alfred
Wegener's (1915) seminal observations and interpretations, because it
provided a powerful framework to understand and investigate how
our planet has been and is physically evolving. In the case of the
Central Andes, nearly all geoscientific studies conducted since the late
1980s have admitted, explicitly or not, that crustal thickening there
has been primarily achieved through tectonic shortening of the South
American margin, and that magmatic additions to the crust have been
only minor (see references in Dewey and Lamb, 1996; Jaillard et al.,
2002; Gerbault and Hérail, 2005). This dominant large-scale inter-
pretative framework can be termed “the Isacksian paradigm” as it was
first highlighted and formalized in Isacks's (1988) landmark paper.

Within this paradigm, a particular idea operating in the Central
Andes, albeit less distinctly, consists in the belief that significant parts
of the Andean tectonic history was imposed by subduction of specific
features of the subducted plate. In this view prominent aspects of
deformation of the South American margin were somewhat passive
reactions to mechanical strain imposed on it by the subduction of
large objects present on the subducted plate. In the last decade, for
instance, a number of papers have favored the subduction of the Nazca
Ridge as the cause for a variety of Central Andean geological features
thought to be younger than 10 Ma (e.g., Hampel, 2002; Rousse et al.,
2003; Rosenbaum et al., 2005; Espurt et al., 2007). Other features of
the subducting plates have been invoked to explain other aspects of
the Central Andean evolution (e.g., Soler et al., 1989; Yáñez et al., 2001;
van Hunen et al., 2002; Sdrolias and Müller, 2006). The idea that
subduction of large topographic and/or thermal peculiarities carried
by the subducting plate must have imposed specific deformation
along portions of the Andean margin is evidently acceptable, but the
magnitude of the mechanical effects actually produced by such
processes is not always easy to assess.

Scientists have long been searching for relations between features
related to the oceanic plate on one hand (direction and velocity of
convergence, slab dip), and orogenic volume on the other, in the
Central Andes (e.g., Jordan et al., 1983; Reutter et al., 1994; Sandeman
et al., 1995; Lamb et al., 1997; James and Sacks, 1999; Ramos and
Aleman, 2000) and elsewhere. The effects of subduction, however, do
not depend only on characteristics of the subducting plate, but also on
the rheological properties of the mantle on each side of the slab (e.g.,
Russo and Silver, 1996; Heuret et al., 2007; Schellart et al., 2007), on
the heterogeneities of the continental margin, and on the amount and
evolution of the magmas generated in the mantle wedge.

Indeed, aside from the tectonic, i.e. mechanical, interaction of the
converging plates, the other first-order characteristic feature of
subduction zones is the production of a generally abundant arc
magmatism along the margin of the overriding plate. Tectonic and
magmatic processes should therefore be viewed as two related
aspects of one same system. The idea that arc orogens are formed
through magmatic accretion forced by subduction is widely admitted
in island arc contexts (e.g., Tatsumi and Stern, 2006), but has only
received minor attention in the case of the Central Andes (James,
1971a,b; Thorpe et al., 1981; Kono et al., 1989; Rogers and Hawkes-
worth, 1989; James and Sacks, 1999; Haschke et al., 2002a; Haschke
and Günther, 2003)—a situation largely due to the adoption of the
current paradigm in the late 1980s. It is a matter of fact that, since
Isacks (1988), many researchers in the Central Andes have concen-
trated on tectonic shortening.

This orientation has led to a number of dissimilar, purportedly
“balanced” crustal-scale cross-sections obtained by graphic construc-
tion (e.g., Roeder,1988; Sheffels,1990; Schmitz, 1994; Baby et al., 1997;
Kley et al., 1999; McQuarrie, 2002). In the CAO shortening is indeed
evident in the Eastern Cordillera and sub-Andean belt (e.g., Roeder,
1988; Sempere et al., 1990; Sheffels, 1990; Roeder and Chamberlain,
1995), but, at least in southern Peru, it is very limited or even absent in
the western Altiplano, arc and forearc (James, 1971b; Myers, 1975;
Kono et al., 1989; James and Sacks, 1999; Sempere and Jacay, 2006,
2007). The observed crustal thickness cannot be accounted for by the
available tectonic shortening estimates, especially in the arc and
forearc (Schmitz, 1994; Kley and Monaldi, 1998; Giese et al., 1999;
Ramos and Aleman, 2000; Yuan et al., 2000). This lack of surface
evidence for significant shortening in the western half of the Andes
was accommodated in graphic constructions by supposing blind
crustal duplexes (e.g., McQuarrie, 2002) or insertion, at the base of the
crust, of crustal slices tectonically displaced from the western margin
(e.g., Baby et al., 1997; an idea set forth by Rutland, 1971), but no
evidence has been obtained yet for any of such large-scale and
dramatic phenomena. The latter hypothesis is furthermore contra-
dicted by the occurrence of Early Paleozoic arc rocks all along the coast
of southern Peru (e.g., Mukasa and Henry, 1990; Loewy et al., 2004),
and by the well-known limited migrations of the arc during Mesozoic
and Cenozoic times.

The limited Andean-age shortening observed at the surface of the
forearc, arc, and inner backarc of southern Peru provides a major
counterexample against the assumption of an orogenic build-upmostly
driven by “ocean–continent collision”, and has led a handful of authors
to propose that crustal thicknening in the Western Cordillera was
essentially achieved by magmatic additions (e.g., James, 1971b; Kono
et al., 1989; James and Sacks, 1999), representing a net crustal growth at
the arc. This idea is supported by the fact that the isotopic characteristics
of most Andean magmas unambiguously indicate that they largely
consist of material extracted from the mantle (e.g., McNutt et al., 1975;
Harmon et al., 1981; Boily et al., 1989, 1990; Soler and Rotach-Toulhoat,
1990; Parada et al., 1999; Faure, 2001; Kelemen et al., 2004).
Furthermore, I-type magmatism, a typical feature of Andean arc
batholiths (Pitcher et al., 1985), is now understood to result from the
reworking of crustal materials by mantle-derived magmas, and is even
viewed to drive the coupled growth and differentiation of continental
crust (Kemp et al., 2007). Crustal growth rates at arcs are now known to
be at least 40–95 km3/kmMyr, i.e. twice the rates estimated by Reymer
and Schubert (1984), who nevertheless mentioned a few cases with arc
crustal growth rates as high as ~300 km3/kmMyr. Estimated volumes of
volcanic rocks erupted at the surface were invoked to discardmagmatic
addition as a significant cause of crustal thickening (e.g., Francis and
Hawkesworth, 1994), but updated estimates are much higher (de Silva
and Gosnold, 2007); besides, no secure constraints are available on the
ratio of volcanic volumes to total magmatic volumes, and this ratio
might well be anomalously low in the case of thick crusts. Moreover, in
this case, crustal thickening and surface uplift may be enhanced by
further metamorphic processes that decrease the overall density of the
lower crust (e.g., Le Pichon et al., 1997).

At least in the northwestern portion of the CAO, a number of
geophysical and geological data and observations provide further
counterexamples against the idea of crustal thickening by major
horizontal shortening in the Central Andes. In central Peru at 11°–12°S,
the eastern boundary of the Eastern Cordillera is a seismically active
subvertical fault zone that cuts through the lithosphere down to at
least 30 km depth (Dorbath et al., 1986). Seismic tomography also
detects a subvertical lithospheric-scale boundary in the eastern
Altiplano of Bolivia (Dorbath et al., 1993) and in its prolongation, i.e.
along the southwestern edge of the Eastern Cordillera of southern
Peru, the distribution ofmagmatic rocks (Sempere et al., 2004) and the
isotopic geochemistry of mantle-derived rocks (Carlier et al., 2005)
also map a subvertical lithospheric boundary, which coincides at the
surface with a major fault system separating two contrasting orogenic
domains (Sempere and Jacay, 2006, 2007).
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In all fields of science, paradigms are known to deeply influence
interpretations and even observations (Kuhn, 1962). The belief that
the Central Andes originated by tectonic shortening has commonly
biased cartography in this orogen, for instance by forcing high-angle
or poorly-exposed faults to be mapped as reverse faults and thrusts.
Eloquently enough, some same areas have been mapped in drama-
tically different ways by geologists who favored distinct models (see
cases in Sempere, 2000; Wörner and Seyfried, 2001). Extensional
structures have often been overlooked, because they were thought to
be irrelevant in the investigation of Andean orogenic issues. However,
observations and models from a variety of undoubtedly extensional
settings in Europe and Africa have shown that some structural
geometries previously thought to be typical of contractional pro-
cesses, as in the Central Andes, in fact also occur in extensional
contexts, in particular where normal faults were initiated as flexure-
forming blind faults (e.g., Finch et al., 2004). At least in southwestern
Peru, identification and correction of such biases result in major
revisions of structural mapping, and the forearc, arc, and southwest
Altiplano in fact appear to have been dominated by transcurrence
(including transpressional deformation) and extension since ~30 Ma
(Sempere et al., 2004; Sempere and Jacay, 2006, 2007), in contrast
with the northeast Altiplano, Eastern Cordillera, and sub-Andean belt,
where shortening has been indeed significant. Besides, the Pacific
Andean escarpment is the locus of oceanward reverse faulting,
suggesting incipient oceanward gravitational collapse of the Western
Cordillera (Wörner and Seyfried, 2001; Wörner et al., 2002; Sempere
and Jacay, 2006, 2007). Transpressional structures in the forearc, such
as the Cordillera de Domeyko in Northern Chile (e.g., Reutter et al.,
1991; Arriagada et al., 2000, 2003), can only account for relatively
minor shortening and crustal thickening.

If it is confirmed that in the arc region orogeny was concurrent
with extension, and with no or little contraction, it would inevitably
further question the dominant paradigm, and instead support the idea
that crustal thickening in this region was mainly achieved by
magmatic accretion (as advocated by James, 1971b; Kono et al.,
1989; James and Sacks, 1999). The hypothesis of Andean crustal
growth by magmatic accretion at the arc clearly cannot be discarded,
explaining in part the current renewed interest for Andean magmatic
processes and products.

4.4. Magmatism as a window into deep crustal and mantle processes

It is well known that magmatic records provide invaluable
information on deep processes. Andean magmatism can been used
as a probe into the crust and mantle (Kay et al., 1999; Kay and
Mpodozis, 2002) and provides means to peer into the processes
operating at depth (e.g., Bock et al., 2000; Haschke et al., 2002b).
Magmatism is not only one of the two prominent features of the
Central Andes—from which the celebrated andesites received their
names—, but also happens to conveniently sample the Andean crust
(e.g., Wörner et al., 1992; Aitcheson et al., 1995; Mamani et al., 2005).

A zone of low resistivity and seismic velocity indicates that
partially molten rocks occur below a large part of the Altiplano (e.g.,
Schilling et al., 2007), where a 10–4 Ma ignimbritic flare-up is
interpreted to have been produced by the emplacement at depth of a
giant silicic batholith (de Silva and Gosnold, 2007).

Because magmatism provides significant insights into deep crustal
processes and structure, interest for related studies is expected to
increase in the future. Accordingly, the Barcelona 2005 ISAG dedicated
to this topic more than half a day of its oral sessions. In this special
issue, magmatic rocks are used to address tectonic issues in papers by
Vásquez and Franz in Chile, and by Jiménez and López-Velásquez in
Bolivia. In the southernmost Central Andes, Folguera et al. (2008-this
issue) link observations of extensional features with the westward
migration of the arc and related extensive basaltic volcanism that have
taken place since the Pliocene.
4.5. “The Andes before the Andes” as an insight into “Why the Andes?”

It has been long recognized that ancient features of the Andean
lithosphere have deeply influenced actual Andean-age deformation
(e.g., Allmendinger et al., 1983; Sempere et al., 2002) and therefore the
pre-orogenic evolution of the Andes continues to attract attention. It is
particularly intriguing that subduction of Panthalassan oceanic plates
beneath the western margin of South America has been active for
hundreds of millions of years and yet the Andes have formed only
during the last tens. Why apparently did not any orogen of the
magnitude of the present-day CAO form during a long period of
similar geotectonic setting? So why did the Andes form? Answering
such questions would certainly provide valuable insights into how the
Andes formed. A first step toward an answer is to know, as precisely as
possible, when the Andes started to be built, and what were the
chronological steps taken by this build-up. When were high altitudes
acquired? (see below). What was the tectonic context when the build-
up started? What were these contexts during the times where no
significant mountain belt existed? Studying the evolution of the
Andean region before the mountain belt formed is indeed crucial,
because a better knowledge of the main milestones of the Andean
history should shed some light on the processes that built the Andes.

A first caveat should be stated in order to avoid the simplistic
vision of a homogeneous margin that was suddenly submitted to
orogeny. South America, including its western margin, is highly
heterogeneous, consisting of a mosaic of pre-Mesozoic crustal
domains, the geometry and rheology of which have generally had
some significant bearing on Andean-age deformation, even far away
from the Andes proper. This heterogeneity also stems from the fact
that the Andean margin was submitted to a number of deforma-
tional episodes in the Proterozoic, Paleozoic, and Early Mesozoic
(e.g., Mégard, 1978; Kay et al., 1989; Pankhurst and Rapela, 1998).
Considerable progress has been recently obtained on the Middle
Proterozoic to Early Mesozoic history of Peru, for instance (e.g.,
Loewy et al., 2004; Mišković et al., 2005; Chew et al., 2007).

Between 22°S and 52°S, in particular, the western margin of what
is now South America underwent a complex history. Successive
Andean-type continental arcs developed along the Panthalassan
margin of western Gondwana, and “normal” to shallow subduction
periods can be distinguished based on the contrasted extents of the
coeval volcanic arcs (Ramos and Folguera, 2007). The closure of
Neoproterozoic to Early Paleozoic backarc basins generated deforma-
tional belts along this margin (Astini and Dávila, 2004; Escayola et al.,
2007; Mulcahy et al., 2007). From Late Proterozoic to Paleozoic times,
a number of collisional belts formed in response to the accretion of
exotic and parautochthonous terranes, the basement of which consists
of Mesoproterozoic (Pampia, Cuyania, Chilenia) and Late Neoproter-
ozoic–earliest Paleozoic (northern Patagonia) metamorphic rocks
(Ramos, 1989, 2004; Rapela et al., 1998; Chernicoff and Zapettini,
2004; Pankhurst et al., 2006). This complex evolution resulted in a
rheologically anisotropic basement that underwent mainly exten-
sional to transtensional deformation from the Late Paleozoic to the
Cretaceous. Ramos and Kay (1991) and Ramos et al. (2002) evidenced
the role of Neoproterozoic–Early Paleozoic sutures in the develop-
ment of Late Triassic rifts, whereas Schmidt et al. (1995) discussed the
influence of such heterogeneities in the formation of Early Cretaceous
basins between 27° and 33°S. In the same area, Fernández-Seveso and
Tankard (1995) explained the formation of Late Paleozoic transten-
sional basins by reactivations of those lithospheric discontinuities.
Similarly, Mosquera and Ramos (2006) related Late Triassic–Early
Jurassic extensional basins to the collapse of the Early Permian
Patagonian suture around 39°S (von Gosen, 2003).

Such extensional detachments and other heterogeneities provided
potential décollements for most of the Andean fold-and-thrust belts
between 25°S and 52°S, largely influencing the post-Early Cretaceous
deformation geometry (Cristallini and Ramos, 2000; Kley et al., 2005;
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Zapata and Folguera, 2005; Giambiagi et al., 2008-this issue). In
particular, Andean shortening has easily propagated into thick
Paleozoic sedimentary wedges that had accumulated in coeval
foreland basins (e.g., the sub-Andean Belt at 17°–25°S, and the
Precordillera system at 27°–32°S; Allmendinger et al., 1997; Cingolani
et al., 2003; Astini and Dávila, 2004; Alonso et al., 2005). Conversely,
the paleotectonic boundaries of these basins have resisted the
propagation of Andean thin-skinned deformation, as is the case in
the Santa Bárbara system and northern Sierras Pampeanas around
26°S in Northwest Argentina.

Based on a 450 km-long magnetotelluric profile at ~31°30'S in
central Argentina, Favetto et al. (2008-this issue) identify the
Cambrian-age suture between the ~2.3–2.1 Ga-old Río de la Plata
craton in the east and the younger Pampean terrane in the west,
unraveling at this latitude the deep structure of the South American
basement east of the Andes. They show that this 500 Ma-old suture
coincides with the eastern limit of the Sierra Chica de Córdoba, an
Andean-age basement uplift (Ramos et al., 2002) and thus confirm
that ancient structures are prone to reactivation, playing prominent
roles in concentrating subsequent deformation.

Vásquez and Franz's (2008-this issue) study of the Cobquecura
pluton confirms that present-day central Chile was the locus of
anorogenic-type (A-type) magmatism in the Triassic, implying a
coeval post-orogenic and/or extensional setting (Eby, 1992). The end
of orogenic developments is known to involve not only erosion and
transcurrent to extensional tectonic regimes (related to gravitational
collapse of the overthickened crust and/or delamination of the
lithosphere), but also emplacement of voluminous igneous formations
(Bonin, 2004). The Triassic anorogenic magmatism documented in
central Chile was most likely related to the major Choiyoi magmatism
that developed at the end of the regional Late Paleozoic orogeny (Kay
et al., 1989).

Jiménez and López-Velásquez (2008-this issue) review the known
occurrences of Phanerozoic magmatic rocks in the Huarina belt of
Bolivia, a tectono-stratigraphic unit that extends along the western
Eastern Cordillera and in the southern Altiplano, and includes
numerous tin deposits. Geophysical and isotopic data suggest that
the Huarina belt was formed along a major, lithospheric-scale,
weakness zone that separated three basement blocks and was
probably inherited from the Proterozoic history. Most of the
Phanerozoic backarc magmatism in the Bolivian Andes occurred
along this belt, reflecting the permanence of this basement hetero-
geneity, which in particular controlled Mesozoic rifting processes
(Sempere et al., 2002).When Cenozoic shortening gradually thickened
the lithosphere, delamination of its denser and less viscous root was
induced, which in turn produced mantle-derived magmas that
generated and interacted with crustal melts and gave rise to the
dominantly peraluminous magmas characteristic of the area.

Knowledge of the pre-Andean history thus also provides insights
for the understanding of regional to local expressions of Andean-age
tectonics. Inherited crustal heterogeneities are major features con-
trolling the location, geometry and style of deformation in the entire
Andes. At all scales, deformation was influenced by features ranging
from regional paleotectonic and paleogeographic features to the
simple presence of potential décollements in a sedimentary pile
submitted to deformation (Jaillard et al., 2002). Many examples of
compressional reactivation of extensional structures have been
illustrated (e.g., Uliana et al., 1995; Kley et al., 2005). In this issue,
more cases are documented by Carrera and Muñoz and by Giambiagi
et al.

The stratigraphy and deformation of the many foreland basins of
the Andes have provided invaluable information on Andean growth. In
Peru and Bolivia, stratigraphic studies have long detected that some
western relief emerged in Late Cretaceous times (e.g., Mégard, 1978),
and the birth of some proto-Andes has been more precisely dated to
near the Turonian–Coniacian transition (~90–89 Ma; Jaillard, 1994;
Sempere, 1994; Jaillard and Soler, 1996), i.e. to more than 10 Myr after
the final separation of South America from Africa. In central Argentina,
the Andean foreland basin was created somewhat earlier, at some
time during the 120–95 Ma interval, presumably in response to
growing proto-Andes in the west (Orts and Ramos, 2006). At 45°–
46°S, most contractional structures are unconformably post-dated by
110 Ma-old volcanic rocks (Folguera and Iannizzotto, 2004). At 39°–
37°S dikes dated to 105–100 Ma post-date western compressional
structures (Zamora-Valcarce et al., 2006). The foreland basin turned
markedly continental during the Late Cretaceous, starting before
88 Ma (Corbella et al., 2004). At ~37°S a Late Cretaceous pulse of
exhumation was initiated at ~80–70 Ma (Burns et al., 2006; Kay et al.,
2006). Between 38° and 39°S, orogenic reliefs in thewesternmost part
of the basin are post-dated by 75–65 Ma-old volcanic rocks (Franchini
et al., 2003).

4.6. Tectonic processes along the eastern side of the Andes: the backarc
and foreland

A large part of the abundant literature concerning the backarc and
foreland of the Andes was reviewed by Jaillard et al. (2002) and
Gerbault and Hérail (2005). From a structural point of view, the
backarc usually consists of an east-verging fold-and-thrust-belt (e.g.,
Allmendinger et al., 1983; Roeder and Chamberlain, 1995), which is
generally the case in the sub-Andean zones, but the vergence, amount
of shortening and style of deformation commonly vary along strike
(e.g., Jordan et al., 1983; Kley et al., 1999). Foreland evolution depends
on the flexural subsidence generated by the growing orogen, and on
the sediment supply provided by its erosion. Other important factors
are deformation styles in the orogen, large-scale thermal processes,
climate (governing relief dissection), sediment transport and drainage
patterns (e.g., Masek et al., 1994), eustatic sea-level changes, or any
combination of these (Jaillard et al., 2002). Stratigraphic character-
istics of the foreland infill indirectly inform on the nearby orogenic
development.

In the Central Andes, shortening is generally well expressed in the
backarc, especially in the Eastern Cordillera and sub-Andean belt
(and longitudinal equivalents), but extensional phenomena are also
increasingly being described at least in specific areas (e.g., Folguera
et al., 2008-this issue). It is common that shortening has propagated
by inversion of pre-existent extensional structures. One eloquent case
is that of the Eastern Cordillera of central and southern Bolivia, where
tectonic vergence is typically to the west in its western half, and to the
east in its eastern half (e.g., McQuarrie, 2002), an enigmatic geometry
that has been explained by the reactivation of a Mesozoic rift structure
located in the axis of the cordillera (Sempere et al., 2002).

In this issue, the eastward propagation of Andean deformation is
addressed by Carrera and Muñoz (2008-this issue) through a study of
Cenozoic growth strata and unconformities in the southern Cordillera
Oriental of northern Argentina (25°30'S). They constrain the ages of
the local structures and the timing of deformation propagation,
highlighting that thrusting resulted largely from inversion of Cretac-
eous extensional faults (Carrera et al., 2006). Thrust propagation rates
culminated in the Late Miocene–Early Pliocene and Quaternary.

About 1000 km more to the south, the Malargüe fold-and-thrust
belt (34°–36°S, Argentina) formed during the Neogene by shortening
of part of the Mesozoic Neuquén basin. On the basis of detailed
structural data and new 39Ar/40Ar datations, Giambiagi et al. (2008-
this issue) show that, contrary to prevalent models, deformation
propagated from the foreland to the hinterland, and that inversion of
normal faults involving the basement was coeval with insertion of
shallow detachments and low-angle thrusts. Coeval activities of
shallow and deep detachments produced simultaneous thrusting
during complex deformation at the thrust front between 15 and 8 Ma.

The shallow subduction that characterized the southernmost
Central Andes (35°–37°30'S) from 13 to 5 Ma forced the arc to migrate
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toward the foreland and produced shortening more than 550 km east
of the trench (Ramos and Folguera, 2005). Subduction shifted back to a
more classical, steeper geometry at 5 Ma and the arc front re-
established in its current western position (Muñoz and Stern, 1988;
Kay et al., 2006). Based on detailed mapping and seismic, gravity, and
geochronologic data, Folguera et al. (2008-this issue) show that this
steepening of the slab had a number of consequences in the local
backarc: widespread flows of intra-plate basalts piled up into a
plateau in the eastern foreland, and between the latter and the arc
front a major tectonic trough formed, controlling the emplacement of
crustal and primarymantle-derivedmelts. Themain episode of crustal
collapse developed during the 1.7–0.7 Ma interval, and has lingered to
the present. A similar evolution is documented at 46–48°S (Lagabrielle
et al., 2007).

4.7. Tectonic processes along the western side of the Andes: the forearc

The forearc is a key feature of the entire Andes, but its structure
and characteristics vary considerably along strike. It is currently
attracting much attention, and more than half a day was dedicated to
this topic at the Barcelona 2005 ISAG. The Andean forearc is
notoriously dominated by extension, especially in its westernmost
parts, where subsidence is classically interpreted to result from
tectonic erosion beneath themargin (e.g., von Huene and Scholl, 1991;
von Huene et al., 1999; von Huene and Ranero, 2003; Clift and Hartley,
2007). A possible link between subduction seismicity and eustatic
changes has been recently proposed (Bourgois et al., 2007).

The variety of forearc structures and deformation along the Andes
was reviewed in earlier prefaces (e.g., Jaillard et al., 2002). Deforma-
tional structures may be parallel, orthogonal, or oblique to the trench.
Aside from extensional features, transpressional and compressional
deformations and related basins have been described (e.g., Hartley
et al., 2000; González et al., 2003, 2006; Victor et al., 2004; Mpodozis
et al., 2005). Regional surface tilting has been suggested (e.g., Isacks,
1988) as well as the occurrence of gravitational tectonics (e.g., von
Huene et al., 1999; Wörner and Seyfried, 2001; Wörner et al., 2002).

Climate is notoriously semi-arid to hyperarid along the Central
Andean forearc, a common feature of western regions of continents, at
these latitudes, that was enhanced by the rain shadow effect imposed
by the growing Andes (e.g., Houston and Hartley, 2003; Dunai et al.,
2005; Quang et al., 2005). Interaction of climate and orogeny has
grown to a major research issue (e.g., Masek et al., 1994; Avouac and
Burov, 1996; Pinter and Brandon, 1997; Willet, 1999). The idea that in
orogens erosion and sedimentation have a significant bearing on
tectonics has been applied to the Andean backarc and foreland (e.g.,
Montgomery et al., 2001; Thomson et al., 2001; Thomson, 2002), and
more western regions (e.g., Sobel et al., 2003). Lamb and Davis (2003)
even proposed that climate, through the processes of erosion and
sediment deposition, has ultimately controlled the growth of the
Central Andes by causing plate boundary stresses to increase where
sediment starvation occurs in the trench; this interpretation, however,
has been challenged (Hartley, 2005).

The issue of the respective roles of climate and tectonics is
addressed by Nalpas et al. (2008-this issue), who use sedimentologic
and tectonic observations and geochronologic data to investigate the
Atacama Gravels, an extensive blanket of Miocene continental
deposits that fill a Neogene paleo-valley system at ~26°30'S in
northern Chile. Deposition of this unit began at about the Oligocene–
Miocene boundary and ceased in the Late Miocene, and occurred in
environments ranging from proximal alluvial fan to playa-lake.
Because no synsedimentary deformation is observed, the Miocene
change from semi-arid to hyper-arid climatic conditions appears to
have been the dominant factor controlling sediment preservation.

Following theMw=8.4 earthquake that propagated from NW to SE
along the forearc of southern Peru on June 23, 2001, Audin et al. (2008-
this issue) map and characterize active faults in the Ilo area (~17°30'–
17°45'S). The overall characteristics of the 2001 earthquake, the
subsequent seismic events, and the Quaternary activity of the coastal
faults suggest that both plates are strongly coupled, that the
subduction plane in southern Peru is segmented, and that this
segmentation may be imposed by the continental plate structure
itself, which thus may have some control on the rupture pattern of
major subduction earthquakes along southern Peru.

The geomorphology of the Andean forearc has historically been
viewed as an old remnant of a late Miocene planar landscape with no
significant active structures accommodating Quaternary deformation.
Applying cosmogenic isotope techniques to geomorphologic observa-
tions, Hall et al. (2008-this issue) study a well-preserved sequence of
planation surfaces and strath terraces developed in the forearc of
southern Peru, as well as abrupt changes in topography and drainage
incision, and demonstrate that this region has undergone deformation
and uplift in the Quaternary, in contrast with previous interpretations
favoring that abandonment of these surfaces resulted from Late
Miocene uplift. Using in-situ-produced 10Be, they date pediment
surfaces between ~1003 and ~119 ka, and estimate incision rates to
have ranged between 0.04 and 0.3 mm/yr. Active deformation within
the forearc highlights a sharp contrast in deformation style between
the eastern and western margins of the Andes.

Contardo et al. (2008-this issue) describe the development of
Quaternary forearc marine basins offshore Central Chile (33°30'–
36°50'S) through a study of high-resolution seismic-reflection
profiles. The middle and upper slope of this accretionary margin is
characterized by half-grabens that are filled by three distinctive
sequences of Middle Pleistocene to Holocene ages. Their deposition
and deformation suggest alternating episodes of compression and/or
transpression, relative stability, and extension, that were induced by
the subduction context. Large-scale mass transfer processes are also
documented. Positive flower structures indicate current transpres-
sional activity associated with tectonic inversion and differential uplift
of the accretionary prism. Slope deformation and tilting are likely to
be driven by basal accretion of large volumes of underplated sediment
underneath the forearc, depending on the climate-controlled volume
of sediments available at the trench and on the basal properties of the
prism.

4.8. When did the Andes become the Andes? The Andean paleoaltitude
issue

Although a large amount of work has been performed in the
Central Andes during the last decades, the chronology of crustal
thickening and related uplift remains debated. For instance, in the
CAO, onset of the main orogeny in the Eastern Cordillera has been
estimated at ages as contrasted as ~26 Ma (Sempere et al., 1990) and
~40 Ma (Lamb and Davis, 2003). According to fission-track analyses,
uplift in the CAO seems to have slowly started about 46 Ma (Anders
et al., 2002), and exhumation rates in the Eastern Cordillera near La
Paz, Bolivia, would have increased at ~25±5 Ma (Kennan, 2000) or
~15–10 Ma (Masek et al., 1994). Several sets of paleoaltitudes
estimates are now available (e.g., Ghosh et al., 2006; Garzione et al.,
2006, 2007; Quade et al., 2007). Andean uplift has thus become an
intensely debated issue since a few years, and half a day of the oral
sessions of the Barcelona 2005 ISAG was dedicated to this topic only.
Although a general picture is somehow emerging, more independent
data are needed in order to solve current discrepancies.

Andean uplift is being investigated from different approaches.
While estimation and timing of rock uplift and exhumation are
addressed by thermochronologic methods, the amount and timing of
surface uplift, i.e. the increase in elevation of the local Earth's surface,
require paleoaltitude estimates.

Such estimates were initially drawn from the analysis of fossil leaf
morphology: according to this method, a locality of the western
Bolivian Altiplano, close to southern Peru and now at 3.94 km
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elevation, was only at 1.16±0.6 km at 10.7Ma (Gregory-Wodzicki et al.,
1998; Gregory-Wodzicki, 2000, 2002). Kowalski (2002) however
showed that, at least in Bolivia and East Asia, the current leaf
morphology method systematically underestimates altitudes when
these are high (as it overestimates MATs, by as much as 15 °C) because
applying equations generated from forests in North America to
unrelated forests is inaccurate. Low Late Miocene paleoaltitudes
estimated by fossil leaf morphology in the CAO are therefore likely to
be underestimations.

On the basis of measurements of, respectively, δ18O and 13C–18O
binding rates in paleosol carbonate nodules, the central Altiplano was
reconstructed to have been before 10.3 Ma between 0.4 and 2.2 km
(Garzione et al., 2007, correcting estimates by Garzione et al., 2006) or,
more precisely, between 0.4 and 0.8 km (Quade et al., 2007, correcting
estimates by Ghosh et al. 2006); and after 6.8 Ma between 4.0 and
4.7 km (Garzione et al., 2007) or between 2.9 and 3.7 km (Quade et al.,
2007), depending on the method used. The accuracy of initial
(uncorrected), lower estimates by Ghosh et al. (2006) and Garzione
et al. (2006) was questioned, respectively, by Sempere et al. (2006;
reply by Eiler et al., 2006) and Hartley et al. (2007; reply by Garzione
et al., 2007) because they were in apparent contradiction with the
geological record. The few paleoaltimetric results favoring that the
Central Andes were at low elevations before ~10 Ma thus appear to
need confirmation, or, in any case, the upper end of uncertainty
intervals might provide preferable estimates.

In fact most studies favor that Andean uplift started in the Eocene
or Oligocene, but many do recognize a subsequent resumption of
uplift starting in the Late Miocene. Gillis et al. (2006) identified two
phases of rapid cooling from 45–40 Ma to 26 Ma and from ~11 Ma
onward. Also in Bolivia, similar conclusions are reached by Barnes et
al. (2006): initial rapid erosion of the plateaumargin took place during
the ~40–25 Ma interval and has been followed by widespread
accelerated erosion since ~15 Ma. In the southern Altiplano of Bolivia,
Ege et al. (2007) recognized that a major, plateau-wide exhumation
developed in the Early Oligocene (33–27 Ma). Based on geomorpho-
logic observations, Sébrier et al. (1988) concluded that the Andes of
southern Peru were ≥2.0 km-high at ~20–17 Ma. In the Pacific Andean
slope of southernmost Peru, regional uplift triggered incision of deep
valleys into a thick, 23–18 Ma old, ignimbrite blanket shortly after the
end of emplacement of these ignimbrites, thus starting ~18–17 Ma
(Flores and Sempere, 2002). Surfaces in the Atacama Desert, Northern
Chile, have been barely affected by erosion since 25 Ma, as
documented by cosmogenic 21Ne measurements in exposed clasts,
and are the oldest known continuously exposed surfaces on Earth
(Dunai et al., 2005); although climate in western South America have
been somewhat arid since at least the Late Cretaceous (e.g., Sempere
et al., 1997; Quang et al., 2005), hyperarid conditions were required to
preserve such surfaces and are likely to have been enhanced at this
latitude by a significant uplift of the Andes at that time. A variety of
independent methods and studies thus apparently agree to place in
the Oligocene–Early Miocene interval the culmination of a first
significant uplift period, and thus of one major episode of crustal
thickening.

Several works, however, coincide in placing at about 10–9 Ma the
onset of a second major episode of uplift (e.g., Ghosh et al., 2006;
Garzione et al., 2006; Barke and Lamb, 2006; Schildgen et al., 2007;
Thouret et al., 2007). A distal, Atlantic, sedimentary record of Andean
erosion identified a significant increase in Andean-derived detrital
material at ~10–9 Ma (Dobson et al., 2001). In southern Peru, canyons
incising the Pacific slope of the Andes had reached their current depth
by ~4 Ma, were filled by volcanic products by the earliest Quaternary,
and were subsequently re-incised (Thouret et al., 2007). Erosion has
been dominant in the Pacific slope of southernmost Peru since 2.7 Ma
(Flores and Sempere, 2002).

The picture that is thus emerging is one of a mountain building
achieved in two steps, the first slowly developing from the mid-
Eocene and reaching an acme in the Late Oligocene and EarlyMiocene,
and a later, apparently vigorous step starting at ~10–9Ma and possibly
lingering into the Pliocene and/or Present.

5. Concluding remarks

Perhaps onemajor point to emphasize about the Andes is that their
contrasted segmentation reflects that they have been built by a variety
of processes which have differed along and across strike in nature,
time, and intensity. It is now particularly evident that nearly every
Andean geological feature varies along and across strike, and that
conclusions reached in one area can rarely be generalized to other
regions. Andean studies may therefore have entered a new period, as
more modern methods are employed, more specific cases are
documented, more interdisciplinary works are conducted, more
comparisons are performed with other orogens worldwide, and
more discrepancies appear and need to be resolved. As a consequence
current concepts can be re-evaluated at all scales, making possible in
the future to lift the weight of the current paradigm.

The Central Andes contrast with the Northern Andes in that their
history has been devoid of truely collisional phenomena, and with the
Southern Andes in that ocean–continent subduction has built consider-
able orogenic volume in the former, with crustal thickness reaching
values currently known only in theHimalayas and Tibet. Because no real
consensus exists yet, as indicated by the many ongoing debates, the
genesis of the Central Andes remains somewhat enigmatic.

For many decades geoscientific research in the Andes has produced
an impressive wealth of data, but, as described by Kuhn (1962) for all
sciences, production of knowledge has been often oriented by the
dominant paradigms, namely by the concept of “Andean tectonic
phases” (Steinmann, 1929) until the mid-1980s, and by the Isacksian
paradigm since then. Progress may therefore be expected from the
confrontation of counterexamples with relevant aspects of the current
paradigm, and by resolving present discrepancies through the obtention
of modern, independent data and their intellectual articulation with
older reliable data. There is little doubt that interdisciplinaryapproaches
will be increasingly conducted within frameworks where tectonic and
magmatic processes are envisioned as two complementary aspects of
one orogenic system through time. It is likely that integration of
interdisciplinary data and results will lead to original conclusions about
processes of crustal thickening and growth in continental arcs, and shall
improve ourunderstandingof the lithospheric processes that determine
the evolution of basins, deformation, and magmatism observed in the
upper crust of these orogens.
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