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a b s t r a c t

A novel numerical model based on solid deformation is presented in this paper. This thermo-mechanical
model can simulate the tectonic evolution of crust and (lithospheric and asthenospheric) mantle under
different conditions. Our implementation uses the finite element method (FEM) in order to solve the
equations. As a Lagrangian approach is employed, remeshing techniques are implemented to avoid dis-
tortion problems when a certain deformation threshold is reached. The translation of the state between
the old and new mesh is achieved by means of the information stored on Lagrangian particles, which
minimizes the diffusion. The model is able to represent elastic, viscous and plastic behaviour inside the
studied domain. Three types of creep mechanism (diffusion, dislocation and Peierls) are included. Two
different quadrilateral isoparametric elements were implemented and can be employed to perform the
calculations. The first one is an element with 4 nodes, selective reduced integration and a stabilization
operator to diminish hourglass modes, which reduces the computational time needed. The second one
has 8 nodes located in standard positions, uses full integration scheme and has no hourglass modes as it
satisfies the Inf-Sup condition. Several test cases with known solutions were run to validate the different
aspects of the implementation.

© 2009 Elsevier Ltd. All rights reserved.

1. Context and purpose of this model

In the last two decades, the development of models to reproduce
the processes related to plate tectonics became a powerful tool to
achieve a detailed understanding of geodynamics.

On one hand, the deformation and evolution of the uppermost
continental crust have been analyzed with satisfactory results by
means of a lot of different techniques (see for instance Cristallini and
Allmendinger, 2001; Strayer and Suppe, 2002). This type of mod-
elling has an advantage associated with the possibility to compare
the results with analog models or field observations.

On the other hand, orogen or regional scale modeling should be
constrained with other type of evidence, usually less trustworthy.
As analog models are sometimes difficult to scale in order to repro-
duce the processes that occur at a depth of hundreds of kilometers,
where the pressure and temperature conditions play an important
role, the numerical approach becomes one of the best options for
this type of research.
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Many important contributions were developed in the last
years in the geodynamic community. Several researchers proposed
variations of the model developed by Fullsack (1995) (see for
instanceWillett, 1999; Pysklywec, 2001; Quinteros et al., 2006;
Gerya and Yuen, 2007), which is based mainly on fluid dynamics
equations as an analogy to model the behaviour of the crust. How-
ever, new models tend to be based on equations that describe the
behaviour of solids (Popov et al., 2008). The complexity of these
models will be directly related to the number of processes they sim-
ulate and the necessary precision in the discretization to capture the
solution.

In this paper we present a numerical tool that provides an alter-
native finite element method optimized to solve new crust–mantle
geodynamic problems similar to the approach proposed by Popov et
al. (2008). To achieve this, the thermo-mechanical model includes
the main laws that describe the deformation of solids in the domain
to be modelled. Rheology is considered to be elasto-visco-plastic
with three different types of creep mechanism (diffusion, dislo-
cation and Peierls) and Mohr–Coulomb plasticity. Our interest is
focused on dynamic deformation occurring on lithosphere, with a
special interest in topography evolution and processes that require
a good degree of strain localization to be properly simulated. Basi-
cally, geodynamic processes that can be simulated in 2D plane strain
state.

0264-3707/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
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The existence of a free stress surface (topography) in the domain
was one of the reasons to adopt an Arbitrary-Lagrangian–Eulerian
approach (e.g. Fullsack, 1995; Willett, 1999; Pysklywec and
Beaumont, 2004 instead of a pure Eulerian one (e.g. Gerya and
Yuen, 2003; Braun et al., 2008). A Lagrangian mesh can track the
evolution of the domain and handle more consistently boundary
conditions applied to parts of the domain that can suffer displace-
ments.

A particle-in-cell method similar to the one implemented by
Gerya and Yuen (2007) or Braun et al. (2008) was included. This set
of moving particles carries all the necessary information to translate
the state of the distorted mesh into a new undeformed one. Here,
particles represent material and are not associated with integration
points like in the implementation of Moresi et al. (2003).

Some previous models have adopted an explicit scheme (e.g.
Babeyko et al., 2002; Gerya and Yuen, 2003; Petrunin and Sobolev,
2006) and, due to this, are restricted in the time step that can apply.
This restriction can become important when trying to reproduce
long-term deformation over a fine mesh.

We adopt a Backward Euler Method (implicit approach), due to
its inherent stability when larger time steps are needed. The reso-
lution of the system of equations is achieved by means of a direct
sparse solver. This can impose some limitation when more than ∼1
million degrees of freedom are used due to the amount of memory
needed at the resolution stage. In cases like this, other techniques
that split the resolution into different levels of detail like the Multi-
grid approach (Moresi et al., 2003) can be more convenient and
should be taken into account in the near future. Our code is able
to handle complex geometries described by a non-uniform mesh,
which makes it suitable to model large domains, with particular
emphasis (higher definition) on regions of interest, and track the
evolution of interfaces between different types of material. How-
ever, at this stage of the development the mesh can be modified to
minimize distortion, but the connectivity remains through all the
simulation. In comparison, other implementations offer adaptive
techniques like Octree (Braun et al., 2008) that are more dynamical
but are restricted to cubic representations and lack of a real free
surface.

We give details about these features in the next sections.

2. Essentials of the numerical model implemented

Different layers of the lithosphere have very different mechani-
cal behaviour, depending basically on their composition, tempera-
ture and pressure conditions. In the upper part of crust, temperature
and pressure are relatively low and that is the main reason why the
mechanical behaviour is driven by friction and fracture sliding. This
type of behaviour is known as “brittle regime” and could be related
to plastic behaviour.

In a deeper region, where pressure and temperature are higher,
the material has a viscous behaviour, typical of the convective
mantle, which is called “ductile regime”. Between these regions
is located the “brittle–ductile transition”, a zone with the highest
component of elastic behaviour. This zone is able to store the stress
related to its load in order to, for example, produce an isostatic
response when the load is reduced or not present anymore.

The numerical model presented is able to predict the thermo-
mechanical behaviour of all the three regimes mentioned, by
simulating the response of crust and lithosphere under different
conditions such as compression, extension or other cases where
only the isostatic compensation is the triggering cause.

2.1. Principal equations

We describe in this section the principal equations and consti-
tutive relationship that were implemented in our code.

The deformation process of compressible material at litho-
spheric scale can be described by the conservation equations of
momentum (Eq. (1)) and thermal energy (Eq. (2)), which can be
expressed as

∂�ij

∂xij
+ �g = 0 (1)

�Cp
DT

Dt
= �∇2T + �A − ∂qi

∂xi
. (2)

Here, �ij is the Cauchy stress tensor, � is density, Cp is heat capac-
ity, � is thermal conductivity, q is heat flux and D/Dt is the material
time derivative.

Radiogenic heating process (A) is included on the right-hand side
of Eq. (2). It is known that this modifies the temperature pattern in
the upper part of the lithosphere. Also, when the thermal effects
appear minor, small temperature variations still affect the viscosity
structure. From a mechanical point of view, this fact will inhibit the
material to store high levels of stress through the time steps due
to the decreasing Maxwell relaxation time (Eq. (9)) and, thus, will
retard the arrival to the plastic yield.

A detailed list of symbols and meanings used throughout this
text can be seen in Table 1.

We split the stress tensor into its deviatoric and volumetric
parts:

�ij = �ij + Pıij (3)

where

P = 1
3

�ii. (4)

We consider that the deviatoric component of the strain rate can
be split into an elastic, a viscous and a plastic component, namely

ε̇ = ε̇e + ε̇v + ε̇p = 1
2G

�̂ + 1
2�

� + 	̇
∂g

∂�
. (5)

where � is the deviatoric part of the Cauchy stress tensor, G is the
shear elastic modulus, � is viscosity, 	̇ is the plastic strain rate and
g is the plastic potential function.

Table 1
Abbreviations and units.

Symbol Description Units

xi Coordinates m
ui Displacements m
T Temperature K
t Time s
P Pressure Pa
˚ Volumetric strain
�ij Deviatoric stress tensor Pa
tM Maxwell relaxation time
g Gravitational acceleration m s−1

R Gas universal constant J mol−1 K−1

� Density kg m−3

K Bulk modulus Pa
G Shear modulus Pa
Bd Diffusion creep constant Pa−1 s−1

Hd Diffusion creep activation enthalpy J mol−1

Bn Dislocation creep constant Pa−1 s−1

Hn Dislocation creep activation enthalpy J mol−1

n Dislocation creep exponent
Bp Peierls creep constant s−1

Hp Peierls creep activation enthalpy J mol−1

�P Peierls stress Pa
�y Plastic yield Pa
�0 Cohesion Pa

 Friction angle ◦

Cp Heat capacity J kg−1 K−1

� Heat conductivity W m−1 K−1

A (Radiogenic) heat generation W kg−1
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A stress threshold f is defined as

f = ‖�‖ − �Y (k), (6)

where ‖(·)‖ is the Euclidean norm and k is the accumulated plas-
tic deformation. The plastic flow in this model is assumed to be
associative and the plastic potential function is exactly the stress
threshold (g = f ). In case of plasticity f = 0.

The volumetric part is considered to be always purely elastic and
the pressure can be expressed as

P = K˚, (7)

where K is the bulk elastic modulus and ˚ is the volume change.
Finally, the volumetric deformations are followed by corrections

in the calculation of density, namely

� = �0

[
1 + P

K

]
. (8)

The Maxwell relaxation time is defined as

tm = �

G
(9)

and the viscous stress relaxation coefficient since the last time step
is

˛ = 1
1 + (�t/tm)

, (10)

where �t is the time step.
Also, the effective visco-elastic modulus is defined as

Gve = ˛G. (11)

To be consistent with the brittle regime, the shear stress at any
point cannot exceed the maximum shear stress as a function of
depth (�y) calculated by Byerlee (1978). This is expressed as

�y = �0 + ˚ − 1
˚

�gz, (12)

where �0 is the cohesion strength, ˚ − 1/˚ is the friction coeffi-
cient,

˚ =
[

(1 + �2)
1/2−�

]−2
(13)

and

� = tan(
), (14)

where 
 denotes the considered friction internal angle.

2.2. Material rheology

Numerous researchers have studied the behaviour of the rocks
under different pressure and temperature conditions (see for
instance Jaoul et al., 1984; Mackwell et al., 1998). The viscosity is
usually considered to be dependant on many variables; particularly,
on the creep constants (e.g. Bd, Bn), strain rate (ε̇), temperature (T),
activation coefficient (e.g. Ed, En) and a power law exponent (n),
among others.

Three different types of creep are included in the definition
of rheology employed in this model, following the approach of
Kameyama et al. (1999), in a similar way as it was implemented
in Sobolev and Babeyko (2005) and in Popov et al. (2008). These
are the three competing creep mechanisms that are usually related
to olivine: diffusion, dislocation and Peierls creep. In this approach,
at a given temperature and stress, the mechanism that produces
the highest viscous strain rate becomes the dominant creep mech-
anism (Babeyko et al., 2006). It should be noted that many codes
do not include the Peierls mechanism, which can lead to some dif-
ferences in the viscosity calculation when temperature is low and
differential stress is high, as it is shown in Popov et al. (2008).

Effective viscous strain rate is additively decomposed into these
three mechanisms, namely

ε̇(v)
eff = ε̇d + ε̇n + ε̇p. (15)

Strain rate due to diffusion creep is defined as

ε̇d = Bd�IIe
−Hd/RT , (16)

dislocation, power-law creep as

ε̇n = Bn�n
IIe

−Hn/RT , (17)

and Peierls creep as

ε̇p = Bpe[−Hp/RT(1−(�II/�p))q], (18)

where �II is the square root of the second invariant of the stress ten-
sor, R is the gas constant, Bd, Bn, Bp are creep parameters, Hd, Hn, Hp

are activation enthalpies for each creep and �p is Peierls stress.
Later, effective viscosity is calculated as

� = �II

2ε̇(v)
eff

. (19)

Some of these creep mechanisms can be omitted for specific
definitions of input parameters (e.g. Bp and Bd).

3. Finite element discretization

To apply the finite element method, two different two-
dimensional, quadrilateral elements were implemented. In the first
place, an element with 4 nodes (NN = 4) proposed by Liu et al.
(1994). This element uses selective reduced integration to avoid the
volumetric and shear locking and to reduce the computational time
needed. To perform some sort of control over the hourglass modes,
it defines a stabilization operator by means of the partial deriva-
tives of the generalized strain rate vector related to the natural
coordinates.

Shape functions (h) are defined as usual for a quadrilateral
element with 4 nodes. Spatial coordinates (x) and also primary
variables are approximated by the following linear combinations

xi =
NN∑
a=1

ha(r, s)xia (20)

and

vi =
NN∑
a=1

ha(r, s)via, (21)

where subindex i represents the dimension and a is the element
number.

The strain rate is expressed as

ε̇(r, s) =
NN∑
a=1

Ba(r, s)va, (22)

where Ba is the gradient matrix that contains the shape functions
derivatives.

If ε̇ is expanded in a Taylor series that is centered on the element
natural coordinates (0,0)

ε̇(r, s) = ε̇(0, 0) + ε̇,r(0, 0)r + ε̇,s(0, 0)s, (23)

it can be approximated by

ε̇(r, s) =
NN∑
a=1

B̄a(r, s)va, (24)
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Fig. 1. Convergence of the Liu element (4 nodes) and the standard 8 nodes element
as a function of the number of elements on the long side of the beam.

where

B̄a(r, s) = Ba(0, 0) + Ba,r(0, 0)r + Ba,s(0, 0)s. (25)

To diminish the volumetric locking, selective reduced integra-
tion is applied (Hughes, 1980). B̄a(r, s) is split into its deviatoric and
volumetric part

B̄a(r, s) = B̄vol
a (0, 0) + B̄dev

a (r, s). (26)

The volumetric part of the matrix is evaluated only at point (0,0)
to avoid volumetric locking. B̄dev

a can be expanded as in Eq. (25),
namely

B̄a(r, s) = Ba(0, 0) + Bdev
a,r (0, 0)r + Bdev

a,s (0, 0), (27)

where Ba(0, 0) is the gradient matrix evaluated at (0,0) with both
volumetric and deviatoric parts.

The elemental formulation asserts the diminishing of the vol-
umetric locking, even if it is integrated at just one Gauss point.
However, this is usually not enough in the case in which a plastic
deformation front should be accurately detected in an elasto-plastic
problem. That is the main reason to integrate at two Gauss points:

Point1 :
(

+ 1√
3

, + 1√
3

)
; Point2 :

(
− 1√

3
, − 1√

3

)
. (28)

Liu et al. (1994) claim that no hourglass mode should be present,
but this effect could arise under particular boundary conditions
and after many time steps, particularly in boundaries with high
pressure (e.g. bottom boundary) that are subject to pressure bound-
ary conditions (e.g. Winkler) that allow the displacement in both
coordinates.

Even when we did not face this problem, we also tested success-
fully a standard quadrilateral element with 9 nodes and normal
Gauss integration. The main drawback of this element is the
increase in the computational time needed. However, when the
mesh is fine enough, the results showed no substantial differences.
This would give the chance to select the element that presents more
benefits for the type of problem that needs to be solved.

The main reason to adopt the 4-noded element would be the
computational time. Basically, as the number of nodes per element
is smaller, the total size of the system of equations would be con-
siderably reduced. Also, as it integrates only at two Gauss points,
instead of nine in the other case, the calculations would become
faster.

On the other hand, one can see in Fig. 1 the results of convergence
for a cantilever beam benchmark case similar to the one presented
in the next section. It is clear that with a proper definition of the
mesh both results should converge to the solution, but the con-
vergence rate of the 4-noded element is not so fast as the other
one.

Other codes use different techniques to treat or avoid this type of
collateral effects. Gerya and Yuen (2003, 2007) use a staggered finite

differences method that is known to be inherently stable. However,
we consider that due to its pure Eulerian approach it would not be
the best choice for the treatment of free surface.

Moresi et al. (2003) apply some sort of average or diffusion to
the variables in order to avoid the checkerboard pressure distribu-
tion (Bathe, 1996), problem that can be considered similar to the
hourglass modes.

Popov et al. (2008) employ differential density to reduce the
effects of hourglass and complement this with intensive use of
remeshing.

3.1. Stress update algorithm

As a Lagrangian approach was adopted for the transient problem,
an algorithm published by Hughes and Winget (1980) was imple-
mented to take into account the finite rotations of the material in
the stress update algorithm. By this, the gradient G is defined as

Gij = ∂ıi

∂yn+1/2
j

(29)

and strain (	) and rotation increments (ω) can be defined in terms
of G:

	 = G + GT

2
, (30)

ω = G − GT

2
. (31)

The following definition is proposed for integrating the consti-
tutive equation:

�n+1 = �̄n+1 + �� (32)

where

�̄n+1 = Q�nQ T , (33)

Q =
(

I − ω

2

)−1 (
I + ω

2

)
, (34)

�n is the unrotated deviatoric stress from the previous timestep,
I is the identity matrix and �� is the stress increment.

A prediction–correction stress update algorithm was adopted
to properly calculate stress over discrete time steps considering the
elasto-visco-plastic behaviour. It can be expressed by means of

�n+1 = 2Gve�εn+1 + ˛�n − 2Gve�	n+1nn+1, (35)

where �n+1 is the deviatoric stress at the (n + 1)-th time step, �εn+1
is the strain increment at the (n + 1)-th time step and �	n+1 is the
effective plastic strain increment at the (n + 1)-th time step, which
is defined as

�	n+1 =
‖�pr

n+1 − �y‖
2Gve

, (36)

and where predicted visco-elastic stress is

�pr
n+1 = 2Gve�εn+1 + ˛�n. (37)

As the problem is non-linear, a classical Newton–Raphson iter-
ation is performed. To achieve a high convergence rate of this
algorithm, an appropriate stress update algorithm linearization is
fundamental. In this model, a consistent tangential operator pro-
posed by Simo and Taylor (1985) is employed.

This is defined as

Ctg
ijkl

= Kıijıkl + A
[

1
2

(
ıikıjl + ıilıjk

)
− 1

3
ıijıkl

]
−B

(
npr

n+1

)
ij

(
npr

n+1

)
kl

, (38)
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where

A = 2Gve

(
1 − Gve�	n+1

‖�pr
n+1‖

)
. (39)

B = 2Gve

(
Gve

G∗ − Gve�	n+1

‖�pr
n+1‖

)
. (40)

3.2. Discretization of heat transport equation

As in the mechanical part, an implicit approach is adopted
for the system of equations related to conservation of energy.
Newton–Raphson iterations are applied to solve the non-linearities
related to this equation. The variable is not the temperature (T), but
the temperature increment (�T). Then, temperature is split in the
following way:

t+�tT
(i) = t+�tT

(i−1) + �T, (41)

where the superscript to the left represents the particular time
when the variable is considered and the superscript to the right
the iteration number for the present time step.

Starting from the principle of virtual temperatures (Bathe,
1996),∫

V

T̄T t+�t(�Cp)t+�tṪ∂V +
∫

V

T̄ ′T t+�tkt+�tṪ ′∂V

=
∫

V

T̄T t+�tqB∂V +
∫

Sq

T̄St+�tqS∂Sq, (42)

and after some algebraic steps, the following expression can be
obtained:[∫

V

BT �B∂V +
∫

V

HT �Cp

�t
H∂V

]
�T =

[∫
V

HT A − BT �Bt+�tT
(i−1) − HT �Cp

�t
H
(

t+�tT
(i−1) − tT

)
∂V +

∫
Sq

HSq T qSq ∂Sq

]
,

(43)

where H is the one-dimensional interpolating matrix that contains
the isoparametric shape functions, B is the gradient matrix related
to the same shape functions, qSq is the thermal flux imposed on
boundary Sq and tT is the already converged solution of the previous
time step.

As part of the coupling between thermal and mechanical parts
of our code, advection of temperature is taken into account by the
displacements resulting from the mechanical model. This approach
was already used in other numerical codes (e.g. Babeyko et al., 2002;
Sobolev and Babeyko, 2005).

4. Solution scheme

The resolution of one time step is accomplished by a
Newton–Raphson iteration, which is outlined in the following steps.

(1) Apply Newton–Raphson iterations in order to reach a solution
for the non-linear problem.
(a) Include result of previous iteration of the current time step

by means of updated Lagrangian formulation (Bathe, 1996).
(b) Assemble stiffness matrices and external force vectors

related to Eqs. (1) and (2) and solve both linearized systems
(mechanical and thermal).

(c) Update temperature and displacements on the nodes.
(d) Check convergence and return to step 1 if necessary.

(2) Add increments of secondary variables (e.g. stress, plastic
strain) to Lagrangian particles.

(3) Advect particles interpolating displacements.
(4) Move nodes according to calculated displacements.
(5) If deformation of the mesh is above a certain threshold, remesh-

ing is needed (see Section 4.1).

(a) Build (or recover) the stiffness matrix of a Laplace equation
associated with the geometrical coordinates of the nodes.

(b) Apply Dirichlet boundary conditions to the nodes that must be
kept fixed in space. Usually, nodes located over the boundary of
the domain and the ones that track important interfaces.

(c) Check new position of the particles relative to the new mesh,
namely, inside which element the particles are located and their
elemental coordinates.

(d) Keep particles per element in accordance to a predefined range.
(e) Map properties stored in the particles to the new mesh.

Details of the different steps mentioned in the previous scheme
are given in the following sections.

4.1. Remeshing procedure

In a Lagrangian formulation, the mesh is distorted every time
step due to the deformation of the studied body. When the body
accumulates too much deformation in a few elements, numerical
issues may arise.

The main problem when calculating on a distorted mesh is the
slow (or absence of) convergence. In this case, a new mesh with
minimum deformation should be generated. When boundaries are
fixed and deformation is concentrated inside the body, the new
mesh could be exactly the original one. This solution is optimum
because it requires no computational time. However, this is not
the general case in Lagrangian approaches to geological problems,
where at least the boundary representing the topography is a stress
free surface and will move apart from its original position.

The position of the nodes in the boundary defines the domain;
thus, these are considered to be fixed during the remeshing pro-
cess. The internal nodes should be relocated in such a way that the
elements are preferably not deformed.

A maximum deformation threshold is defined, which is com-
pared with the accumulated deformation of elements at every time
step. When the deformation for any element is above this threshold,
the domain is remeshed.

A simple mesh is considered (e.g. the original mesh) and an
appropriate mapping is defined to adapt it to the arbitrary posi-
tions of the boundary (∂�) nodes. The problem can be stated as a
Laplace equation for each coordinate (x and y)

�� = 0 in �. (44)

constrained by the Dirichlet conditions by which � = x at ∂� and
� = y at ∂� (Carey and Oden, 1984).

A stiffness matrix (K) related to the Laplace equation is
assembled with the original undeformed mesh. Later, when the
deformation threshold is reached, Dirichlet conditions are applied
based on the present positions of the boundary nodes. Finally, both
system of equations are solved once for each coordinate (x and y)
and the nodes position is updated according to this result.

Depending on the type of problem, less Dirichlet boundary con-
ditions can be defined. When the displacement of the material
generates a non-uniform distribution of nodes at specific parts of a
boundary, some Dirichlet conditions can be discarded to have again
a uniform distribution.

One can see in Fig. 2a and b how the node in the middle
is shifted to the rightmost part of the bottom boundary. When
remeshing is applied the deformation of the elements is distributed
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Fig. 2. (a) Subset of elements next to a boundary and the displacements for a given time step. (b) Distorted mesh where the nodes tend to concentrate on the rightmost corner.
(c) Even when the distortion of the elements in the inner part of the domain is solved by the Laplace equation, an anomalous distribution of nodes over the boundary leads
to a poor mesh quality. (d) If domain definition is not substantially changed, Dirichlet conditions for one of the coordinates can be discarded in order to properly redistribute
the boundary nodes.

by means of the Laplace equation and the quality of the mesh
inside the domain improves. However, the width of the elements
will not be uniform and they will tend to concentrate to the right
(Fig. 2c).

A solution to avoid this situation is to discard the Dirichlet
conditions related to the x position of the nodes over the bot-
tom boundary. Thus, the width of the elements will have exactly
the same proportion among them as in the original mesh. In this
case, the only 2 nodes of this boundary whose x coordinate should
be set as Dirichlet conditions are the leftmost and the rightmost
(Fig. 2d).

4.2. State mapping or translation

The next step following the creation of a new mesh is the state
mapping. All the variables that describe the state of the domain at a
certain time step are associated with nodes and elements of the old
mesh, a situation that is not valid in the new mesh. To deal with this
problem, particles carrying information about all the variables that
describe the domain state are incorporated. The state is reproduced
by translating the information stored in the particles to each node
and element of the new mesh (e.g. Harlow and Welch, 1965; Gerya
and Yuen, 2003).

The position of these particles is updated at every time step
based on the displacements calculated by the finite element model.
The shape functions hn are evaluated at the particle position and
multiplied by the nodal displacements. For example, in a four node
element we can write

ui,p =
4∑

n=1

hn(r, s).ui,n, (45)

where u is the displacement, i is the coordinate, n is the node num-
ber and q is the particle.

In the distorted mesh, each particle stores the information about
the element to which it belongs. As in the new mesh, the element
that contains the particle must be found, the old element is probably
the best starting point to look for. A modified algorithm based on
the one proposed by Novoselov et al. (2002) was implemented. This
way, the order of the search is considerably reduced.

To verify whether the particle belongs to a certain element, the
following steps are accomplished.

(1) The quadrilateral is split into two triangles. The first one is the
one where s > r and the second one is its complement (r > s).

(2) A simple geometrical relation using the coordinates of the cor-
ner nodes (n1

x , n1
y, n2

x , . . .) is employed to check whether the
particle belongs to the first triangle. Namely,[

a1
a2
a3

]
=

⎡
⎣ n1

x n1
y 1

n2
x n2

y 1

n3
x n3

y 1

⎤
⎦

−1

.

[
1
−1
−1

]
(46)

and[
b1
b2
b3

]
=

⎡
⎣ n1

x n1
y 1

n2
x n2

y 1

n3
x n3

y 1

⎤
⎦

−1

.

[
1
1
−1

]
, (47)

r and s being the elemental coordinates calculated as

r = a1mx + a2my + a3 and s = b1mx + b2my + b3 (48)

(3) The particle is considered to be inside the first triangle if

|r| <= 1 and |s| <= 1 and r < s (49)

Fig. 3. Particle position before and after the remeshing process. (a) Inside element 5 in the distorted mesh. (b) Inside element 6 in the new undistorted mesh.
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Fig. 4. Schematic view of the state setting in the nodes after remeshing. The closest
particle from each adjacent element is selected and the average is assigned to the
node.

(4) Analogous operations are performed for the second triangle.
(5) If the local coordinates of the particle are outside the element,

the search algorithm uses the calculated coordinates (r and s) to
decide in which direction should search further and goes back
to 1.

We show in Fig. 3a the position of a particle which, before the
remeshing, belonged to element number 5. After remeshing, the
new local coordinates related to element number 5 are calculated
and, in this case, the variable r does not satisfy Eq. (49) (see Fig. 3b).
Then, the neighbour element that shares the side associated with
r = 1 condition is searched. This search requires a low computa-
tional cost due to the connectivity list of nodes and elements.

It is quite difficult for the particle to be located far from the
former element. To be stricter, there is a small probability that the
new element is relocated far from its original position. A situation
like this could happen if the mesh had suffered a great deformation,
which is not probable considering the convergence needed. So, the
number of particles that must be relocated at a distance greater
than a few elements (compared to the total amount of elements) is
completely marginal.

Once the new relation between particles and elements is cal-
culated, the state of the domain must be translated to the new
mesh. For every node, one particle from each element to whom
it belongs is selected and an average of its properties is calculated
and assigned to it (Fig. 4).

The number of particles inside an element may vary due to this
relocation. As the domain state in the new mesh is replicated exclu-
sively by the particles, the number of particles inside an element
must exceed a defined minimum threshold. To avoid this prob-
lematic situation, a new set of particles is inserted if an element
contains less particles than the minimum threshold. The variables
of the new particles are calculated based on the values of the exist-
ing ones.

Fig. 5 shows an example of the remeshing process and the map-
ping of a variable. There, the stress and the mesh configuration at
the time step when the remeshing is applied and one time step later
can be seen.

5. Computational aspects

The numerical model was completely implemented in C++ using
object-oriented programming techniques. It is based on a more
general-purpose framework (Quinteros et al., 2007) designed to
solve problems related to partial differential equations by means
of the finite element method.

In domains where fine resolution is needed, the most time-
consuming stage is the resolution of the set of algebraic equations,
related to the discretization produced by the finite element method.
To solve this system of equations, we use in our code a direct solver
capable of handling large sparse matrices. Our election is based
on the robustness of this type of solvers when matrices are ill-
conditioned, a common situation in highly non-linear problems.

Actually, different direct solvers were easily linked to our
code due to the decoupling between the high-level model imple-
mentation and the low-level calls to the solver, by means of
Object-Oriented Programming. The results provided in this paper
were obtained with Pardiso (Schenk et al., 2001), which has a good
performance on multi-processor (or multi-core) computers.

Although this remark is beyond the scope of this paper, we would
like to point out that the code was also run on a cluster environment
with MUMPS solver (MUltifrontal Massively Parallel Sparse direct
solver) (Amestoy et al., 2000) including METIS ordering (Karypis
and Kumar, 1999) in order to improve the quality of the matrix.
Then, the resolution of equations is calculated in parallel using stan-
dard MPI protocol and using the resources on all the nodes in the
cluster and not only on a multi-core computer.

It should be noted that both of these solvers provide a first step
towards the parallelization of the final code, at least on the res-
olution stage. Also, in both cases part of their good performance
is related to the extensive use of scalar and algebraic functions

Fig. 5. Deviatoric stress state and mesh geometry in two consecutive time steps: (a) before and (b) after the remeshing.
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Fig. 6. Setup of the cantilever beam test case. Initial configuration of the elastic cantilever beam and material properties. No external forces act over the beam. Bending is
driven only by gravity force. Values similar to the ones used in geodynamical problems were selected for material properties and load. Here, K and G are bulk and shear moduli
and l and h are width and height of the beam.

implemented on other packages like BLAS I/II/III (Dongarra, 2002)
or SCALAPACK (Blackford et al., 1997).

Our implementation was thoroughly tested in order to include
as many optimizations as possible and to avoid memory leaks that
could compromise the simulation of large domains during many
time steps.

As an implicit approach is used, the stiffness matrix must be
constructed at every single iteration. The computational cost of this
operation is drastically reduced by creating the structure of the stiff-
ness matrix when the mesh is first created and keeping not only the
structure but also, if the solver supports this feature, the first stage
of factorization, which is related to the distribution of non-zero val-
ues and their magnitudes. Neither of these will change considerably
through iterations of the same time step nor even from one time
step to another, as long as the same mesh is used. When a certain
level of distortion is reached, the mesh – and the structure of the
stiffness matrix – are created again.

6. Code validation

To validate the formulation and implementation of the model,
a series of test cases with known results were run. In the following
subsections, details are given about some of the cases that validate
each behaviour mode simulated (elastic, viscous and plastic).

The elasticity test was run with the standard quadrilateral ele-
ment with 8 nodes that showed a better convergence rate compared
to the element proposed by Liu (Fig. 1). In the other two cases, qual-
ity of discretization needed to solve the problem was enough to get
a good solution with the Liu element and, therefore, this was used
to optimize computational time.

6.1. Clamped beam—Elasticity

The bending of a cantilever elastic beam is a common test case
to validate the proper calculation of elastic behaviour. There is an

Table 2
Parameters used for the cantilever beam benchmark. Results compared to the ana-
lytical solutions are shown in the second part of the table.

Variable Description Value

K Bulk modulus 36 GPa
G Shear modulus 40 GPa
� Density 200 kg m−3

l Length of the beam 10 km
h Height of the beam 1 km
nlxnh Number of elements 35 × 7
wan Analytical deflection 336.62 m
wnum Numerical deflection 335.88 m
errw Relative deflection error 0.2%
�an Analytical bending stress 598.67 MPa
�num Numerical bending stress 590.5 MPa
err� Relative stress error 1.3%

analytical solution not only for the maximum deflection, but also
for the bending stress.

In this case, a two-dimensional model of an elastic beam in plane
strain state is considered. The beam is fixed on its left side and bends
due to gravity. No external force is applied on it, only body forces
associated with its own weight. The general setup of the model can
be seen in Fig. 6 and the parameters and properties of the material
are listed in Table 2.

Dimensions were selected to provide a test closer to the figures
that are common in geodynamics. Size of the beam is in the order of
magnitude of crust and density was considered to be approximately
one order of magnitude lower than crustal values, because that is
the usual difference between load and restoring forces.

Under the Euler–Bernoulli approximation, maximum deflection
of this elastic beam can be expressed as

w = 3�gl4

2Eh2
, (50)

where � is density, g is gravity constant, l is the length of the beam
and E is the Young’s modulus of the material, which can be cal-
culated from the bulk (K) and shear (G) moduli by means of the
following expressions:

E = 2G(1 + �), (51)

� = 3K − 2G

6K + 2G
. (52)

Bending stress can also be expressed as a function of material
properties, namely

�b = 3�gl2

h
(53)

The size of the beam is long enough to be considered thin, a
necessary condition to use the Euler–Bernoulli theory.

One can see in Fig. 7 the calculated shape of the beam after
deflection and a colour plot of the distribution of bending stresses.
Also, the maximum values of deflection and stress are shown. To
compare the analytical and numerical solutions, the height of the
beam was slightly reduced to match the location of integration
points. It can be seen in Table 2 that results are quite accurate even
for a coarse definition of the mesh.

An evolution of the convergence of discretization due to refine-
ment of the mesh can be seen in Fig. 8. The number of elements
used for the vertical discretization of the beam is plotted against
the relative error of the calculation. It can be appreciated in the fig-
ure that displacements and also stresses converge to the analytical
solution very fast. The aspect ratio of the elements used was the
same throughout all the experiments to discard the possibility of
inaccuracies produced by distortion of the elements.
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Fig. 7. Shape of the elastic cantilever beam after bending. Values for maximum vertical displacement (uy) and bending stress (�max) are shown above the beam. Stress
distribution is also shown by means of a contour plot.

Fig. 8. Relative error of stresses and displacements compared to the number of
elements across the elastic plate thickness.

6.2. Rayleigh–Taylor instability—Viscosity

The test case proposed by van Keken et al. (1997) was selected
to validate the viscous behaviour. In this test, the evolution of a
two phase fluid that convects induced by gravity is tracked. The
domain has bottom and upper boundaries of 0.9241 m and left and
right boundaries of 1 m. The two phases of the fluid have the same
viscosity but different density (��). The lighter fluid (fluid 1) is on
the bottom part of the domain and the denser one (fluid 2) is above.
The limit between both fluids is located at 0.2 m from the bottom
and with an initial deflection described by the expression

w = 0.02 cos
(

�x

�

)
, (54)

where � is the width of the domain. A schematic view of the domain
and the boundary conditions is shown in Fig. 9.

The specification of both fluids can be seen in Table 3.
Over the upper and bottom boundaries non-slip conditions

are prescribed. Over the lateral walls vertical displacements are
allowed but not horizontal ones (symmetric conditions). This way,
the motion is strictly gravity driven. Gravity is considered to be
1 ms−2.

Table 3
Main features of the fluids from the isoviscous Rayleigh–Taylor instability problem.

Variable Fluid 1 Fluid 2

Density (�) 1.3 1.0
Viscosity (�) 1 1
Elastic Bulk modulus (K) 1000 1000
Elastic Shear modulus (G) 1000 1000
Cohesion strength (�0) ∞ ∞
Gravity (g) 1 1

The evolution in time of the fluid can be seen in Fig. 10.
Different snapshots from the domain evolution that are shown

in Fig. 10 were compared with the ones published by van Keken et
al. (1997). The evolution shown in this chapter and in the van Keken
paper are identical for all the compared time steps. The only minor
difference that could be found is located over the contact between
both fluids near the bottom. This difference is explained by the uni-
form discretization performed prior to the simulation, which does
not match exactly the one proposed in Eq. 54. It is very important
to note that, due to the intense deformation that this case implies,
not only the capability of the model to represent viscous behaviour
is validated, but also the implementation of the remeshing
algorithm.

6.3. Plastic deformation concentration—Plasticity

One of the aims when modelling plastic behaviour is to have
a good localization of the plastic deformation. This means that the
concentration of the plastic deformation when simulating fractures
should not be wider than a few elements.

In this case, an isotropic solid is compressed. The setup of the
experiment consists of a 3 m high and 10 m wide block, with the

Fig. 9. Schematic view of the boundary conditions for the test case analyzed by van
Keken et al. (1997).
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Fig. 10. Validation of the viscous behaviour in the test case proposed by van Keken et al. (1997).

same material in all the domains with the exception of a small block
of weaker material centered at the lower part of the model (Fig. 11).
The domain is compressed on its left and right sides at a constant
velocity of 0.1 cm s−1. Viscosity behaviour was switched off by set-
ting a very high viscosity value. There are no gravity forces in this
simulation.

The main properties of the materials that compose the domain
can be seen in Table 4. The properties of the weak material are
exactly the same as the properties of the stronger one but with
a shear elastic modulus (G) two orders of magnitude smaller. The
remeshing algorithm was disabled in order to verify that the plastic
deformation would concentrate as expected.
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Fig. 11. Model setup for the compression experiment. The domain consists of a
homogeneous block with a small intrusion of weaker material centered at the lower
boundary. The properties of both materials only differ in the shear modulus. The
block is compressed with a velocity of 0.1 cm s−1.

Table 4
Main features of materials present in the compression experiment.

Parameter Strong material Weak material

Density, � (kg m−3) 1,000 1,000
Cohesion, �0 (Pa) 5 5
Int. angle friction, � 30◦ 30◦

Bulk modulus, K (Pa) 10,000 10,000
Shear modulus, G (Pa) 9,000 90

Fig. 12. Stress distribution over the block at t = 0.8 s. Plastic yield is reached at this
moment.

At the beginning of simulation the body accumulates stress until
it reaches the plastic yield (Fig. 12) at approximately 0.8 s. After
that, shear bands start to grow from the weak point towards the
surface.

The instantaneous strain rate at 10 s is shown in Fig. 13. It can be
seen that deformation is mostly concentrated over the two shear
bands and that this final configuration is composed of three rigid
blocks with almost no internal deformation. The displacements of
these blocks can be seen in Fig. 14. There, the vertical velocity is
plotted and it is clear that, after the breakup, the uplift of the block
in the center part of the domain follows, with no vertical movement
on the other two blocks. Also, the accumulated plastic deformation
and arrows indicating displacements (Fig. 15) show the formation
of these blocks after both shear bands are formed.

Fig. 13. Instantaneous strain rate at t = 10 s. Shear bands are already formed and
deformation concentrates there.

Fig. 14. Displacements over the domain at t = 10 s. One can see the three blocks
with different motion due to the accommodation of the deformation only on the
two faults formed from the weaker point.

Fig. 15. Accumulated plastic strain and displacements at t = 10 s. One can see that
the plastic yield is predominantly reached on the two shear bands.

7. Discussion and summary

The coupled thermo-mechanical model presented in this paper
is based on deformation of solids and can simulate elasto-visco-
plastic behaviour of rocks under different kinematical conditions.
Complex non-linear rheology can be defined, including different
types of creep (dislocation, diffusion and Peierls).

The implementation relays on an implicit Backward Euler
approach, which makes it inherently stable from the time step
point of view, compared to the explicit codes, which need shorter
time steps. Newton–Raphson iteration, consistent tangential oper-
ator (Simo and Taylor, 1985) and the method published by Hughes
(1980) for the stress update procedure improve the convergence
even under strong non-linear cases.

Two types of elements are included in the code. On one hand, the
element published by Liu et al. (1994), has the following features:

• 4 nodes element: requires less computational effort to calculate
the solution,

• reduced and selective integration: avoids the volumetric locking
and implies a lower computational cost,

• a modified gradient matrix: diminishes the hourglass effect
caused by the reduced integration.

On the other hand, a standard quadrilateral element with 8
nodes, whose main features are:

• slower iterations due to the increase in definition, but less itera-
tions due to the faster convergence to solution,

• no hourglass modes. Thus, remeshing due to this effect and also
the techniques to diminish it are avoided.

Also, a remeshing algorithm based on the Laplace equation was
implemented. The position of the nodes belonging to the boundary
is imposed as a Dirichlet condition. The translation of the domain
state from the distorted mesh to the undistorted one is calculated
after remeshing based on the information (stress, material proper-
ties) stored by the markers (Lagrangian particles).
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The domain can be discretized with a non-uniform mesh, which
has the advantage of increasing the resolution on regions of inter-
est. An arbitrary number and distribution of materials can be
defined and their properties are parametrized. The different types
of behaviour were validated by means of standard test cases. Thus,
not only the results are validated, but also the good performance
of the remeshing algorithm and the mapping of the state vari-
ables between the old and new mesh could be tested by the
Rayleigh–Taylor instability test case.

At least two direct solvers were linked to the implementa-
tion (Pardiso and MUMPS), which can run in parallel the most
time-consuming part of the execution. Pardiso has a very good
performance on multi-processor computers with shared memory
using extensive use of OpenMP techniques. MUMPS was devel-
oped to be scalable when it is used in a cluster environment, using
standard Message Passing Interface (MPI) methods. Even if the non-
uniform mesh can imply finer resolution on regions of interest, the
price to pay is a coarser definition on other parts of the model.
Under this assumption and when trying to solve large domains, it
is necessary to switch to a full parallel approach. The substructure
technique proposed by Bathe (1996) is one of the possibilities that
we evaluate. Other option could be a multigrid approach as imple-
mented by Moresi et al. (2003) or something similar to Octree, as
implemented by Braun et al. (2008).

A very simple approach to the role of fluid in zones of the
domain can be achieved by means of a dynamical manipulation of
material properties, which leads to an instant response from the
thermo-mechanical implementation. However, its displacement
and modification of variables like effective pressure are still not
possible at this stage of development. Therefore, we believe that
coupled porous flow should be included in our implementation in
order to represent this processes in a proper way.
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