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Abstract
1.	 The	development	of	multisensor	animal-attached	tags,	recording	data	at	high	fre-
quencies,	has	enormous	potential	in	allowing	us	to	define	animal	behaviour.

2.	 The	high	volumes	of	data,	are	pushing	us	towards	machine-learning	as	a	powerful	
option	for	distilling	out	behaviours.	However,	with	increasing	parallel	lines	of	data,	
systems	become	more	 likely	 to	become	processor	 limited	and	thereby	take	ap-
preciable	amounts	of	time	to	resolve	behaviours.

3.	 We	suggest	a	Boolean	approach	whereby	critical	changes	in	recorded	parameters	
are	used	as	sequential	templates	with	defined	flexibility	(in	both	time	and	degree)	
to	determine	individual	behavioural	elements	within	a	behavioural	sequence	that,	
together,	makes	up	a	single,	defined	behaviour.

4.	 We	tested	this	approach,	and	compared	it	to	a	suite	of	other	behavioural	identifi-
cation	methods,	 on	 a	number	of	 behaviours	 from	 tag-equipped	 animals;	 sheep	
grazing,	penguins	walking,	cheetah	stalking	prey	and	condors	thermalling.

5.	 Overall	behaviour	recognition	using	our	new	approach	was	better	than	most	other	
methods	due	to;	(1)	its	ability	to	deal	with	behavioural	variation	and	(2)	the	speed	
with	which	the	task	was	completed	because	extraneous	data	are	avoided	in	the	
process.

6.	 We	suggest	that	this	approach	is	a	promising	way	forward	in	an	increasingly	data-
rich	environment	and	that	workers	sharing	algorithms	can	provide	a	powerful	li-
brary	for	the	benefit	of	all	involved	in	such	work.
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1  | INTRODUC TION

Animal	behaviour	has	been	variously	defined,	but	generally	can	be	de-
fined	as	“the	way	in	which	an	animal	works,	functions	or	responds	to	
a	particular	situation”	(Tinbergen,	1960)	with	consequences	for	life-
time	reproductive	success	 (Birkhead,	Atkin,	&	Møller,	1987;	Drews,	
1993;	Krebs	&	Davies,	2009;	Krebs,	Davies,	&	Parr,	1993).	As	such,	
our	ability	to	determine	animal	behaviours	precisely	 is	critically	 im-
portant	for	the	proper	understanding	of	animal	ecology	and	ecosys-
tem	functioning	(Krebs	et	al.,	1993).	Indeed,	it	is	this	that	explains	the	
large	variety	of	methodologies	developed	to	quantify	behaviour	(e.g.	
Altmann,	1974;	Chastin	&	Granat,	2010;	Lucas	&	Baras,	2000;	Miller	
&	Gerlai,	 2007;	Tinbergen,	1960).	A	particularly	 rapidly	developing	
field	in	this	regard	is	“biologging”	–	the	deployment	of	autonomous	
tags	on	animals	 to	record	data	 (Hooker,	Biuw,	McConnell,	Miller,	&	
Sparling,	2007).	Specifically,	the	extraordinary	development	of	elec-
tronic	technology	over	the	last	three	decades	has	led	the	progression	
of	 sophisticated	 miniature	 sensors	 coupled	 with	 low	 power	 con-
sumption	and	 rapidly	expanding	memory	capacity	 (Ropert-	Coudert	
&	 Wilson,	 2005)	 so	 that	 studies	 using	 multisensor	 technology	 in	
tags	 on	 animals	 are	 now	 common	 (Brown,	 Kays,	Wikelski,	Wilson,	
&	Klimley,	2013).	This	has	led	from	the	simple	animal-	attached	tags	
of	the	1990s	recording	data	once	every	few	seconds	(Wilson,	Culik,	
Bannasch,	&	Lage,	1994),	to	systems	today	that	may	record	multiple	
channels	at	thousands	of	Hertz	(Johnson	&	Tyack,	2003).	Of	particu-
lar	note	for	defining	behaviours	is	the	role	played	by	accelerometers,	
gyroscopes	and	magnetometers,	which	can	resolve	both	animal	atti-
tude	in	the	three	spatial	axes	(Williams	et	al.,	2017;	Yoda	et	al.,	1999)	
and	movement	(Fourati,	Manamanni,	Afilal,	&	Handrich,	2011;	Noda,	
Kawabata,	Arai,	Mitamura,	&	Watanabe,	2014).	These	are	primary	el-
ements	used	in	classifying	behaviours	(Tinbergen,	1960),	and	so	have	
great	potential	in	studies	of	wild	animals.

However,	the	ease	with	which	we	can	now	record	the	physical	
manifestation	of	behaviour,	via	metrics	such	as	pitch,	 roll	and	“dy-
namism”	 in	 the	 acceleration	 signature	 (Laich,	Wilson,	Quintana,	&	
Shepard,	2008),	 is	 tempered	by	the	difficulties	of	dealing	with	the	
complexity	and	volume	of	such	data.	Thus,	computational	solutions	
for	processing	the	signals	are	inevitable	and,	accordingly,	there	is	a	
rich	and	varied	literature	dealing	with	this	(e.g.	Nathan	et	al.,	2012;	
Resheff,	 Rotics,	 Harel,	 Spiegel,	 &	 Nathan,	 2014;	 Sakamoto	 et	al.,	
2009).	 This	 includes	 support	 vector	machines	 (Tachibana,	Oosugi,	
&	 Okanoya,	 2014),	 regression	 trees	 (de	Weerd	 et	al.,	 2015),	 ran-
dom	 forests	 (Bidder	 et	al.,	 2014),	 neural	 networks	 (Samarasinghe,	
2016),	linear	discriminant	analysis	(Anderberg,	2014)	and	template-	
matching	 (Walker,	 Jones,	 Laramee,	 Holton,	 et	al.,	 2015).	 Each	
method	has	advantages	and	disadvantages	(Resheff	et	al.,	2014)	but	
prime	negative	issues	revolve	around	subjectivity,	whether	the	data	
are	 parametric,	 the	 extent	 of	 over-	fitting,	 and	 the	 computational	
time	involved	in	the	process	(Nathan	et	al.,	2012).	In	addition,	a	par-
ticular	weakness	of	many	systems	is	that	they	fail	to	recognise	the	
temporal	sequencing	of	the	movements	that	define	the	fundamental	
unit	of	that	behaviour	and	the	variability	within	them,	and	thereby	
preclude	an	 important	discriminator.	For	example,	walking	may	be	

defined	by	a	cluster	of	acceleration	metrics	(Bidder	et	al.,	2014)	but	
the	 fundamental	unit	of	walking	 is	 the	single	 step	 (Moe-	Nilssen	&	
Helbostad,	 2004)	 and	 this	 has	 well-	defined	 properties	 over	 time	
(Sabatini,	Martelloni,	Scapellato,	&	Cavallo,	2005)	that	could,	for	ex-
ample,	be	used	in	any	decision	tree-	based	approach.

In	this	paper,	we	present	an	approach	for	identifying	behaviours	
from	data	derived	from	animal-	attached	tags	that	recognises	(1)	the	
lowest	 common	 denominator	 (LoCoD)	 defining	 any	 particular	 be-
haviour	(i.e.	a	single	step	is	the	lowest	common	denominator	within	
walking)	and	(2)	that	this	lowest	common	denominator	can	be	use-
fully	 broken	 down	 into	 base	 elements	 (BEs)	 (such	 as	 an	 increase,	
followed	by	a	drop,	in	dorso-	ventral	acceleration	for	walking	[Rong,	
Zhiguo,	Jianzhong,	&	Ming,	2007]),	all	of	which	have	to	follow	each	
other	in	a	defined	sequence	for	the	LoCoD	to	be	apparent.	Finally,	(3),	
the	timing	of	BEs	within	a	sequence	is	often	constrained.	Thus,	this	
process	provides	a	recognisable	key	for	LoCoDs	of	behaviours	based	
on	measurements,	sequences	and	timings	of	BEs.	We	appreciate	that	
much	of	the	essence	of	this	 is	 inherent	in	some	template-	matching	
approaches	 (Walker,	Jones,	Laramee,	Bidder,	et	al.,	2015)	but	com-
bine	this	with	both	temporal	flexibility	across	all	BEs,	together	with	
an	ability	to	switch	between	and	incorporate	defined,	often	derived,	
metrics	 that	provide	critical	 information	 for	a	powerful	match.	We	
demonstrate	the	utility	of	this	approach	by	using	it	to	search	for	be-
haviours	 that	 have	 LoCoD	periods	 ranging	 between	 fractions	 of	 a	
second	and	several	minutes	using	data	derived	from	animal-	attached	
tags	and	compare	it	briefly	to	other	computational	methods.

2  | MATERIAL S AND METHODS

For	this	approach,	we	consider	primary	data	derived	from	orthogo-
nal,	tri-	axial	accelerometers	as	well	as,	where	helpful,	information	
from	pressure-		and	magnetic	sensors,	in	addition	to	calculated	var-
iables	obtained	from	acceleration	data,	such	as	Vectorial	Dynamic	
Body	Acceleration	(VeDBA)	(Qasem	et	al.,	2012).

2.1 | The LoCoD method

The	LoCoD	method	involves	initial	consideration	of	the	data	visually	by	
the	user,	who	should	examine	the	details	of	the	movement	that	makes	
up	the	behaviour	and	reflect	how	this	movement	is	expected	to	affect	
the	sensors.	In	this,	the	user	should	identify	the	patterns	that	make	up	
the	BEs	of	the	LoCoD	and	whether	they	can	be	made	more	distinc-
tive	by	selective	smoothing,	as	is	done	in	many	behaviour-	identifying	
protocols	anyway	(Nathan	et	al.,	2012).	In	addition,	it	is	recommended	
that	 differentials	 be	 derived	 for	 any	 signals	 of	 interest,	 since	 these	
often	act	as	excellent	 thresholds	 in	derivation	of	 the	BEs	 (Figure	1).	
Differentials	 are	 particularly	 important	 since	 postural	 data	 derived	
from	 acceleration	 (Shepard	 et	al.,	 2008)	 are	 dependent,	 in	 part,	 on	
the	angle	of	the	terrain	beneath	the	study	animal	(cf.	the	difference	in	
sway	axis	during	the	stationary	periods	at	the	beginning	and	end	of	the	
walking	period	in	Figure	1),	as	well	as	the	tag	placement.	Thus,	working	
with	differentials	essentially	standardises	the	signal	output.
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Following	decisions	on	which	channels	are	to	be	used	for	identi-
fication	of	the	behaviour,	the	conditions	describing	each	BE	are	set	
up	in	ordered	sequence	to	describe	the	LoCoD.	Each	summary	con-
dition	for	the	BE	follows	a	Boolean	approach.	For	example,	summary	
condition	 1	 that	 defines	BE1	 of	 the	 LoCoD	 for	 a	 penguin	walking	
(Figure	2)	may	be	asked	to	recognise	the	moment	when	the	differen-
tial	of	the	smoothed	sway	acceleration	exceeds	0.25	g/s;	

where	Ahs	is	the	smoothed	heave	acceleration	following;	

In	addition,	the	process	should	recognise	multiple,	cross-	channel	
sub-	conditions	(for	positives	and	negatives).	Thus,	equation	(1)	might	
be	made	of	three	sub-	conditions;	

where	As	is	the	surge	acceleration	and	D	is	the	depth.

Importantly,	each	sub-	condition	or	condition	can	employ	a	time	
base	with	three	elements	within	it	that	can	be	specified.	These	are;

1. Presence	 –	 that	 the	 sub-condition	 or	 condition	 is	 maintained	
over	 a	 specified	 time	 for	 the	 statement	 to	 be	 TRUE

2. Range	–	 that,	 following	 identification	of	a	 true	sub-condition	or	
condition,	the	program	can	skip	a	defined	number	of	data	points	
before	looking	for	the	next	BE.	This	is	important	because	it	can	
stop	the	program	identifying	multiple	adjacent	points	as	multiples	
of	that	BE,	moving	directly	onto	a	search	for	the	next	BE.

3. Flexibility	–	that	the	length	of	time	over	which	the	next	BE	may	
occur	can	be	defined	within	limits.

Thus,	in	the	example	above,	recognition	of	BE1	followed	by	BE2	to	
give	an	LoCoD	for	one	left	stride	followed	by	one	right	stride	(Figure	2)	
could be;

(BE1)	Presence WHEN;	dAhs/dt	>	0.25	g/s	FOR	t	>	0.2	s	IS	TRUE

(BE1)	Range SKIP	DATA	FOR	0.25	s

(BE2)	Flexibility WHEN;	dAhs/dt	<	−0.25	g/s	FOR	t	>	0.2	s	
WITHIN	t	=	0.3	s	OF	END	OF	BE1

The	value	of	the	time-	based	definition	is	that	it	helps	deal	with	
variation	in	both	amplitudes	and	periods	of	waveforms.	Specifically,	
it	allows	the	program	to:

(1)BE1−RECOGNISEWHEN; dAhs∕dt>0.25 g∕s,

(2)Ahs=
1

n

n−1
∑

i=0

Ah− i

(3)

BE1−RECOGNISEWHEN; dAhs∕dt>0.25 g∕s

AND; dAs/dt>0.05 g∕s

ANDNOT;D>0m

FIGURE 1 Twenty	steps	(the	first	four	numbered)	taken	by	a	
Magellanic	penguin	Spheniscus magellanicus	during	walking	on	the	
beach,	manifest	by	triaxial	acceleration	data	at	40	Hz.	The	bird	starts	
and	ends	stationary,	but	begins	to	walk,	with	two	small	steps	before	
rapidly	changing	to	steps	with	clear	waveforms,	particularly	in	the	
sway	(lateral)	axis	(grey	line).	Within	the	LoCoD	(lowest	common	
denominator)	framework,	the	user	is	expected	to	identify	the	most	
useful	primary	data	streams	for	the	process.	These	may	be	expanded	
by	deriving	secondary	data	streams,	such	as	smoothed	values,	to	
enhance	BE	identification.	The	inset	shows	the	first	five	steps	(grey	
line)	smoothed	over	0.125	s	(black	line)	in	the	dominant	waveform	(the	
sway	axis)	and	the	rate	of	change	of	the	smoothed	data	(green	line)
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F IGURE  2 The	first	three	steps	(numbered)	of	the	walking	
period	shown	in	Figure	1	for	the	smoothed	heave	axis	(black	line)	
and	the	rate	of	change	of	the	heave	axis	(green	line).	The	LoCoD	
(lowest	common	denominator)	method	first	identifies	a	feature,	
or	combination	of	features,	that	signify	the	initiation	of	the	first	
BE	of	the	behaviour	(here	a	differential	threshold	of	>0.25	g/s)	
(marked	A1).	There	is	then	a	defined	“dead”	time	(T1),	over	which	
the	programme	skips	before	looking	for	the	second	BE	defining	the	
behaviour	(here	a	differential	threshold	of	<−0.25	g/s)	(A2)	with	its	
“dead”	time	(T2).	If	these	two	conditions	are	met	(as	in	this	case)	
the	LoCoD	is	made	of	2	BEs	and	describes	the	conditions	for	one	
left	stride	followed	by	one	right	stride.	The	process	could,	however,	
be	used	for	strides	from	one	leg	only,	for	example,	whereupon	
either	just	A1	and	T1	or	A2	and	T2	would	be	used	for	left	and	right	
strides,	respectively
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1. be	 less	 susceptible	 to	 outliers	 (cf.	 Presence),
2. detect	the	beginning	of	a	waveform	(cf.	A1	in	Figure	2)	and	then	
allows	 flexibility	 in	 time	 to	pass	 the	peak	of	 that	waveform	 (cf.	
Range)

3. constrain	the	length	of	time	within	which	the	next	sub-element	
must	occur	for	it	to	be	considered	part	of	the	LoCoD	(cf.	Flexibility).

We	 present	 the	 computational	 process	 by	 which	 the	 data	
are	 treated	 using	 the	 LoCoD	method	 in	 the	 supplementary	mate-
rial	 1	 but	 also	 note	 the	 following	 link	 (http://ggluck.swan.ac.uk/
ftp/DDMT%20new%20version/)	 where	 the	 software	 can	 be	
downloaded.

2.1.1 | Suggestions for defining behavioural  
elements

Although	 behavioural	 elements	 can	 be	 defined	 by	 simple	 inspec-
tion,	the	variability	 in	the	way	they	are	manifest	and	the	limits	set	
to	define	them	by	the	user	are	critical	to	the	success	of	the	overall	
algorithm	for	identifying	behaviours.	We	suggest	that	the	user	first	
inspects	 the	 data	 in	 the	 form	of	 line	 graphs	 over	 time	 to	 identify	
which	data	streams	change	predictably	with	the	behaviour	to	be	iso-
lated.	At	this	stage,	the	data	can	also	be	smoothed	to	reduce	noise.	
In	general,	we	note	that	running	means	are	particularly	valuable	for	
smoothing	out	short-	term	outliers,	diminishing	noise	and	highlight-
ing	the	major	 trends	 in	waveforms;	within	the	program	above,	 the	
user	can	experiment	with	different	smoothing	windows	to	produce	
the	 clearest	waveform	 in	 the	 data	 (cf.	 Figure	1).	 Each	 data	 line	 to	
be	used	in	the	identification	of	a	BE	can	then	be	cut	from	a	number	
of	examples	of	the	BE	in	the	data	(ideally	from	a	number	of	differ-
ent	animals)	and	these	examples	effectively	superimposed	on	each	
other	 to	show	the	variability	 in	 the	data	 (Figure	3).	The	same	data	
can	then	be	used	to	work	out	mean	(and	variance)	numeric	values	for	
the	parameters	to	be	used	in	the	(sensor	value-	based	or	time-	based)	
rules	 to	define	a	BE	 (Figure	3).	Consideration	of	 the	spread	of	 the	
distribution	of	values	of	such	parameters	allows	users	to	assess	the	
extent	to	which	the	chosen	thresholds	will	work	within	a	population	
of	the	BEs.

In	order	to	test	the	applicability	of	the	LoCoD	method	over	dif-
ferent	behavioural	periods,	we	used	animal	data	corresponding	to;

1. ”Short-period”	 LoCoDs	 of	 behaviours,	 manifested	 by	 actions	
typically	 lasting	 <1	s:	 The	 examples	 used	 for	 this	 study	 were	
single	 bites	 of	 sheep	 and	 single	 steps	 by	 penguins	 walking.

2. ”Medium-period”	LoCoD	of	behaviours,	 typically	 lasting	several	
seconds:	The	example	used	here	was	condors	thermalling.

3. ”Long-period”	 LoCoD	 of	 behaviours,	 typically	 lasting	 from	 be-
tween	30	s	up	to	minutes:	Here,	we	used	cheetahs	stalking	prey.

A	 training	 dataset	was	 created	 for	 behavioural	 identification	 for	
each	of	the	above	species,	where	all	cases	of	the	given	behaviour	was	
identified	either	according	 to	known	 instances	where	 the	behaviour	
had	been	directly	observed,	or	recorded,	or	by	manual	 identification	

by	an	expert	(see	Supplementary	material	for	behaviour	descriptions	
and	LoCoD	definitions).

The	LoCoD	method	was	compared	to	other	methods,	see	below,	
by	considering	the	following	metrics	to	assess	classification	perfor-
mance:	(1)	Processing	time	(in	seconds),	which	is	the	time	spent	by	our	
single	computer	(to	ensure	that	processing	capacity	was	the	same	for	
all	tasks)	to	identify	and	classify	behaviours	within	defined	datasets,	
and	(2)	Confusion	Matrix-	based	scores:	These	metrics	include	Recall	
and	Precision,	which	are	routinely	used	in	such	comparisons	(Resheff	
et	al.,	2014).	Recall	(also	known	as	Sensitivity	or	True	Positive	rate)	
is	 estimated	 as:	 True	 Positives/(True	 Positives	+	False	 Negatives);	
and	Precision	is	estimated	as:	True	Positives/(True	Positives	+	False	
Negatives).	These	two	metrics	are	interesting	because	when	Recall	
values	 increase,	Precision	values	decrease,	 and	we	 can	 assess	 the	
performance	of	a	model	by	focusing	the	balance	between	both	mea-
sures.	By	 calculating	 both,	we	have	 a	measure	 that	 expresses	 the	
ability	of	the	model	to	find	a	particular	behaviour	in	the	dataset	(i.e.	
Recall)	while	we	have	also	a	measure	that	expresses	the	proportion	
of	the	data	points	that	our	model	classified	as	a	particular	behaviour	

F IGURE  3 Example	of	the	process	of	defining	the	value	of	
parameters	used	to	identify	behavioural	elements	in	the	lowest	
common	denominator	(LoCoD)	method.	The	upper	graph	shows	
multiple	examples	of	a	given	behaviour	(penguin	walking)	in	a	
recorded	data	stream	that	represents	the	behaviour	well	(in	this	
case	the	smoothed	sway	acceleration).	The	superimposition	of	
multiple	examples	of	the	behaviour	highlights	the	variation	in	the	
behaviour.	Construction	of	frequency	distributions	of	particular	
elements	that	could	be	used	to	define	a	behavioural	element	(here	
step	amplitude	[1]	and	step	period	[2])	provide	information	on	the	
probabilities	of	any	given	step	falling	outside	user-	defined	limits	to	
that	distribution.	This	ultimately	defines	the	extent	to	which	the	
criteria	will	encompass	the	defined	behavioural	element
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that	actually	was	that	behaviour	(i.e.	Precision).	We	do	not	present	
Accuracy	values	for	two	reasons;	(1)	since	the	LoCoD	method	does	
not	consider	each	data	point	individually,	quantification	of	the	iden-
tification	result	of	a	given	LoCoD	case	cannot	give	a	true	negative	
result	and;	(2)	although	true	negative	results	can	be	established	with	
the	machine-	learning	methods,	Accuracy	can	give	biased	results	for	
unbalanced	datasets	(i.e.	when	the	number	of	true	positives	in	the	
confusion	matrix	is	very	different	to	the	true	negative	(Sokolova	&	
Lapalme,	2009;	Stąpor,	2017).

2.2 | Comparator methods

We	 compared	 the	 outputs	 of	 the	 LoCoD	 method	 with	 nine	 dif-
ferent	 behavioural	 classifier	 models.	 These	 were;	 (1)	 K-	Nearest	
Neighbours	 (K	=	3),	 (2)	 Linear	 Support	 Vector	 machines	 (Linear	
SVM),	(3)	Radial	Basis	Function	kernels	for	Support	Vector	Machines	
(RBF	SVM),	(4)	Decision	Trees,	(5)	Random	Forest,	(6)	Naïve	Bayes,	
(7)	 Linear	 Discriminant	 Analysis	 (LDA),	 (8)	 Quadratic	 Discriminant	
Analysis	 (QDA),	 (9)	Artificial	Neural	Networks	(ANN).	These	are	all	
offered	within	a	single	piece	of	software	as	freeware	(AccelerRater,	
http://accapp.move-ecol-minerva.huji.ac.il/)	 (Resheff	 et	al.,	 2014)	
which	 facilitates	 protocols	 and	 testing	 (see	 a	 brief	 description	 of	
each	model	 in	Supplementary	material).	When	using	AccelerRater,	
we	used	 the	 “all	 features”	 option	 to	 construct	 the	models	 (select-
ing	the	“precomputed stats, Label”	option	from	the	upload	tab,	to	en-
sure	that	we	could	have	available	the	same	features	employed	with	
LoCoD)	 and	 a	 Train-	Test	 split	 (50%	 for	 training	 and	 50%	 for	 test-
ing)	for	validation	as	for	the	LoCoD	method.	We	note	though,	that	
machine	 learning	methods	have	numerous	options	 for	 fine	 tuning,	

which	can	have	an	appreciable	impact	on	the	overall	accuracy	(Ladds	
et	al.,	2017)	so	our	comparison	between	machine	 learning	options	
and	the	LoCoD	method	may	have	disadvantaged	the	machine	learn-
ing	process.

3  | RESULTS

The	overall	capacity	of	the	LoCoD	method	to	detect	specified	behav-
iours	within	varied	datasets	from	free-	living	animals,	was	compara-
ble,	and	sometimes	higher,	to	some	of	the	best	methods	otherwise	
tested	(Tables	1	and	2).	However,	the	speed	with	which	the	LoCoD	
method	resolved	behaviours	was	many	times	faster	than	the	more	
conventional	methods.	For	instance,	the	time	required	for	the	LoCoD	
method	to	process	sheep	biting	and	condor	thermalling	was	<1%	of	
the	 time	 required	 for	 the	 best	 machine-	learning	 algorithm	 (repre-
senting	0.04%	and	0.41%,	respectively).	 In	the	case	of	the	cheetah	
and	the	penguin	data,	 the	time	required	for	 the	LoCoD	method	to	
classify	 the	walking	 represented	6%	and	20%	of	 the	 total	 time	 re-
quired	for	the	best	machine-	learning	algorithm	(Tables	1	and	2).

For	sheep	biting,	although	the	best	machine-	learning	algorithm	
(considering	shortest	processing	 time,	 together	with	highest	 recall	
and	 precision)	 was	 the	QDA	method,	 none	 of	 the	 used	machine-	
learning	algorithms	had	a	good	overall	performance	for	classification	
(Table	1).	The	LoCoD	method	was	 the	only	approach	 that	 showed	
good	 performance	 in	 all	 the	 Confusion	 Matrix-	based	 scores	 (all	
above	85%).

For	 penguin	 walking,	 there	 were	 four	 machine-	learning	 algo-
rithms	 that	 showed	 similar	 performance	 for	 all	 metrics	 (Nearest	

Method

Sheep biting Penguin walking

Time (s)

Performance
Time 
(s)

Performance

Recall Precision Recall Precision

Manual 2,039 1.00 1.00 2,040 1.00 1.00

LoCoD	(lowest	common	
denominator)

1.5 0.89 0.87 14 0.98 0.98

Nearest	neighbour 243 0.00 0.00 77 0.97 0.96

Linear	support	vector	
machines

3,189 0.00 0.00 359 1.00 0.75

Radial	basis	function	
kernels	for	support	
vector	machines

253 0.00 0.00 79 0.94 0.97

Decision	tree 242 0.00 0.00 80 0.97 0.96

Random	forest 281 0.00 0.00 82 0.98 0.96

Naïve	Bayes 317 0.00 0.00 75 0.99 0.76

Linear	discriminant	
analysis

264 0.00 0.00 74 0.99 0.76

Quadratic	discriminant	
analysis

353 0.99 0.01 77 0.76 0.71

Artificial	neural	
networks

3,451 0.00 0.00 405 0.92 0.97

Values	in	bold	show	the	performance	of	the	LoCoD	method.

TABLE  1 Performance	and	time	taken	
for	the	different	identification	methods	to	
identify	all	cases	of	the	“short-	period”	
behaviour	of	sheep	biting	and	penguin	
walking	in	their	respective	datasets	(see	
supplementary	material	for	further	detail).	
For	each	method,	the	time	taken	for	the	
algorithm	to	run	through	the	complete	
dataset	is	given,	along	with	the	measures	
of	recall	and	precision

http://accapp.move-ecol-minerva.huji.ac.il/
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Neighbour,	 RBF	 SVM,	 Decision	 Tree,	 and	 Random	 Forest).	 The	
LoCoD	method	 showed	 similar	 performance	 (Recall	 and	 Precision	
above	95%)	but	with	processing	 times	 that	were	a	 fraction	of	 the	
best	machine-	learning	approaches	(Table	1).

Although	 the	 best	 machine-	learning	 method	 to	 classify	 con-
dor	 thermalling	 was	 QDA,	 most	 of	 the	 methods	 resulted	 in	 poor	
performance,	with	most	 requiring	 excessive	 processing	 times	 and	
some	 even	 unable	 to	 provide	 a	 result	 (marked	 as	 NA	 in	 Table	2).	
The	 LoCoD	 method	 showed	 comparable	 performance	 to	 QDA,	
with	 lower	 Recall,	 higher	 Precision	 and	 notably	 lower	 processing	
times,	equating	to	about	0.4%	that	of	the	QDA	(Table	2).	Although	
markedly	slower	than	the	LoCoD	method	(it	took	almost	250	times	
longer),	 the	manual	method	outperformed	 all	 other	 options	 by	 an	
extended	margin	(Table	2).

In	a	manner	similar	to	condor	thermalling,	most	of	the	methods	
attempting	to	define	cheetah	stalking	resulted	in	poor	performance,	
many	 of	 them	 requiring	 excessive	 processing	 time,	 with	 the	 soft-
ware	from	some	systems	unable	to	provide	a	result	(marked	as	NA	in	
Table	2).	The	best	machine-	learning	method	was	Decision	Tree.	The	
LoCoD	method	 showed	 comparable	 performance	 to	 this,	 with	 an	
approximately	10%	lower	Recall	and	Precision,	but	with	significantly	
lower	processing	times,	equating	to	about	6%	that	of	the	Decision	
Tree	method	(Table	2).

Overall,	and	of	particular	note,	was	that	the	LoCoD	method	dealt	
particularly	well	with	behavioural	identification	where	the	temporal	
variability	of	the	behaviour	was	high	(defined	by	the	range	in	dura-
tion	of	the	different	base	elements	of	the	behaviour).	For	example,	
in	the	case	of	the	condor	thermalling,	manual	labelling	showed	that	

each	complete	turn	had	a	mean	duration	of	19.7	±	4.9	s	(SD),	showing	
the	variation	in	the	presence,	range	and	flexibility	(cf.	Figure	3)	of	the	
two	base	elements	used	to	define	this	behaviour	(based	on	altitude	
gain	 and	 rates	 of	 change	 of	magnetometry	 data	 -		 Supplementary	
Data,	Table	S3.3).	Given	that	the	sum	of	these	three	values	limits	the	
maximum	duration	of	the	LoCoD,	all	but	one	of	the	labelled	LoCoD	
complete	 turns	 in	 thermal	 soaring	were	15	s	 in	duration.	Similarly,	
where	 the	machine-	learning	methods	struggled	with	 identification	
of	the	cheetah	stalking,	the	LoCoD	method	performed	well;	the	tem-
poral	range	of	this	behaviour	being	48.3	±	16.2	s.

4  | DISCUSSION

4.1 | Speed vs. accessibility considerations in 
identifying behaviours

In	his	seminal	work	on	behaviour,	Tinbergen	(Tinbergen,	1960)	de-
fined	behaviours	by	noting	prescribed	changes	in	animal	movement	
over	time.	This	approach	gets	to	the	heart	of	behaviour	description	
and	is	one	that	should	be	accessible	by	those	using	animal-	attached	
sensors,	 e.g.	 accelerometers,	 magnetometers	 and	 gyroscopes	
(Johnson	&	Tyack,	2003),	that	record	body	postures	and	movement	
in	 its	 various	 forms	 over	 time.	 Indeed,	 the	 precision	 with	 which	
movement	 descriptors	 such	 as	 angular	 velocity	 and	 acceleration	
can	be	measured	has	catalysed	many	studies	of	animal	behaviour	by	
workers	using	such	smart	tags	(Yoda	et	al.,	1999).	More	information	
about	the	movement	from	multiple	sensors,	many	of	which	measure	
triaxially	 to	 cover	 the	 three	 space	dimensions	 anyway	 (Johnson	&	

Method

Condor thermalling Cheetah stalking

Time (s)

Performance

Time (s)

Performance

Recall Precision Recall Precision

Manual 2,220 1.00 1.00 180 1.00 1.00

LoCoD	(lowest	common	
denominator)

9 0.87 0.73 7.2 0.89 0.89

Nearest	neighbour 2,182 0.14 0.26 4,045 0.99 0.98

Linear	support	vector	
machines

NA NA NA NA NA NA

Radial	basis	function	
kernels	for	support	
vector	machines

NA NA NA NA NA NA

Decision	tree 2,358 0.01 0.35 3,470 0.99 0.99

Random	forest 2,998 0.00 0.00 4,217 1.00 0.98

Naïve	Bayes NA NA NA 3,179 0.19 0.03

Linear	discriminant	
analysis

2,152 0.01 0.01 3,016 0.06 0.26

Quadratic	discriminant	
analysis

2,157 0.54 0.91 NA NA NA

Artificial	neural	
networks

NA NA NA NA NA NA

Values	in	bold	show	the	performance	of	the	LoCoD	method.

TABLE  2 Performance	and	time	taken	
for	the	different	identification	methods	to	
identify	all	cases	of	“medium-	period”	
behaviour,	consisting	of	condor	
thermalling	and	the	“long-	period”	
behaviour	of	cheetah	stalking	in	their	
respective	datasets	(see	supplementary	
material	for	further	detail).	For	these	two	
behaviours,	a	number	of	machine-	learning	
methods	were	not	run	to	completion	due	
to	some	system	error,	generally	after	more	
of	20	hr	of	processing	time	(marked	with	
NA).	For	each	method,	the	time	taken	for	
the	algorithm	to	run	through	the	complete	
dataset	is	given,	along	with	the	measures	
of	recall,	and	precision
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Tyack,	 2003;	Wilson,	 Shepard,	&	 Liebsch,	 2008),	 can	 lead	 to	 very	
comprehensive	 descriptions	 of	movement	 (Yoda,	 Kohno,	 &	Naito,	
2004),	something	that	can	be	further	enhanced	by	converting	pri-
mary	 movement	 data	 (such	 as	 acceleration)	 to	 additional	 deriva-
tives	 (such	as	VeDBA	 [Qasem	et	al.,	 2012]).	 Interpretation	of	 such	
diverse	and	complex	data	is	not	intuitive,	which	makes	a	good	case	
for	machine-	learning	since	no	specialised	knowledge	is	required	by	
users.	 Coupled	with	 this	 is	 the	 expectation	 that	machine-	learning	
systems	produce	best	classifications	if	they	are	provided	with	most	
data,	which	makes	a	clear	case	 for	using	all	possible	data	 (Resheff	
et	al.,	2014).	However,	this	brings	with	it	appreciable	computational	
challenges	 because	 every	 new	 line	 of	 information	 has	 to	 be	 con-
sidered	computationally	with	respect	to	all	others.	Processing	time	
therefore	 increases	disproportionately	with	 the	 inclusion	of	 every	
new	data	 stream	 (Murphy,	2012).	 Indeed,	 although	computer	pro-
cessing	 speed	continues	 to	 increase	 roughly	 according	 to	Moore’s	
Law,	so	too	does	our	capacity	to	log	data	(Schaller,	1997).	Our	ability	
to	incorporate	new	sensors	within	our	animal-	attached	tag	systems	
(Ropert-	Coudert	&	Wilson,	2005),	 coupled	with	a	proclivity	 to	 re-
cord	at	ever	faster	rates	(Robert-	Coudert	&	Wilson,	2004)	and	de-
rive	new	metrics	from	the	base	data	 (e.g.	 jerk,	static-		and	dynamic	
acceleration	as	well	as	dynamic	body	acceleration	from	raw	tri-	axial	
acceleration	data	[Ydesen	et	al.,	2014])	 in	tandem	with	tag	deploy-
ments	that	may	span	months	bringing	in	billions	of	prime	data	points,	
inevitably	leads	to	more	extended	computing	times.

Such	a	compromise	might	be	more	acceptable	if	the	performance	
of	 machine-	learning	 approaches	 was	 exceptional,	 but	 our	 results	
show	that	this	is	not	the	case	(Tables	1	and	2).	Our	LoCoD	approach	
requires	 good	understanding	 and	 careful	 inspection	of	 the	 sensor	
channels	 in	order	to	make	decisions	about	which	data	streams	are	
most	useful	(and	in	which	combination)	to	define	the	behaviour.	This	
therefore	requires	some	degree	of	specialist	knowledge	of	the	sen-
sors	used	and	an	appreciable	initial	investment	in	time,	although	we	
would	advocate	that	any	use	of	sensor-	acquired	data	“blind”	is	not	
good	practice	anyway.	Our	suggestion	is	that	the	LoCoD	approach	
specifically	 follows	 a	 three	 stage	 process;	 (1)	 where	 the	 primary	
data	 streams	of	 interest	 are	 signal-	processed	 to	 reduce	noise	 and	
highlight	patterns	(e.g.	via	smoothing)	over	various	scales,	(2)	where	
derived	data	streams,	most	notably	differentials,	are	calculated	for	
inclusion,	 if	 relevant	 (based	on	expectations	and	 inspection	of	 the	
behaviour	in	question)	and	(3)	where	conditions	for	sequential	BEs	
are	defined	based	on	precise	patterns	in	selected	data	streams	with	
defined	time-	dependent	flexibility	for	their	execution.	Such	an	ap-
proach	 is	obviously	more	onerous	 for	 the	worker	 than	a	machine-	
based	 learning	 technique	 and	may	 be	 considered	 a	 disadvantage.	
However,	this	approach	frees	up	appreciable	amounts	of	computa-
tional	time	(Tables	1	and	2)	by	directing	the	machine	to	deal	rapidly	
with	a	small	fraction	of	the	available	data.	This	is	critical	for	complex	
behaviours	made	up	of	many	BEs.	In	the	process,	it	allows	identifica-
tion	of	the	minutia	of	behaviour	if	needed	(e.g.	left	footsteps	rather	
than	“walking”)	which	may	be	important	for	rare,	very	short-	lived	be-
haviours.	Indeed,	the	LoCoD	method	specifically	identifies	the	small-
est	common	denominator	that	defines	a	behaviour	according	to	the	

sequence	of	BEs,	for	example,	single	steps,	or	pairs	of	steps,	within	
walking,	rather	than	general	walking	per se.	This	 leads	to	apparent	
overkill	 in	 that	 the	 approach	 will	 essentially	 identify	 every	 step	
during	the	tagged	period,	which	may	be	more	detail	that	many	need,	
but	steps	within	a	defined	time	interval	of	each	other	can	be	merged	
without	problem	to	produce	larger	bouts	of	walking	if	preferred	and	
analysed	 according	 to	 behavioural	 type.	 Conversely,	 identification	
of	slow,	single	steps,	such	as	occur	when	herbivores	graze,	can	lead	
to	appreciable	displacement	over	time,	so	their	identification	can	be	
important	in	dead-	reckoning	approaches	for	resolving	animal	move-
ment	(Bidder	et	al.,	2015).	In	addition,	the	ability	to	separate,	for	ex-
ample,	“grazing	and	walking”	from	“grazing	without	walking”	should	
allow	workers	to	recognise	sub-	behaviours	within	behaviours,	some-
thing	 that	 is	 considered	by	people	observing	animals	 (Beker	et	al.,	
2010)	but	which	are	normally	overlooked	in	tag	data	(Martiskainen	
et	al.,	2009).	The	LoCoD	method	performed	slightly	 less	well	with	
our	example	of	long-	period	behaviours	than	with	short-		or	medium-	
period	behaviours	(Tables	1	and	2)	making	it	apparently	less	useful	
(although	the	behaviour	was	 identified	 in	<0.5%	of	 the	time	taken	
for	 the	manual	 or	machine-	learning	 approach).	 Ultimately	 though,	 
the	absolute	value	of	the	approach	depends	on	the	extent	to	which	
the	variability	of	the	behaviour	can	be	described	by	the	flexibility	of	
the	algorithm	used	(see	above).	More	work	will	be	needed	to	deter-
mine	the	extent	to	which	our	results	for	cheetahs	stalking	are	typical	
of	“long-	lived”	behaviours.

4.2 | Libraries of behaviours and inter- specific 
interpolation

An	 obvious	 advantage	 of	 explicitly	 defining	 an	 algorithm	 for	 a	
particular	behaviour	 is	 that	 it	 can	be	 stored	and	used	 for	differ-
ent	individuals	(cf.	Figure	3).	However,	a	particular	strength	of	the	
process	of	defining	LoCoDs	via	BEs	extends	beyond	this.	This	 is	
because	algorithms	can	be	compared	inter-	specifically,	and	cogni-
sance	taken	of	changing	values	within	the	 individual	BEs	to	help	
predict	what	might	be	expected	for	new	species.	For	example,	the	
details	of	 locomotion	are	known	to	be	a	broad	function	of	mam-
mal	size	and	leg	length	(Christiansen,	2002)	so	BEs	coding	for	this	
should	 change	 in	 their	 specified	 conditions	 accordingly.	 Indeed,	
such	 specified	 conditions	 could	 be	 regressed	 against,	 e.g.	 body	
mass	to	make	predictions.	As	part	of	this	general	process,	we	an-
ticipate	that	an	online	library	could	be	created,	which	provides	ef-
fective	algorithms	for	determination	of	defined	behaviours,	which	
workers	may	readily	consult	for	their	own	applications.	Success	in	
this	venture	may	result	in	researchers	using	such	algorithms	with-
out	particular	comprehension	or	time	invested	so	that	user	exper-
tise	might	eventually	mirror	 those	 that	employ	machine-	learning	
techniques.	 Against	 this,	 inter-	specific	 variation	 beyond	 simple	
allometric	expectations	may	serve	to	reduce	the	performance	of	
this	proposed	cross-	species	approach	(see	Campbell,	Gao,	Bidder,	
Hunter,	&	Franklin,	2013).	Either	way	though,	having	access	to	a	
defined	 method	 of	 determining	 the	 BEs	 within	 LoCoDs	 for	 be-
haviours	 for	 one	 species	 should	 certainly	 serve	 as	 a	 very	 useful	
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starting	 point	 for	 users	wishing	 to	 examine	 the	 same	 behaviour	
in	another.

5  | CONCLUSIONS

Although	 the	 LoCoD	method	 described	 here	 requires	 appreciable	
investment	in	time	and	understanding	for	workers	to	be	able	to	de-
velop	appropriate	algorithms	for	BEs,	the	approach	clearly	has	value	
for	those	wishing	to	extract	behaviours	from	multisensor	data.	The	
approach	does	not	require	a	fixed	sliding	time	window	to	operate,	
but	has	built-	in	 flexibility	 in	both	 time	and	amplitude	 to	 recognise	
patterns	 and,	 in	 addition,	 can	 be	made	 to	 be	 “blind”	 for	 a	 period	
within	BEs	so	as	not	to	be	confused	by	the	vagaries	of	variability	at	
certain	points	within	waveforms.	This	flexible	template	tactic,	which	
uses	a	Boolean	approach	on	only	the	bare	minimum	of	data	needed	
to	 recognise	behaviours	 (ranging	 from	 those	 lasting	<1	seconds	 to	
minutes	or	even	hours,	 (cf.	Horie	et	al.,	2017),	 frees	up	processing	
time,	 making	 the	 whole	 process	 substantially	 more	 efficient.	 We	
would	hope	that	algorithms	for	defined	behaviours	from	particular	
species	will	 be	 shared	within	 the	 community	 to	 build	 up	 a	 potent	
library	for	the	benefit	of	all	wishing	to	try	the	approach.
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