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Abstract
1.	 The development of multisensor animal-attached tags, recording data at high fre-
quencies, has enormous potential in allowing us to define animal behaviour.

2.	 The high volumes of data, are pushing us towards machine-learning as a powerful 
option for distilling out behaviours. However, with increasing parallel lines of data, 
systems become more likely to become processor limited and thereby take ap-
preciable amounts of time to resolve behaviours.

3.	 We suggest a Boolean approach whereby critical changes in recorded parameters 
are used as sequential templates with defined flexibility (in both time and degree) 
to determine individual behavioural elements within a behavioural sequence that, 
together, makes up a single, defined behaviour.

4.	 We tested this approach, and compared it to a suite of other behavioural identifi-
cation methods, on a number of behaviours from tag-equipped animals; sheep 
grazing, penguins walking, cheetah stalking prey and condors thermalling.

5.	 Overall behaviour recognition using our new approach was better than most other 
methods due to; (1) its ability to deal with behavioural variation and (2) the speed 
with which the task was completed because extraneous data are avoided in the 
process.

6.	 We suggest that this approach is a promising way forward in an increasingly data-
rich environment and that workers sharing algorithms can provide a powerful li-
brary for the benefit of all involved in such work.
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1  | INTRODUC TION

Animal behaviour has been variously defined, but generally can be de-
fined as “the way in which an animal works, functions or responds to 
a particular situation” (Tinbergen, 1960) with consequences for life-
time reproductive success (Birkhead, Atkin, & Møller, 1987; Drews, 
1993; Krebs & Davies, 2009; Krebs, Davies, & Parr, 1993). As such, 
our ability to determine animal behaviours precisely is critically im-
portant for the proper understanding of animal ecology and ecosys-
tem functioning (Krebs et al., 1993). Indeed, it is this that explains the 
large variety of methodologies developed to quantify behaviour (e.g. 
Altmann, 1974; Chastin & Granat, 2010; Lucas & Baras, 2000; Miller 
& Gerlai, 2007; Tinbergen, 1960). A particularly rapidly developing 
field in this regard is “biologging” – the deployment of autonomous 
tags on animals to record data (Hooker, Biuw, McConnell, Miller, & 
Sparling, 2007). Specifically, the extraordinary development of elec-
tronic technology over the last three decades has led the progression 
of sophisticated miniature sensors coupled with low power con-
sumption and rapidly expanding memory capacity (Ropert-Coudert 
& Wilson, 2005) so that studies using multisensor technology in 
tags on animals are now common (Brown, Kays, Wikelski, Wilson, 
& Klimley, 2013). This has led from the simple animal-attached tags 
of the 1990s recording data once every few seconds (Wilson, Culik, 
Bannasch, & Lage, 1994), to systems today that may record multiple 
channels at thousands of Hertz (Johnson & Tyack, 2003). Of particu-
lar note for defining behaviours is the role played by accelerometers, 
gyroscopes and magnetometers, which can resolve both animal atti-
tude in the three spatial axes (Williams et al., 2017; Yoda et al., 1999) 
and movement (Fourati, Manamanni, Afilal, & Handrich, 2011; Noda, 
Kawabata, Arai, Mitamura, & Watanabe, 2014). These are primary el-
ements used in classifying behaviours (Tinbergen, 1960), and so have 
great potential in studies of wild animals.

However, the ease with which we can now record the physical 
manifestation of behaviour, via metrics such as pitch, roll and “dy-
namism” in the acceleration signature (Laich, Wilson, Quintana, & 
Shepard, 2008), is tempered by the difficulties of dealing with the 
complexity and volume of such data. Thus, computational solutions 
for processing the signals are inevitable and, accordingly, there is a 
rich and varied literature dealing with this (e.g. Nathan et al., 2012; 
Resheff, Rotics, Harel, Spiegel, & Nathan, 2014; Sakamoto et al., 
2009). This includes support vector machines (Tachibana, Oosugi, 
& Okanoya, 2014), regression trees (de Weerd et al., 2015), ran-
dom forests (Bidder et al., 2014), neural networks (Samarasinghe, 
2016), linear discriminant analysis (Anderberg, 2014) and template-
matching (Walker, Jones, Laramee, Holton, et al., 2015). Each 
method has advantages and disadvantages (Resheff et al., 2014) but 
prime negative issues revolve around subjectivity, whether the data 
are parametric, the extent of over-fitting, and the computational 
time involved in the process (Nathan et al., 2012). In addition, a par-
ticular weakness of many systems is that they fail to recognise the 
temporal sequencing of the movements that define the fundamental 
unit of that behaviour and the variability within them, and thereby 
preclude an important discriminator. For example, walking may be 

defined by a cluster of acceleration metrics (Bidder et al., 2014) but 
the fundamental unit of walking is the single step (Moe-Nilssen & 
Helbostad, 2004) and this has well-defined properties over time 
(Sabatini, Martelloni, Scapellato, & Cavallo, 2005) that could, for ex-
ample, be used in any decision tree-based approach.

In this paper, we present an approach for identifying behaviours 
from data derived from animal-attached tags that recognises (1) the 
lowest common denominator (LoCoD) defining any particular be-
haviour (i.e. a single step is the lowest common denominator within 
walking) and (2) that this lowest common denominator can be use-
fully broken down into base elements (BEs) (such as an increase, 
followed by a drop, in dorso-ventral acceleration for walking [Rong, 
Zhiguo, Jianzhong, & Ming, 2007]), all of which have to follow each 
other in a defined sequence for the LoCoD to be apparent. Finally, (3), 
the timing of BEs within a sequence is often constrained. Thus, this 
process provides a recognisable key for LoCoDs of behaviours based 
on measurements, sequences and timings of BEs. We appreciate that 
much of the essence of this is inherent in some template-matching 
approaches (Walker, Jones, Laramee, Bidder, et al., 2015) but com-
bine this with both temporal flexibility across all BEs, together with 
an ability to switch between and incorporate defined, often derived, 
metrics that provide critical information for a powerful match. We 
demonstrate the utility of this approach by using it to search for be-
haviours that have LoCoD periods ranging between fractions of a 
second and several minutes using data derived from animal-attached 
tags and compare it briefly to other computational methods.

2  | MATERIAL S AND METHODS

For this approach, we consider primary data derived from orthogo-
nal, tri-axial accelerometers as well as, where helpful, information 
from pressure- and magnetic sensors, in addition to calculated var-
iables obtained from acceleration data, such as Vectorial Dynamic 
Body Acceleration (VeDBA) (Qasem et al., 2012).

2.1 | The LoCoD method

The LoCoD method involves initial consideration of the data visually by 
the user, who should examine the details of the movement that makes 
up the behaviour and reflect how this movement is expected to affect 
the sensors. In this, the user should identify the patterns that make up 
the BEs of the LoCoD and whether they can be made more distinc-
tive by selective smoothing, as is done in many behaviour-identifying 
protocols anyway (Nathan et al., 2012). In addition, it is recommended 
that differentials be derived for any signals of interest, since these 
often act as excellent thresholds in derivation of the BEs (Figure 1). 
Differentials are particularly important since postural data derived 
from acceleration (Shepard et al., 2008) are dependent, in part, on 
the angle of the terrain beneath the study animal (cf. the difference in 
sway axis during the stationary periods at the beginning and end of the 
walking period in Figure 1), as well as the tag placement. Thus, working 
with differentials essentially standardises the signal output.
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Following decisions on which channels are to be used for identi-
fication of the behaviour, the conditions describing each BE are set 
up in ordered sequence to describe the LoCoD. Each summary con-
dition for the BE follows a Boolean approach. For example, summary 
condition 1 that defines BE1 of the LoCoD for a penguin walking 
(Figure 2) may be asked to recognise the moment when the differen-
tial of the smoothed sway acceleration exceeds 0.25 g/s; 

where Ahs is the smoothed heave acceleration following; 

In addition, the process should recognise multiple, cross-channel 
sub-conditions (for positives and negatives). Thus, equation (1) might 
be made of three sub-conditions; 

where As is the surge acceleration and D is the depth.

Importantly, each sub-condition or condition can employ a time 
base with three elements within it that can be specified. These are;

1.	 Presence – that the sub-condition or condition is maintained 
over a specified time for the statement to be TRUE

2.	 Range – that, following identification of a true sub-condition or 
condition, the program can skip a defined number of data points 
before looking for the next BE. This is important because it can 
stop the program identifying multiple adjacent points as multiples 
of that BE, moving directly onto a search for the next BE.

3.	 Flexibility – that the length of time over which the next BE may 
occur can be defined within limits.

Thus, in the example above, recognition of BE1 followed by BE2 to 
give an LoCoD for one left stride followed by one right stride (Figure 2) 
could be;

(BE1) Presence WHEN; dAhs/dt > 0.25 g/s FOR t > 0.2 s IS TRUE

(BE1) Range SKIP DATA FOR 0.25 s

(BE2) Flexibility WHEN; dAhs/dt < −0.25 g/s FOR t > 0.2 s 
WITHIN t = 0.3 s OF END OF BE1

The value of the time-based definition is that it helps deal with 
variation in both amplitudes and periods of waveforms. Specifically, 
it allows the program to:

(1)BE1−RECOGNISEWHEN; dAhs∕dt>0.25 g∕s,

(2)Ahs=
1

n

n−1
∑

i=0

Ah− i

(3)

BE1−RECOGNISEWHEN; dAhs∕dt>0.25 g∕s

AND; dAs/dt>0.05 g∕s

ANDNOT;D>0m

FIGURE 1 Twenty steps (the first four numbered) taken by a 
Magellanic penguin Spheniscus magellanicus during walking on the 
beach, manifest by triaxial acceleration data at 40 Hz. The bird starts 
and ends stationary, but begins to walk, with two small steps before 
rapidly changing to steps with clear waveforms, particularly in the 
sway (lateral) axis (grey line). Within the LoCoD (lowest common 
denominator) framework, the user is expected to identify the most 
useful primary data streams for the process. These may be expanded 
by deriving secondary data streams, such as smoothed values, to 
enhance BE identification. The inset shows the first five steps (grey 
line) smoothed over 0.125 s (black line) in the dominant waveform (the 
sway axis) and the rate of change of the smoothed data (green line)
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F IGURE  2 The first three steps (numbered) of the walking 
period shown in Figure 1 for the smoothed heave axis (black line) 
and the rate of change of the heave axis (green line). The LoCoD 
(lowest common denominator) method first identifies a feature, 
or combination of features, that signify the initiation of the first 
BE of the behaviour (here a differential threshold of >0.25 g/s) 
(marked A1). There is then a defined “dead” time (T1), over which 
the programme skips before looking for the second BE defining the 
behaviour (here a differential threshold of <−0.25 g/s) (A2) with its 
“dead” time (T2). If these two conditions are met (as in this case) 
the LoCoD is made of 2 BEs and describes the conditions for one 
left stride followed by one right stride. The process could, however, 
be used for strides from one leg only, for example, whereupon 
either just A1 and T1 or A2 and T2 would be used for left and right 
strides, respectively
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1.	 be less susceptible to outliers (cf. Presence),
2.	 detect the beginning of a waveform (cf. A1 in Figure 2) and then 
allows flexibility in time to pass the peak of that waveform (cf. 
Range)

3.	 constrain the length of time within which the next sub-element 
must occur for it to be considered part of the LoCoD (cf. Flexibility).

We present the computational process by which the data 
are treated using the LoCoD method in the supplementary mate-
rial 1 but also note the following link (http://ggluck.swan.ac.uk/
ftp/DDMT%20new%20version/) where the software can be 
downloaded.

2.1.1 | Suggestions for defining behavioural  
elements

Although behavioural elements can be defined by simple inspec-
tion, the variability in the way they are manifest and the limits set 
to define them by the user are critical to the success of the overall 
algorithm for identifying behaviours. We suggest that the user first 
inspects the data in the form of line graphs over time to identify 
which data streams change predictably with the behaviour to be iso-
lated. At this stage, the data can also be smoothed to reduce noise. 
In general, we note that running means are particularly valuable for 
smoothing out short-term outliers, diminishing noise and highlight-
ing the major trends in waveforms; within the program above, the 
user can experiment with different smoothing windows to produce 
the clearest waveform in the data (cf. Figure 1). Each data line to 
be used in the identification of a BE can then be cut from a number 
of examples of the BE in the data (ideally from a number of differ-
ent animals) and these examples effectively superimposed on each 
other to show the variability in the data (Figure 3). The same data 
can then be used to work out mean (and variance) numeric values for 
the parameters to be used in the (sensor value-based or time-based) 
rules to define a BE (Figure 3). Consideration of the spread of the 
distribution of values of such parameters allows users to assess the 
extent to which the chosen thresholds will work within a population 
of the BEs.

In order to test the applicability of the LoCoD method over dif-
ferent behavioural periods, we used animal data corresponding to;

1.	 ”Short-period” LoCoDs of behaviours, manifested by actions 
typically lasting <1 s: The examples used for this study were 
single bites of sheep and single steps by penguins walking.

2.	 ”Medium-period” LoCoD of behaviours, typically lasting several 
seconds: The example used here was condors thermalling.

3.	 ”Long-period” LoCoD of behaviours, typically lasting from be-
tween 30 s up to minutes: Here, we used cheetahs stalking prey.

A training dataset was created for behavioural identification for 
each of the above species, where all cases of the given behaviour was 
identified either according to known instances where the behaviour 
had been directly observed, or recorded, or by manual identification 

by an expert (see Supplementary material for behaviour descriptions 
and LoCoD definitions).

The LoCoD method was compared to other methods, see below, 
by considering the following metrics to assess classification perfor-
mance: (1) Processing time (in seconds), which is the time spent by our 
single computer (to ensure that processing capacity was the same for 
all tasks) to identify and classify behaviours within defined datasets, 
and (2) Confusion Matrix-based scores: These metrics include Recall 
and Precision, which are routinely used in such comparisons (Resheff 
et al., 2014). Recall (also known as Sensitivity or True Positive rate) 
is estimated as: True Positives/(True Positives + False Negatives); 
and Precision is estimated as: True Positives/(True Positives + False 
Negatives). These two metrics are interesting because when Recall 
values increase, Precision values decrease, and we can assess the 
performance of a model by focusing the balance between both mea-
sures. By calculating both, we have a measure that expresses the 
ability of the model to find a particular behaviour in the dataset (i.e. 
Recall) while we have also a measure that expresses the proportion 
of the data points that our model classified as a particular behaviour 

F IGURE  3 Example of the process of defining the value of 
parameters used to identify behavioural elements in the lowest 
common denominator (LoCoD) method. The upper graph shows 
multiple examples of a given behaviour (penguin walking) in a 
recorded data stream that represents the behaviour well (in this 
case the smoothed sway acceleration). The superimposition of 
multiple examples of the behaviour highlights the variation in the 
behaviour. Construction of frequency distributions of particular 
elements that could be used to define a behavioural element (here 
step amplitude [1] and step period [2]) provide information on the 
probabilities of any given step falling outside user-defined limits to 
that distribution. This ultimately defines the extent to which the 
criteria will encompass the defined behavioural element

–0.6

–0.4

–0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8

(
noitarelecca

ya
w

S
g)

Time (s)

(1)

(2)

(1) (2)

Step amplitude (g) Step period (s)
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

http://ggluck.swan.ac.uk/ftp/DDMT new version/
http://ggluck.swan.ac.uk/ftp/DDMT new version/


     |  5Methods in Ecology and Evolu
onWILSON et al.

that actually was that behaviour (i.e. Precision). We do not present 
Accuracy values for two reasons; (1) since the LoCoD method does 
not consider each data point individually, quantification of the iden-
tification result of a given LoCoD case cannot give a true negative 
result and; (2) although true negative results can be established with 
the machine-learning methods, Accuracy can give biased results for 
unbalanced datasets (i.e. when the number of true positives in the 
confusion matrix is very different to the true negative (Sokolova & 
Lapalme, 2009; Stąpor, 2017).

2.2 | Comparator methods

We compared the outputs of the LoCoD method with nine dif-
ferent behavioural classifier models. These were; (1) K-Nearest 
Neighbours (K = 3), (2) Linear Support Vector machines (Linear 
SVM), (3) Radial Basis Function kernels for Support Vector Machines 
(RBF SVM), (4) Decision Trees, (5) Random Forest, (6) Naïve Bayes, 
(7) Linear Discriminant Analysis (LDA), (8) Quadratic Discriminant 
Analysis (QDA), (9) Artificial Neural Networks (ANN). These are all 
offered within a single piece of software as freeware (AccelerRater, 
http://accapp.move-ecol-minerva.huji.ac.il/) (Resheff et al., 2014) 
which facilitates protocols and testing (see a brief description of 
each model in Supplementary material). When using AccelerRater, 
we used the “all features” option to construct the models (select-
ing the “precomputed stats, Label” option from the upload tab, to en-
sure that we could have available the same features employed with 
LoCoD) and a Train-Test split (50% for training and 50% for test-
ing) for validation as for the LoCoD method. We note though, that 
machine learning methods have numerous options for fine tuning, 

which can have an appreciable impact on the overall accuracy (Ladds 
et al., 2017) so our comparison between machine learning options 
and the LoCoD method may have disadvantaged the machine learn-
ing process.

3  | RESULTS

The overall capacity of the LoCoD method to detect specified behav-
iours within varied datasets from free-living animals, was compara-
ble, and sometimes higher, to some of the best methods otherwise 
tested (Tables 1 and 2). However, the speed with which the LoCoD 
method resolved behaviours was many times faster than the more 
conventional methods. For instance, the time required for the LoCoD 
method to process sheep biting and condor thermalling was <1% of 
the time required for the best machine-learning algorithm (repre-
senting 0.04% and 0.41%, respectively). In the case of the cheetah 
and the penguin data, the time required for the LoCoD method to 
classify the walking represented 6% and 20% of the total time re-
quired for the best machine-learning algorithm (Tables 1 and 2).

For sheep biting, although the best machine-learning algorithm 
(considering shortest processing time, together with highest recall 
and precision) was the QDA method, none of the used machine-
learning algorithms had a good overall performance for classification 
(Table 1). The LoCoD method was the only approach that showed 
good performance in all the Confusion Matrix-based scores (all 
above 85%).

For penguin walking, there were four machine-learning algo-
rithms that showed similar performance for all metrics (Nearest 

Method

Sheep biting Penguin walking

Time (s)

Performance
Time 
(s)

Performance

Recall Precision Recall Precision

Manual 2,039 1.00 1.00 2,040 1.00 1.00

LoCoD (lowest common 
denominator)

1.5 0.89 0.87 14 0.98 0.98

Nearest neighbour 243 0.00 0.00 77 0.97 0.96

Linear support vector 
machines

3,189 0.00 0.00 359 1.00 0.75

Radial basis function 
kernels for support 
vector machines

253 0.00 0.00 79 0.94 0.97

Decision tree 242 0.00 0.00 80 0.97 0.96

Random forest 281 0.00 0.00 82 0.98 0.96

Naïve Bayes 317 0.00 0.00 75 0.99 0.76

Linear discriminant 
analysis

264 0.00 0.00 74 0.99 0.76

Quadratic discriminant 
analysis

353 0.99 0.01 77 0.76 0.71

Artificial neural 
networks

3,451 0.00 0.00 405 0.92 0.97

Values in bold show the performance of the LoCoD method.

TABLE  1 Performance and time taken 
for the different identification methods to 
identify all cases of the “short-period” 
behaviour of sheep biting and penguin 
walking in their respective datasets (see 
supplementary material for further detail). 
For each method, the time taken for the 
algorithm to run through the complete 
dataset is given, along with the measures 
of recall and precision

http://accapp.move-ecol-minerva.huji.ac.il/
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Neighbour, RBF SVM, Decision Tree, and Random Forest). The 
LoCoD method showed similar performance (Recall and Precision 
above 95%) but with processing times that were a fraction of the 
best machine-learning approaches (Table 1).

Although the best machine-learning method to classify con-
dor thermalling was QDA, most of the methods resulted in poor 
performance, with most requiring excessive processing times and 
some even unable to provide a result (marked as NA in Table 2). 
The LoCoD method showed comparable performance to QDA, 
with lower Recall, higher Precision and notably lower processing 
times, equating to about 0.4% that of the QDA (Table 2). Although 
markedly slower than the LoCoD method (it took almost 250 times 
longer), the manual method outperformed all other options by an 
extended margin (Table 2).

In a manner similar to condor thermalling, most of the methods 
attempting to define cheetah stalking resulted in poor performance, 
many of them requiring excessive processing time, with the soft-
ware from some systems unable to provide a result (marked as NA in 
Table 2). The best machine-learning method was Decision Tree. The 
LoCoD method showed comparable performance to this, with an 
approximately 10% lower Recall and Precision, but with significantly 
lower processing times, equating to about 6% that of the Decision 
Tree method (Table 2).

Overall, and of particular note, was that the LoCoD method dealt 
particularly well with behavioural identification where the temporal 
variability of the behaviour was high (defined by the range in dura-
tion of the different base elements of the behaviour). For example, 
in the case of the condor thermalling, manual labelling showed that 

each complete turn had a mean duration of 19.7 ± 4.9 s (SD), showing 
the variation in the presence, range and flexibility (cf. Figure 3) of the 
two base elements used to define this behaviour (based on altitude 
gain and rates of change of magnetometry data -  Supplementary 
Data, Table S3.3). Given that the sum of these three values limits the 
maximum duration of the LoCoD, all but one of the labelled LoCoD 
complete turns in thermal soaring were 15 s in duration. Similarly, 
where the machine-learning methods struggled with identification 
of the cheetah stalking, the LoCoD method performed well; the tem-
poral range of this behaviour being 48.3 ± 16.2 s.

4  | DISCUSSION

4.1 | Speed vs. accessibility considerations in 
identifying behaviours

In his seminal work on behaviour, Tinbergen (Tinbergen, 1960) de-
fined behaviours by noting prescribed changes in animal movement 
over time. This approach gets to the heart of behaviour description 
and is one that should be accessible by those using animal-attached 
sensors, e.g. accelerometers, magnetometers and gyroscopes 
(Johnson & Tyack, 2003), that record body postures and movement 
in its various forms over time. Indeed, the precision with which 
movement descriptors such as angular velocity and acceleration 
can be measured has catalysed many studies of animal behaviour by 
workers using such smart tags (Yoda et al., 1999). More information 
about the movement from multiple sensors, many of which measure 
triaxially to cover the three space dimensions anyway (Johnson & 

Method

Condor thermalling Cheetah stalking

Time (s)

Performance

Time (s)

Performance

Recall Precision Recall Precision

Manual 2,220 1.00 1.00 180 1.00 1.00

LoCoD (lowest common 
denominator)

9 0.87 0.73 7.2 0.89 0.89

Nearest neighbour 2,182 0.14 0.26 4,045 0.99 0.98

Linear support vector 
machines

NA NA NA NA NA NA

Radial basis function 
kernels for support 
vector machines

NA NA NA NA NA NA

Decision tree 2,358 0.01 0.35 3,470 0.99 0.99

Random forest 2,998 0.00 0.00 4,217 1.00 0.98

Naïve Bayes NA NA NA 3,179 0.19 0.03

Linear discriminant 
analysis

2,152 0.01 0.01 3,016 0.06 0.26

Quadratic discriminant 
analysis

2,157 0.54 0.91 NA NA NA

Artificial neural 
networks

NA NA NA NA NA NA

Values in bold show the performance of the LoCoD method.

TABLE  2 Performance and time taken 
for the different identification methods to 
identify all cases of “medium-period” 
behaviour, consisting of condor 
thermalling and the “long-period” 
behaviour of cheetah stalking in their 
respective datasets (see supplementary 
material for further detail). For these two 
behaviours, a number of machine-learning 
methods were not run to completion due 
to some system error, generally after more 
of 20 hr of processing time (marked with 
NA). For each method, the time taken for 
the algorithm to run through the complete 
dataset is given, along with the measures 
of recall, and precision
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Tyack, 2003; Wilson, Shepard, & Liebsch, 2008), can lead to very 
comprehensive descriptions of movement (Yoda, Kohno, & Naito, 
2004), something that can be further enhanced by converting pri-
mary movement data (such as acceleration) to additional deriva-
tives (such as VeDBA [Qasem et al., 2012]). Interpretation of such 
diverse and complex data is not intuitive, which makes a good case 
for machine-learning since no specialised knowledge is required by 
users. Coupled with this is the expectation that machine-learning 
systems produce best classifications if they are provided with most 
data, which makes a clear case for using all possible data (Resheff 
et al., 2014). However, this brings with it appreciable computational 
challenges because every new line of information has to be con-
sidered computationally with respect to all others. Processing time 
therefore increases disproportionately with the inclusion of every 
new data stream (Murphy, 2012). Indeed, although computer pro-
cessing speed continues to increase roughly according to Moore’s 
Law, so too does our capacity to log data (Schaller, 1997). Our ability 
to incorporate new sensors within our animal-attached tag systems 
(Ropert-Coudert & Wilson, 2005), coupled with a proclivity to re-
cord at ever faster rates (Robert-Coudert & Wilson, 2004) and de-
rive new metrics from the base data (e.g. jerk, static- and dynamic 
acceleration as well as dynamic body acceleration from raw tri-axial 
acceleration data [Ydesen et al., 2014]) in tandem with tag deploy-
ments that may span months bringing in billions of prime data points, 
inevitably leads to more extended computing times.

Such a compromise might be more acceptable if the performance 
of machine-learning approaches was exceptional, but our results 
show that this is not the case (Tables 1 and 2). Our LoCoD approach 
requires good understanding and careful inspection of the sensor 
channels in order to make decisions about which data streams are 
most useful (and in which combination) to define the behaviour. This 
therefore requires some degree of specialist knowledge of the sen-
sors used and an appreciable initial investment in time, although we 
would advocate that any use of sensor-acquired data “blind” is not 
good practice anyway. Our suggestion is that the LoCoD approach 
specifically follows a three stage process; (1) where the primary 
data streams of interest are signal-processed to reduce noise and 
highlight patterns (e.g. via smoothing) over various scales, (2) where 
derived data streams, most notably differentials, are calculated for 
inclusion, if relevant (based on expectations and inspection of the 
behaviour in question) and (3) where conditions for sequential BEs 
are defined based on precise patterns in selected data streams with 
defined time-dependent flexibility for their execution. Such an ap-
proach is obviously more onerous for the worker than a machine-
based learning technique and may be considered a disadvantage. 
However, this approach frees up appreciable amounts of computa-
tional time (Tables 1 and 2) by directing the machine to deal rapidly 
with a small fraction of the available data. This is critical for complex 
behaviours made up of many BEs. In the process, it allows identifica-
tion of the minutia of behaviour if needed (e.g. left footsteps rather 
than “walking”) which may be important for rare, very short-lived be-
haviours. Indeed, the LoCoD method specifically identifies the small-
est common denominator that defines a behaviour according to the 

sequence of BEs, for example, single steps, or pairs of steps, within 
walking, rather than general walking per se. This leads to apparent 
overkill in that the approach will essentially identify every step 
during the tagged period, which may be more detail that many need, 
but steps within a defined time interval of each other can be merged 
without problem to produce larger bouts of walking if preferred and 
analysed according to behavioural type. Conversely, identification 
of slow, single steps, such as occur when herbivores graze, can lead 
to appreciable displacement over time, so their identification can be 
important in dead-reckoning approaches for resolving animal move-
ment (Bidder et al., 2015). In addition, the ability to separate, for ex-
ample, “grazing and walking” from “grazing without walking” should 
allow workers to recognise sub-behaviours within behaviours, some-
thing that is considered by people observing animals (Beker et al., 
2010) but which are normally overlooked in tag data (Martiskainen 
et al., 2009). The LoCoD method performed slightly less well with 
our example of long-period behaviours than with short- or medium-
period behaviours (Tables 1 and 2) making it apparently less useful 
(although the behaviour was identified in <0.5% of the time taken 
for the manual or machine-learning approach). Ultimately though,  
the absolute value of the approach depends on the extent to which 
the variability of the behaviour can be described by the flexibility of 
the algorithm used (see above). More work will be needed to deter-
mine the extent to which our results for cheetahs stalking are typical 
of “long-lived” behaviours.

4.2 | Libraries of behaviours and inter-specific 
interpolation

An obvious advantage of explicitly defining an algorithm for a 
particular behaviour is that it can be stored and used for differ-
ent individuals (cf. Figure 3). However, a particular strength of the 
process of defining LoCoDs via BEs extends beyond this. This is 
because algorithms can be compared inter-specifically, and cogni-
sance taken of changing values within the individual BEs to help 
predict what might be expected for new species. For example, the 
details of locomotion are known to be a broad function of mam-
mal size and leg length (Christiansen, 2002) so BEs coding for this 
should change in their specified conditions accordingly. Indeed, 
such specified conditions could be regressed against, e.g. body 
mass to make predictions. As part of this general process, we an-
ticipate that an online library could be created, which provides ef-
fective algorithms for determination of defined behaviours, which 
workers may readily consult for their own applications. Success in 
this venture may result in researchers using such algorithms with-
out particular comprehension or time invested so that user exper-
tise might eventually mirror those that employ machine-learning 
techniques. Against this, inter-specific variation beyond simple 
allometric expectations may serve to reduce the performance of 
this proposed cross-species approach (see Campbell, Gao, Bidder, 
Hunter, & Franklin, 2013). Either way though, having access to a 
defined method of determining the BEs within LoCoDs for be-
haviours for one species should certainly serve as a very useful 
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starting point for users wishing to examine the same behaviour 
in another.

5  | CONCLUSIONS

Although the LoCoD method described here requires appreciable 
investment in time and understanding for workers to be able to de-
velop appropriate algorithms for BEs, the approach clearly has value 
for those wishing to extract behaviours from multisensor data. The 
approach does not require a fixed sliding time window to operate, 
but has built-in flexibility in both time and amplitude to recognise 
patterns and, in addition, can be made to be “blind” for a period 
within BEs so as not to be confused by the vagaries of variability at 
certain points within waveforms. This flexible template tactic, which 
uses a Boolean approach on only the bare minimum of data needed 
to recognise behaviours (ranging from those lasting <1 seconds to 
minutes or even hours, (cf. Horie et al., 2017), frees up processing 
time, making the whole process substantially more efficient. We 
would hope that algorithms for defined behaviours from particular 
species will be shared within the community to build up a potent 
library for the benefit of all wishing to try the approach.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.
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