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1 Introduction

T -duality is an operation on 2-dimensional conformal field theory sigma-models. It inter-

changes some geometric information in the target space and the resulting conformal field

theory is equivalent. But, as done by Bouwknegt, Evslin, Hannabuss and Mathai in [4]

and [5], it is possible to study only the topological questions related to T-duality. This is

our starting point.

The link between T -duality and generalized complex structures has been given by

Cavalcanti and Gualtieri in [10]. They realized T -duality as an isomorphism between

Courant algebroids, which depends of the choice of a closed 3-form, of topologically distinct

manifolds. Under certain conditions one can interchange “complex” and “symplectic”

structures between T -dual manifolds; the integrability of these structures depends on the

3-forms H, this is the reason of the quotation marks.

In this work we study T -duality in the context of nilmanifolds, with invariant H-flux.

These are homogeneous compact manifolds associated to nilpotent Lie groups admitting

lattices which carry a natural structure of torus bundles. Using algebraic constructions at

Lie the algebra level, we are able to present, under certain conditions, an explicit construc-

tion of the T -dual of a nilmanifold. The T -dual is also a nilmanifold and the aforementioned

restrictions are related to H being an integral class. This invariant context permits us to

obtain conclusive results and also to work explicitly with non-trivial 3-forms H.

Our description of T -duality allows us to apply the results to the study of invariant

symplectic structures on 2-step nilpotent Lie groups following the spirit of the mirror

symmetry program [26]: we understand the symplectic geometry of a manifold E via
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the complex geometry of its mirror E∨, which, in our case is the T -dual manifold of E.

The study of symplectic structures on nilpotent Lie groups (and in the corresponding

nilmanifolds) is a very active topic in invariant geometry (see [9, 11, 23] and references

therein). An application in the context of generalized G2-structures is presented in [14].

In this paper nilmanifolds are described as homogeneous spaces where E = Λ\G and

we consider invariant forms H on them; here G is a nilpotent Lie group and Λ is a discrete

cocompact subgroup. We address the questions of existence and constructions of T -duals.

As usual, the invariant geometry of these homogeneous manifolds is evinced at the Lie

algebra g of G. Because of their natural structure as torus bundles, nilmanifolds have

already appeared as primary examples in the context of T -duality (see [6, 10, 17] for

instance). This work fully describes T -duality within this family, using their particular

topology, algebraic and differential structure.

In the first part of the present paper, based on the works of Bouwknegt, Evslin,

Hannabus and Mathai and of Cavalcanti and Gualtieri, we define a T -duality between

Lie algebras which we call Infinitesimal T -duality. This is a general construction valid for

any real Lie algebra with nontrivial center. We define the corresponding Cavalcanti and

Gualtieri map establishing the one to one correspondence of generalized complex struc-

tures between dual Lie algebras. We notice that our methods differ from those in [12]

where an algebraic duality between Lie algebras is also considered; in fact our definition is

independent of the existence of generalized complex structures on the Lie algebra.

In the second part of this work we deal with the question of the integrability of the

Infinitesimal T -duality. This means, given two infinitesimal T -dual nilpotent Lie algebra

(n1, H1) and (n2, H2), when is it possible to find lattices Λ1 and Λ2 in such way that

the compact nilmanifolds Ei := ni/Λi, i = 1, 2 are topologically T -dual. We answer this

positively: if n1 admits a lattice and H satisfies a rational condition, then n2 also admits

lattices and the T -duality of the nilmanifolds is guaranteed. We show examples where there

is more than one lattice on n2 giving the duality. In particular, we prove that for a given

pair (E,H), there is a family of non diffeomorphic manifolds {Ej}j∈N which are T -dual to

(E,H), for some 3-forms.

2 Preliminaries

2.1 Generalized complex structures

Let us recall some standard facts about generalized complex geometry. For details see [15].

Let E be a smooth n-dimensional manifold and H ∈ Ω3(E) be a closed 3-form.The sum

of the tangent and cotangent bundle TE ⊕ T ∗E admits a natural symmetric bilinear form

with signature (n, n) defined by

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )).

One can also define a bracket on the sections of TE ⊕ T ∗E (the Courant bracket) by

[X + ξ, Y + η]H = [X,Y ] + LXη − iY dξ + iX iYH.
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Definition. A generalized complex structure on (E,H) is an orthogonal automorphism

J : TE ⊕ T ∗E → TE ⊕ T ∗E such that J 2 = −1 and its i-eigenbundle is involutive with

respect to the Courant bracket.

We remark that complex and symplectic structures are examples of generalized com-

plex structures. If J and ω are complex and symplectic structures respectively on E, then

JJ :=

(
−J 0

0 J∗

)
and Jω :=

(
0 −ω−1

ω 0

)

are generalized complex structures on E for H = 0.

When E is a Lie group G one can consider invariant generalized complex structures.

In this case we assume H to be a left invariant closed 3-form on G, which is identified with

an alternating 3-form on the Lie algebra g of G and closed with respect to the Chevalley-

Eilenberg differential. The Lie group also acts by left translations on TG⊕ T ∗G

g · (X + ξ) = (Lg)∗X + (Lg−1)∗ξ.

A generalized complex structure on (G,H) is said to be left invariant if it is equivariant

with respect to this action. A left invariant generalized complex structure J is identified

with the linear map it induces at the Lie algebra J : g⊕ g∗ −→ g⊕ g∗ (see also [13]).

Therefore, when restricting to the invariant context we endow g⊕g∗ with the Courant

bracket

[X + ξ, Y + η]H = [X,Y ] + ιXdη − iY dξ + iX iYH, X, Y ∈ g, ξ, η ∈ g∗. (2.1)

We study linear maps J : g ⊕ g∗ −→ g ⊕ g∗ satisfying J2 = −1, preserving the natural

metric

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )) X,Y ∈ g, ξ, η ∈ g∗ (2.2)

and such that its i-eigenspace is involutive under the bracket (2.1).

Notice that g ⊕ g∗ with the bracket in (2.1) is a Lie algebra. When H = 0 it is the

semidirect product of g by g∗ by the coadjoint action.

If Λ is a discrete cocompact subgroup of G, any left invariant closed 3-form H is

induced to the quotient Λ\G. Moreover, any invariant generalized complex structure on

(G,H) descends to a generalized complex structure on (Λ\G,H).

2.2 Topological T -duality

Let us start with the definition of topological T -duality for torus bundle equipped with a

closed 3-form.

Definition. Let E and E∨ be principal fiber bundles with k-dimensional tori T and T∨ as

the fiber and over the same base M and let H ∈ Ω3(E), H∨ ∈ Ω3(E∨) be closed invariant
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3-forms. Let E ×M E∨ be the product bundle and consider the diagram

(E ×M E∨, p∗H − p∨∗H∨)

p
uu

p∨ ))

(E,H)

))

(E∨, H∨).

tt
M

We define (E,H) and (E∨, H∨) to be T -dual if p∗H − p∨∗H∨ = dF , where F ∈
Ω2(E×M E∨) is a 2-form T ×T∨-invariant and non-degenerate on the fibers. The product

E ×M E∨ is called correspondence space.

Remark. This is the definition of T -duality found in [10] and it is weaker than the one

used in [4, 5, 7, 8]. In the stronger definition the forms H, H∨ and F represent integral

cohomology classes and F induces an isomorphism H1(T,Z)→ H1(T∨,Z).

Given a pair of T -dual torus bundles (E,H) and (E∨, H∨), Cavalcanti and Gualtieri

in [10] define an isomorphism between the space of invariant sections

ϕ : (TE ⊕ T ∗E)/T → (TE∨ ⊕ T ∗E∨)/T∨. (2.3)

Such isomorphism preserves the natural bilinear form and the Courant bracket twisted

by the 3-forms H and H̃. Using this isomorphism one can send T -invariant generalized

complex structure from E to E∨.

Using the 2-form F on the correspondence space of T -dual pairs, the isomorphism ϕ

is given explicitly by

ϕ(X + ξ) = p∨∗ (X̂) + p∗ξ − F (X̂), (2.4)

where X̂ is the unique lift of X to E ×M E∨ such that p∗ξ − F (X̂) is a basic 1-form. The

existence and uniqueness is consequence of the non-degeneracy of F .

Theorem 2.1 (Cavalcanti and Gualtieri, [10]). The map ϕ is a isomorphism of Courant

algebroids; that is, for all u, v ∈ (TE ⊕ T ∗E)/T

〈ϕ(u), ϕ(v)〉 = 〈u, v〉 and [ϕ(u), ϕ(v)]H∨ = ϕ([u, v]H).

Using ϕ one can transport invariant generalized complex structures between T -dual

spaces:

Corollary 2.2. Let (E,H) and (E∨, H∨) be T -dual spaces. If J is an invariant generalized

complex structure on E then

J̃ := ϕ ◦ J ◦ ϕ−1

is an invariant generalized complex structure on E∨.
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3 Infinitesimal T -duality

3.1 Basics on Lie algebras

In this section we introduce basic notions on Lie algebras and the concept of central ex-

tension we shall use in the sequel of the paper.

Definition. Let a be an abelian Lie algebra and let (n, [ , ]) be a Lie algebra. Suppose a

Lie algebra (g, [ , ]g) fits into an exact sequence of Lie algebra homomorphisms

0 −→ a
i−→ g

q−→ n −→ 0.

We say that g is a central extension of n by a if [i(a), g]g = 0, i.e. [i(x), y]g = 0 for all

x ∈ a and y ∈ g.

If g is a central extension of n by a, there exists a linear map β : n −→ g with q◦β = idn.

Moreover, the following is a well defined map Ψ : n× n −→ a:

Ψ(x, y) = i−1([β(x), β(y)]− β([x, y])), x, y ∈ n. (3.1)

This is a skew-symmetric bilinear form satisfying

Ψ([x, y], z) + Ψ([y, z], x) + Ψ([z, x], y) = 0, (3.2)

that is, Ψ is a closed 2-form when considered the trivial representation

ρ : n −→ gl(a). To make reference to this cocycle, g will be denoted by nΨ.

From now on, we identify n and a with the vector subspaces β(n) and i(a), respectively.

The homomorphism q : g −→ n also identifies n with g/a. In this context, g = n⊕ a, a is a

central ideal of g and the Lie bracket in g is related to that of n by

[x+ z, x′ + z′]g = [x, x′] + Ψ(x, x′), x, x′ ∈ n, z, z′ ∈ a. (3.3)

Conversely, given a and n Lie algebras, a abelian and a closed 2-form Ψ on n with

values in a, the vector space g = n⊕ a with the Lie bracket in (3.3) is a central extension

of n by a. It is well known that the central extensions of n, nΨ and nΨ′ are isomorphic if

and only if Ψ − Ψ′ = dψ for some linear map ψ : n −→ a. We refer to [24, 25] for basic

facts about central extensions and Lie algebras in general.

Given a skew-symmetric bilinear form Ψ : n × n −→ a and a basis {x1, . . . , xm} of a,

there exist f1, . . . , fm ∈ Λ2n∗ such that

Ψ(x, y) =
m∑
k=1

−fk(x, y)xk.

In this case we denote Ψ as (f1, . . . , fm) (we do not make reference to the basis unless

needed). It is clear that Ψ is closed (see eq. (3.2)) if and only if each fi is closed.

For a basis {x1, . . . , xm} of a Lie algebra, we denote with upper indices {x1, . . . , xm}
the dual basis.
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Lemma 3.1. Let g be a Lie algebra having a nontrivial central ideal a and let {x1, . . . , xm}
be a basis of a. Then g is isomorphic to the central extension of g/a by the closed 2-form

(dx1, . . . , dxm).

Proof. Denote by n the quotient Lie algebra g/a. We identify Λ2n∗ with the subspace

{α ∈ Λ2g∗ : ιxα = 0 for all x ∈ a}, so that if α is inside that set, then it induces α̃ where

α̃(q(x), q(x)) = α(x, y) for any x, y ∈ g. Analogous identification holds for Λ2n∗ ⊗ a as a

subspace of Λ2g∗ ⊗ a.

Under this identification dη ∈ Λ2n∗ for all η ∈ g∗ since ιxdη(y) = dη(x, y) =

−η([x, y]) = 0 for all y ∈ g and x ∈ a. In particular, dxi ∈ Λ2n∗ for any basis {x1, . . . , xm}
of a and (dx1, . . . , dxm) is a closed 2-form in n with values in a.

If i : a −→ g is the inclusion and q : g −→ n is the quotient map then the following is

an exact sequence

0 −→ a
i−→ g

q−→ n −→ 0,

where [i(a), g] = 0, so g is a central extension of n by a. Fix a complement v of a in g

so that g = v ⊕ a and denote prv : g −→ v and pra : g −→ a the projections. Define

β : n −→ g as β(u) = xu where xu ∈ v is the unique element such that q(xu) = u, then

q ◦ β = idn. The 2-form of this extension is Ψ(u, v) = [β(u), β(v)]− β([u, v]), u, v ∈ n. But

q([xu, xv]) = [u, v], so

Ψ(u, v) = [xu, xv]− prv[xu, xv] = pra([xu, xv]).

We only have left to remark that

(x, y) ∈ g× g 7→ pra([x, y]) =

m∑
k=1

−dxk(x, y)xk

is an element Λ2g∗ ⊗ a, lying inside Λ2n∗ ⊗ a.

The lower central series {Cj(g)} and the derived series {Dj(g)} of a Lie algebra g are

defined for all j ≥ 0 by

C0(g) = g, Cj(g) = [g,Cj−1(g)], j ≥ 1.

D0(g) = g, Dj(g) = [Dj−1(g),Dj−1(g)], j ≥ 1,

We notice that C1(g) = [g, g] = D1(g) is the commutator of g and Dj(g) ⊆ Cj(g) for all

j ≥ 0. A Lie algebra g is j-step solvable if Dj(g) = 0 and Dj−1(g) 6= 0 for some j ≥ 0. A

solvable Lie algebra is said to be k-step nilpotent if Ck(g) = 0 while Ck−1(g) 6= 0.

Proposition 3.2. Let g be the central extension of a Lie algebra n. Then g is solvable

(resp. nilpotent) if and only if n is solvable (resp. nilpotent).

Proof. Since n is a quotient of g by an ideal, it is clear that n is solvable or nilpotent if g

is so. For the converse, use the following inclusions for k ≥ 1

Ck(g) ⊆ Ck(n) + Ψ(n,Ck−1(n)), Dk(g) ⊆ Dk(n) + Ψ(Dk−1(n),Dk−1(n)).

These can be proved by a standard induction procedure.
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Notice that the steps of nilpotency or solvability of g are at most one more than that

of n.

A Lie algebra is semisimple if its Killing form is nondegenerate. In particular, it

coincides with its commutator and has no nontrivial abelian ideals. From these facts, it is

clear that the central extension of a semisimple Lie algebra is never semisimple.

3.2 Dual Lie algebras

In this section we work with pairs of Lie algebras g and g∨ that are isomorphic, up to a

quotient by abelian ideals. That is, there exist abelian ideals a and a∨ in g and g∨ such

that g/a ' g∨/a∨. In this case we denote n the quotient Lie algebra and q : g −→ n and

q∨ : g∨ −→ n the quotient maps.

The subspace c of g⊕ g∨

c = {(x, y) ∈ g⊕ g∨ : q(x) = q∨(y)}

is a Lie subalgebra and the following diagram is commutative

c
p

��

p∨

  

g

q
��

g∨.

q∨
~~

n

Here p and p∨ are the projections over the first and second component, respectively. The

Lie subalgebras k = {(x, 0) ∈ c : x ∈ a} and k∨ = {(0, y) ∈ c : y ∈ a∨} are also abelian

ideals of c. In particular c/k∨ ' g and c/k ' g∨. As a vector space, c is isomorphic to

n⊕ a⊕ a∨.

A 2-form F ∈ Λ2c∗ is said to be non-degenerate in the fibers if for all x ∈ k, there exists

some y ∈ k∨ such that F (x, y) 6= 0. Such an F exists if and only if dim a = dim a∨.

Assume F is a non-degenerate 2-form in c and let x ∈ g and ξ ∈ g∗. Choose y0 ∈ g∨

such that q(x) = q∨(y0), then p−1(x) = {(x, y0 + z) : z ∈ a∨}. There exists a unique z0 ∈ a∨

such that (p∗ξ − F ((x, y0), ·)) |k = F ((0, z0), ·)|k. Denote ux = (x, y0 +z0) ∈ c, then we have

that p∗ξ − F (ux, ·) annihilates on k so it is the pullback of a 1-form in g∨. Notice that ux
does not depend on the choice of y0. We shall define σξ ∈ g∨∗ such that

p∗ξ − F (ux, ·) = p∨∗σξ. (3.4)

The duality of Lie algebras we introduce below, corresponds to an infinitesimal version

of the T -duality of principal torus bundles introduced in the previous section.

Let g be a Lie algebra together with a closed 3-form H. Let a be an abelian ideal of

g, we say that the triple (g, a, H) is admissible if H(x, y, ·) = 0 for all x, y ∈ a. Notice that

when dim a = 1 then any closed 3-form gives an admissible triple.

Definition. Two admissible triples (g, a, H) and (g∨, a∨, H∨) are said to be dual if g/a '
n ' g∨/a∨ and there exist a 2-form F in c which is non-degenerate in the fibers such that

p∗H − p∨∗H∨ = dF .
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Example 3.3. Let g be the n dimensional abelian Lie algebra and a any m dimensional

proper subspace. Therefore (g, a, H) is dual to itself if and only if H is a basic form, that

is, it is a pullback from a form on g/a. Notice that for any F ∈ Λ2c∗ we have dF = 0.

In some cases we will say that g and g∨ are dual meaning that there exist H,H∨, a, a∨

such that (g, a, H) and (g∨, a∨, H∨) are dual admissible pairs. In order to prove existence

of duals, we will discuss the structure of an admissible triple in terms of a suitable basis of

its Lie algebra.

Let (g, a, H) be an admissible triple and let {x1, . . . , xm} be a basis of a. Complete this

basis up to a basis of g: {y1, . . . , yt, x1, . . . , xm}. Then we identify n as the vector space

spanned by y1, . . . yt. As in the proof of Lemma 3.1 dη ∈ Λ2{y1, . . . , yt} for all η ∈ g∗.

Since H(xi, xj , ·) = 0 for all i, j = 1, . . . ,m, this 3-form in the basis above has the form

H =
∑

1≤i<j<k≤t
aijk y

i ∧ yj ∧ yk +
∑

1≤i<j≤t
k=1,...,m

bkij y
i ∧ yj ∧ xk. (3.5)

Notice that if dim a = 1 then the second sum becomes a single term.

Denote δ =
∑

1≤i<j<k≤t aijk y
i ∧ yj ∧ yk and for k = 1, . . . ,m set Ψ∨k = ιxkH =∑

1≤i<j≤t bijk y
i ∧ yj for k = 1, . . . ,m; δ is called the basic component of H with respect

to the basis above. Thus we have H =
∑m

k=1 Ψ∨k ∧ xk + δ.

Closedness of H implies 0 = dH =
∑m

k=1 dΨ∨k ∧ xk +
∑m

k=1 Ψ∨k ∧ dxk + dδ. Notice that∑m
k=1 Ψ∨k ∧ dxk + dδ is in Λ3{y1, . . . , yt} while dΨ∨k ∧ xk has components on xk. Therefore

0 = dΨ∨k = dιxkH, k = 1, . . . ,m (3.6)

dδ = −
m∑
k=1

Ψ∨k ∧ dxk. (3.7)

Theorem 3.4. Let (g, a, H) be an admissible triple with a a central ideal and let

{y1, . . . , yt, x1, . . . , xm} be a basis of a as above. Let a∨ = Rm and define

• Ψ∨ : n× n −→ a∨ given by Ψ∨ = (ιx1H, . . . , ιxmH),

• g∨ = (g/a)Ψ∨ and

• H∨ =
∑m

k=1 z
k ∧ dxk + δ, where δ is the basic component of H with respect to the

given basis of g and {z1, . . . , zm} is a basis of a∨.

Then (g∨, a∨, H∨) is an admissible triple and is dual to (g, a, H).

Conversely, if (g∨, a∨, H∨) is dual to (g, a, H), then there exist a basis {x1, . . . , xm} of

a and a basis {z1, . . . , zm} of a∨ such that the formulas above hold.

Proof. The 2-form Ψ∨ : n × n −→ a∨ defined by components as Ψ∨ = (ιx1H, . . . , ιxmH)

is closed because of Equation (3.6). So the central extension of n by Ψ∨, denoted by g∨,

is well defined. The central ideal appearing in this central extension is a∨ = Rm; denote

{z1, · · · , zm} the basis of a∨ such that dzk = Ψ∨k .

– 8 –
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The 3-form H∨ =
∑m

k=1 z
k∧dxk +δ verifies dH∨ =

∑m
k=1 dz

k∧dxk +dδ =
∑m

k=1 Ψ∨k ∧
dxk + dδ = 0 in virtue of (3.7), so H∨ is closed. By definition H∨(zi, zj , ·) = 0 so the triple

(g∨, a∨, H∨) is an admissible triple.

Notice that dxk, dzk and δ are 2-forms in n so their pullbacks by p and p∨ coincide.

In the correspondence space c consider the 2-form F =
∑m

k=1 p
∨∗zk ∧ p∗xk. Then F is

non-degenerate in the fibers and satisfies

p∗H − p∨∗H∨ = p∗

(
m∑
k=1

dzk ∧ xk + δ

)
− p∨∗

(
m∑
k=1

zk ∧ dxk + δ

)

=
m∑
k=1

p∗dzk ∧ p∗xk −
m∑
k=1

p∨∗zk ∧ p∨∗dxk

=
m∑
k=1

p∨∗dzk ∧ p∗xk −
m∑
k=1

p∨∗zk ∧ p∗dxk

= d

(
m∑
k=1

p∨∗zk ∧ p∗xk
)

= dF.

Therefore the triples are indeed dual triples.

Now we prove the converse. Assume (g∨, a∨, H∨) is dual of (g, a, H), then g∨ has a

central ideal a∨ such that g∨/a∨ ' n ' g/a and g∨ is the central extension of n by a closed

2-form Ψ∨.

The 2-form F ∈ Λ2c∗ given by the duality restricts to a non-degenerate form F :

k × k∨ −→ R. Let {z1, . . . , zm} a basis of a∨ and Ψ∨ = (dz1, . . . , dzm), then g∨ = nΨ∨ by

Lemma 3.1.

For each k = 1, . . . ,m denote z̃k = (0, zk) ∈ k∨ and notice that dz̃k = p∨∗dzk, then

there exists x̃k = (xk, 0) ∈ k such that F (·, x̃k) = z̃k. Clearly, {x1, . . . , xm} is a basis of

a. Moreover ιx̃kdF = ιx̃kp
∗H = p∗ιxkH but at the same time ιx̃kdF = −dιx̃kF because

x̃k is central, therefore p∨∗dzk = p∗ιxkH. The 3-form H being admissible for a implies

that ιxkH is basic and so is dzk, so the previous equality implies ιxkH = dzk and hence

Ψ∨ = (ιx1H, . . . , ιxmH). Following similar steps as in the first part of the proof we obtain

Ψ∨ = (ιx1H, . . . , ιxmH).

Remark. The construction of the dual triple depends on the choice of the elements

{y1, . . . , yt} to complete the basis of g. That is, it depends on the section β : n −→ g

chosen to view n as a vector subspace of g. This is show in Example 3.8 where for different

sections, the obtained 3-forms H∨ and H̃∨ are not only different but also not cohomologous.

Duality is closed in the family of solvable and nilpotent Lie algebras.

Corollary 3.5. If g and g∨ are dual then g is solvable if and only if g∨ is solvable.

Moreover, g is nilpotent if and only if g∨ is so.

Proof. The Lie algebras g and g∨ are central extensions of the same Lie algebra n, so the

result follows from Proposition 3.2.
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H = e123 + e135 + e246 H∨ = e123 + e135 + e146

g = (0, 0, 0, e12, e13, e14) g∨ = (0, 0, 0, e12, e13, e24)

Figure 1. The diagram shows how to construct the dual of a given admissible triple.

Corollary 3.6. For a Lie algebra g and a central ideal a, the triple (g, a, H = 0) is

admissible and a dual g∨ satisfies g∨ ' n⊕Rm as a Lie algebra. In particular if g is 2-step

nilpotent and a contains the commutator of g then g∨ is an abelian Lie algebra and H∨ 6= 0

Example 3.7. One can specify a Lie algebra g by listing the derivatives of a basis

{e1, . . . , en} of g∗ as an n-uple of 2-forms (dek =
∑
ckije

i ∧ ej)nk=1. To simplify the no-

tation we write eij for the 2-form ei ∧ ej . This is the Malcev’s notation for nilpotent Lie

algebras. For example, the 6-uple (0, 0, 0, e12, e13, e14) is the Lie algebra with dual gen-

erated by e1, . . . , e6 such that de1 = de2 = de3 = 0, de4 = e1 ∧ e2, de5 = e1 ∧ e3 and

de6 = e1 ∧ e4. This notation is very useful to explicit a dual of a given admissible triple.

Let g = (0, 0, 0, e12, e13, e14), a = 〈e5, e6〉 and H = e123 + e135 + e246 ∈ Λ3g∗. The triple

(g, a, H) is admissible. In this case Ψ∨ = (e13, e24), g/a = (0, 0, 0, e12) and δ = e123. Then

g∨ = (0, 0, 0, e12, e13, e24) and H∨ = e123 + e135 + e146. Figure 1 illustrates this duality.

Example 3.8. In Theorem 3.4, we choose a complement of a in g by fixing the elements

{y1, . . . , yt}. We now show how a different choice of such a set affects the outcome.

Consider the admissible triple of the previous example

g = (0, 0, 0, e12, e13, e14), a = 〈e5, e6〉, H = e123 + e135 + e246 ∈ Λ3g∗.

Take x1 = e5, x2 = e6 and the basis yi = ei, i = 1, 2, 3, 4 of a complement of a in g.

Then the basic form is δ = e123 and a dual triple is the one given above. The dual Lie

algebra g∨ has a basis wi, i = 1, . . . , 6 such that in the dual basis the differential satisfies

dwi = 0 for i = 1, 2, 3 and dw4 = w12, dw5 = w13 dw6 = w24 and H∨ = w123 +w135 +w146.

Now we consider a different complement of a in g to achieve another dual triple.

In g fix ỹ1 = e1 + e2 + e5, ỹ2 = e1 − e2 + e6, ỹ3 = e1 + e3 + e5, ỹ4 = e4, ỹ5 = e5 and

ỹ6 = e6. (Notice that ỹ5 and ỹ6 should be x1 and x2, respectively. We find more clear for
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computations to maintain the notation with ỹ.) The dual basis ỹi satisfies the following

ỹ1 = e1+e2−e3
2 , e1 = ỹ1 + ỹ2 + ỹ3,

ỹ2 = e1−e2−e3
2 , e2 = ỹ1 − ỹ2,

ỹ3 = e3, e3 = ỹ3,

ỹ4 = e4, e4 = ỹ4,

ỹ5 = e5 − e1+e2+e3

2 , e5 = ỹ1 + ỹ3 + ỹ5,

ỹ6 = e6 + e2+e3−e1
2 , e6 = ỹ2 + ỹ6.

Therefore, g and H can be written alternatively as

g = (0, 0, 0,−2ỹ12 − ỹ13 + ỹ23, ỹ13 + ỹ23, ỹ14 + ỹ24 + ỹ34),

H = −ỹ123 − ỹ124 + ỹ135 + ỹ235 + ỹ146 − ỹ246.

Notice that ιỹ5H = (ỹ1 + ỹ2) ∧ ỹ3 = e13 and ιỹ6H = (ỹ1 − ỹ2) ∧ ỹ4 = e24. Moreover, the

basic component of H in the new basis is

δ̃ = −ỹ123 − ỹ124.

Making use of this basis, we compute the new dual triple (g̃∨, ã, H̃∨) using Theorem 3.4.

For convenience we denote vi the obtained basis of g∨ by duality. Then

g̃∨ = (0, 0, 0,−2v12 − v13 + v23, (v1 + v2) ∧ v3, (v1 − v2) ∧ v4),

ã∨ = 〈v5, v6〉 ,
H̃∨ = −v123 − v124 + (v13 + v23) ∧ v5 + (v14 + v24 + v34) ∧ v6.

The Lie algebras g∨ and g̃∨ are isomorphic since they are central extension of n by the

2-form Ψ∨ = (ιx1H, ιx2H), which does not depend on the chosen complement. We need to

make this isomorphism explicit to compare H∨ with H̃∨.

Let ϕ : g∨ −→ g̃∨ be defined as ϕ(w1) = v1+v2

2 , ϕ(w2) = v1−v2
2 , ϕ(wi) = vi, i =

3, . . . , 6. Then ϕ is a Lie algebra isomorphism and its pullback ϕ∗(v∗)(w) = v∗(ϕ(w))

verifies ϕ∗v1 = 1
2(w1 + w2), ϕ∗v2 = 1

2(w1 − w2), while ϕ∗vi = wi for i = 3, . . . , 6.

Moreover

ϕ∗H̃∨ = ϕ∗
(
−v123 − v124 + (v1 + v2) ∧ v35 + (v1 + v2 + v3) ∧ v46

)
= −1

4
(w1 + w2) ∧ (w1 − w2) ∧ w3 − 1

4
(w1 + w2) ∧ (w1 − w2) ∧ w4

+w135 + (w1 + w3) ∧ w46

=
1

2
(w123 + w124) + w135 + w146 + w346.

Then ϕ∗H̃∨ −H∨ = 1
2(−w123 + w124) + w346 = 1

2d(w34 − w16) + w346, which is not exact

since w346 is not a coboundary.

Theorem 3.9. Let g, g∨ be Lie algebras and let H,H∨ be closed 3-forms in g, g∨, respec-

tively. If there exist abelian ideals a, a∨ such that (g, a, H) and (g∨, a∨, H∨) are admissible

dual triples, then there exists an isomorphism ϕ : g⊕g∗ −→ g∨⊕g∨∗ preserving the Courant

bracket (2.1) and the canonical bilinear form (2.2).

– 11 –



J
H
E
P
0
5
(
2
0
1
8
)
1
5
3

Proof. Let x + ξ ∈ g ⊕ g∗. As discussed before (see eq.(3.4)) nondegeneracy of F implies

that there exist unique ux ∈ c and σξ ∈ g∨∗ such that

p ux = x and p∗ξ − F (ux, ·) = p∗σξ. (3.8)

Thus we can define ϕ : g⊕ g∗ −→ g∨ ⊕ g∨∗ as x+ ξ 7→ ϕ(x+ ξ) = p∨ux + σξ. It is easy to

check that ϕ is a linear isomorphism, moreover for any x, y ∈ g and ξ, η ∈ g∗ we have

〈ϕ(x+ ξ), ϕ(y + η)〉 =
〈
p∨ux + σξ, p

∨uy + ση
〉

=
1

2
(σξ(p

∨uy) + ση(p
∨ux))

=
1

2
(p∗ξ(uy)− F (ux, uy) + p∗η(ux)− F (uy, ux))

=
1

2
(ξ(y) + η(x)).

In order to show that ϕ behaves well with the Courant bracket, that is, for x, y ∈ g

ξ, η ∈ g∗

ϕ([x+ ξ, y + η]H) = [ϕ(x+ ξ), ϕ(y + η)]H∨ , (3.9)

we analyze separately the vector and 1-form parts. From the definitions of the Courant

bracket and ϕ, eq. (3.9) holds if and only if

p∨u[x,y] = [p∨ux, p
∨uy] and (3.10)

α = ip∨uxdση − ip∨uydσξ + ip∨uxip∨uyH
∨ (3.11)

where p∗(ixdη − iydξ + ixiyH)− F (u[x,y], ·) = p∨∗α.

It is clear that p([ux, uy]) = [x, y], moreover for (z, 0) ∈ k we have

p∗(ixdη − iydξ + ixiyH)(z, 0)− F ([ux, uy], ·)(z, 0)

= −η([x, z]) + ξ([y, z]) +H(x, y, z)− F ([ux, uy], (z, 0))

= p∗H(ux, uy, (z, 0))− dF (ux, uy, (z, 0))

= H∨(p∨ux, p
∨uy, p

∨(z, 0))

= 0.

Here we have used the fact that k is in the center of c and dF = p∗H−p∨∗H∨. We conclude

that u[x,y] = [ux, uy] and thus eq. (3.10) holds.

We shall prove that p∨∗α = p∨∗
(
ip∨uxdση − ip∨uydσξ + ip∨uxip∨uyH

∨). Since p∨ is

surjective, eq. (3.11) will hold.

Notice that p∨∗(ip∨uxdση) = ιux(p∨∗dση) and analogous equality holds for the other

forms involved, thus

p∨∗
(
ip∨uxdση − ip∨uydσξ + ip∨uxip∨uyH

∨)
= iuxdp

∨∗ση − iuydp∨∗σξ + iuxiuyp
∨∗H∨

= iuxd(p∗η − ιuyF )− iuyd(p∗ξ − ιuxF ) + iuxiuyp
∨∗H∨

= p∗ixdη − p∗iydξ − ιuxdιuyF − ιuydιuxF + iuxiuy(p∗H − dF )

= p∗ixdη − p∗iydξ + iuxiuyp
∗H − ι[ux,uy ]F.
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Symplectic structure on g H∨-integrable complex structure on a4

a13e
13 + a14e

14 + a23e
23 + a24e

24 J =

(
0 Y −1

−Y 0

)
, Y =

(
a13 a23

a14 a24

)
Table 1. Correspondence of symplectic and H∨-integrable complex structures from example 3.11.

As in the case of global T -duality (see Theorem 2.1), we conclude that the map ϕ is

an isomorphism of the Courant algebroids structures on the Lie algebras, so we have a

bijection between generalized complex structures on dual Lie algebras.

Corollary 3.10. Let (g, a, H) and (g∨, a∨, H∨) be dual triples. If J is a generalized complex

structure on (g, H) then

J̃ := ϕ ◦ J ◦ ϕ−1

is an invariant generalized complex structure on (g∨, H∨).

Remark. Given two infinitesimal T -dual Lie algebras, consider the basis

{y1, . . . , yt, x1, . . . , xm} and {y1, . . . , yt, z1, . . . , zm} as in Theorem 3.4. The matrix

of the isomorphism ϕ on these basis and the corresponding duals has the form

ϕ =


1t×t 0 0 0

0 0 0 −1m×m
0 0 1t×t 0
0 −1m×m 0 0

 .

Example 3.11. Let h3 be the Heisenberg Lie algebra: it has a basis {e1, e2, e3} such that

the only non-zero bracket is [e1, e2] = e3. Consider g = h3 ⊕ R and a = 〈e3〉 ⊕ R ⊂ g. As

observed in Corollary 3.6, (g, a, 0) is dual to (a4, a2, H
∨), where ai is the abelian algebra

of dimension i and H∨ 6= 0. Explicitly, using the Malcev notation: g = (0, 0, e12, 0),

a4 = (0, 0, 0, 0) and H∨ = e123.

The symplectic structures on g are, according to [20], of the form

ω = a12e
12 + a13e

13 + a14e
14 + a23e

23 + a24e
24,

with a14a23 − a13a24 6= 0.

We regard them as generalized complex structures and use Corollary 3.10 to transport

them to generalized complex structures on a4. If a12 = 0 the resulting structure is:

J =

(
0 Y −1

−Y 0

)
with Y =

(
a13 a23
a14 a24

)
.

This endomorphism satisfies J2 = −1 and the generalized complex structure JJ it induces

is integrable with respect to H∨ and is of type 2 (see [10] for notion of type), that is, it is

generalized complex of complex type. Precisely, J is H∨-integrable in accordance to the

definition we give in subsection 3.3.

In table 1 we write explicitly the correspondence between symplectic and H∨-integrable

complex structures.
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3.3 Applications: symplectic structures on 2-step nilpotent Lie algebras

As seen in Corollary 3.6, if g is 2-step nilpotent and [g, g] ⊂ a, (g, a, 0) is dual to (g∨, a∨, H∨),

where g is the abelian algebra and H∨ 6= 0. If, additionally, we have that g is 2n-dimensional

and a is n-dimensional, the symplectic structures of g such that a is Lagrangian are trans-

ported (via ϕ) to complex structures in g∨ such that a∨ is real (this was already observed

in [10]). This is exactly the situation of the Example 3.11 above.

Using this idea, to look for symplectic structures of this kind on 2-step nilpotent

algebra is the same thing than to look for complex structures on abelian algebras. But

since H∨ 6= 0, these complex structures are not the usual ones, they need to be compatible

with H∨ in some sense. In the following we explain this compatibility.

Let J be an almost complex structure on a Lie algebra g, H ∈ Λ3g∗ and consider

JJ : g⊕ g∗ → g⊕ g∗

JJ =

(
−J 0

0 J∗

)
.

JJ is orthogonal and satisfies J 2
J = −1. Suppose its i-eigenspace is involutive with re-

spect to the Courant bracket twisted by H. This is equivalent to the annihilation of the

“Nijenhuis tensor” defined using the Courant bracket:

0 = JJ [·, ·]H − [JJ(·), ·]H − [·,JJ(·)]H − JJ [JJ(·),JJ(·)]H

Plugging in vectors x, y ∈ g and separating vectors and 1-forms we get{
−J [x, y] + [Jx, y] + [x, Jy] + J [Jx, Jy] = 0

J∗(ixiyH) + iJxiyH + ixiJyH − J∗(iJxiJyH) = 0.

The first equation is the usual integrability condition of complex structures. The second

one, when we plug in a third vector z ∈ g, is this rather nice and symmetrical condition:

H(Jx, y, z) +H(x, Jy, z) +H(x, y, Jz) = H(Jx, Jy, Jz) ∀x, y, z ∈ g. (3.12)

One can show that this necessary condition for the involutivity of the i-eigenspace of

JJ is also sufficient.

Definition. An almost complex structure is called H-integrable if it is integrable and sat-

isfies (3.12).

In order to produce a class of symplectic 2-step nilpotent Lie algebras we will fix a

complex structure J on the abelian algebra and check for which H this J is H-integrable.

For each of these H we can build the dual 2-step nilpotent algebra, which has an invariant

symplectic structure: ϕ ◦ JJ ◦ ϕ−1 (see Corollary 3.10).

Let g be the 2n-dimensional abelian Lie algebra with basis {e1, . . . , e2n} and a =

〈en+1, . . . , e2n〉. Let J : g→ g be the complex structure given by Jei = en+i for i = 1, . . . , n.

Let’s check for which H ∈ Λ3g∗ J is H-integrable. For i ≤ n the equation (3.12) with

x = ei, y = en+i, z = ek boils down to

−H(en+1, ei, Jek) = H(ei, en+1, Jek),
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which is not an extra condition on H, since it is already skew-symmetric. This kind

of redundancy happens every time we pick triples ei, ej , ek such that two of them are

related by J .

Now take i, j, k ∈ {1 . . . , n} all distinct (since equation (3.12) holds trivially if, for

instance, x = y). For x = ei, y = ej , z = ek we get

H(en+i, en+j , en+k) = H(en+i, ej , ek) +H(ei, en+j , ek) +H(ei, ej , en+k) (3.13)

For x = Jei = en+i, y = ej , z = ek we get

H(ei, ej , ek) = H(ei, en+j , en+k) +H(en+i, ej , en+k) +H(en+i, en+j , ek) (3.14)

All the other triples give restrictions equivalent to one of these.

For us to be able to build the dual algebra, (g, a, H) must be an admissible triple. This

implies that everything vanishes on equation (3.14) and equation (3.13) becomes

H(en+i, ej , ek) +H(ei, en+j , ek) +H(ei, ej , en+k) = 0. (3.15)

We have
(
n
3

)
equations like this one. We summarize the discussion above in the next

proposition.

Proposition 3.12. The complex structure J is H-integrable if and only if it satisfies

equation (3.15) for all i, j, k.

Remark. One can start with a different complex structure and do the same calculations

above to get a condition similar to (3.15).

Example 3.13. For n = 3 the only equation is (hijk := H(ei, ej , ek))

h234 + h126 = h135

Then H must be

H = (h124e
12 + h134e

13 + h234e
23) ∧ e4

+(h125e
12 + (h234 + h126)e13 + h235e

23) ∧ e5

+(h126e
12 + h136e

13 + h236e
23) ∧ e6

There is only one 6-dimensional 2-step nilpotent Lie algebra that admits no symplectic

form: a5(R)×R = (0, 0, 0, 0, e12 + e34, 0). But its center is 2-dimensional, so it does not fit

in our criteria. There are three 2-step nilpotent Lie algebras with center of dimension 3 or

bigger and table 2 shows suitable choices of H to get each one of these algebras as dual of

the 6-dimensional abelian algebra.

Example 3.14. For n = 4, the
(

4
3

)
= 4 equations are

h127 + h235 = h136 h128 + h245 = h146

h138 + h345 = h147 h238 + h346 = h247

In [11] Wang, Chen and Niu classify the 8-dimensional complex nilpotent Lie algebras

with 4-dimensional center. Ten of such Lie algebras are 2-step nilpotent. Regarding them

as 8-dimensional real Lie algebras, we can choose suitable H for all them, except one:

a5(R)× R3, which is not symplectic. We summarize these computations in table 3.
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2-step nilpotent Lie algebra 3-form H

(0, 0, 0, 0, 0, e12) e126

(0, 0, 0, 0, e12, e13) e125 + e136

(0, 0, 0, 0, e12, e13, e23) e124 + e135 + e126 + e236

Table 2. 6-dimensional 2-step nilpotent Lie algebra and the corresponding 3-form H.

2-step nilpotent Lie algebra 3-form H

(0, 0, 0, 0,−e12 − e34,−e13, 0, 0) −e136 − e127 − e347

(0, 0, 0, 0,−e12 − e34,−e13 − e24, 0, 0) −e136 − e246 − e127 − e347

(0, 0, 0, 0,−e12,−e23,−e24, 0) −e235 + e127 − e348

(0, 0, 0, 0,−e12,−e23,−e34, 0) −e125 − e236 − e347

(0, 0, 0, 0,−e12 − e34,−e23,−e24, 0) −e235 + e127 + e347 − e248

(0, 0, 0, 0,−e12 − e34,−e13,−e24, 0) −e125 − e345 − e246 + e138

(0, 0, 0, 0,−e12,−e23,−e34,−e24) −e125 − e236 − e347 − e248

(0, 0, 0, 0,−e12,−e23,−e34,−e14) −e125 − e236 − e347 − e148

(0, 0, 0, 0,−e12,−e23,−e34,−e13 − e24) −e345 − e126 − e237 + e138 + e248

Table 3. 8-dimensional 2-step nilpotent Lie algebra and the corresponding 3-form H.

4 T -duality on nilmanifolds

4.1 Structure of nilmanifolds

A nilmanifold is a compact homogeneous manifold E = Λ\G where G is a simply connected

nilpotent Lie group G and Λ is a discrete cocompact subgroup. We say that E is k-step

nilpotent if G is so.

Recall that the exponential map exp : g −→ G of a simply connected nilpotent Lie

group is a diffeomorphism [27]. A result by Malcev states that G admits a discrete co-

compact subgroup (also called a lattice) if and only if there exists a basis of g for which

the structure constants are rationals [22]. Equivalently, g = g0 ⊗Q R for some Lie algebra

g0 over Q. Given a lattice Λ of G, Λ• = spanZ exp−1(Λ) is a discrete subgroup of the

vector space g of maximal rank and the structure constants of a basis contained in Λ• are

rationals. Conversely, assume g has a basis such that the structure constants are rationals

and let g0 be the Lie algebra over Q spanned by this basis. Then for any discrete subgroup

Λ• of maximal rank contained in g0, the subgroup 〈exp Λ•〉 of G is a discrete cocompact

subgroup.

Any left invariant differential form on G induces a differential form on E. A differential

form ω on E is called invariant if α∗ω is left invariant, where α : G −→ E is the quotient

map. Invariant forms on G are in one-to-one correspondence with alternating forms on g,

the Lie algebra of G. The de Rham cohomology of a nilmanifold E = Λ\G can be computed
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from the Chevalley-Eilenberg complex of the Lie algebra g of G [19]. In particular, any

closed differential form on E is cohomologous to an invariant one.

Below we introduce the structure of nilmanifolds as the total space of principal torus

bundle over another nilmanifold.

Let E = Λ\G be a nilmanifold and let A be a non-trivial m-dimensional central normal

subgroup of G (always exists since G is nilpotent). Hence N = G/A is a nilpotent Lie group.

The subgroup Λ ∩ A is a lattice in A [22] and T = (Λ ∩ A)\A is an m-dimensional torus.

Since A ⊂ Z(G), the center of G, one has a right action of T on E

x · a = Λg · (Λ ∩A)z = Λgz ∈ E, for x = Λg ∈ E, a = (Λ ∩A)z ∈ T.

The quotient space M = E/T is diffeomorphic to Γ\N where Γ = ΛA/A ' Λ/Λ ∩ A is a

discrete cocompact group of N , thus M = Γ\N is a nilmanifold. Therefore E is the total

space of the principal bundle q : E −→M with fiber T . Given Λg ∈ E, denote by [Λg]T its

orbit under the T action, then the fiber bundle map satisfies q([Λg]T ) = Γn where n = gA.

For future reference we denote (G,A,Λ) the principal fiber bundle constructed above.

Notice that two fiber bundles (G,A,Λ) and (G̃, Ã, Λ̃) are equivalent if and only if

each of the corresponding groups in the triple are isomorphic. In fact, since Λ is the first

homotopy group of Λ\G, the existence of a diffeomorphism f : Λ\G −→ Λ̃\G̃ implies

Λ ' Λ̃. Mostow’s rigidity theorem [22, Theorem 3.6] asserts that this isomorphism extends

to an isomomorphism between G and G̃. Since A and Ã are abelian of the same dimension,

we conclude the isomorphisms between them all.

Although the following result seems to be well known in the geometry community, the

only proof available in the literature is for 2-step nilmanifolds which was given by Palais

and Stewart. For the sake of completeness of the presentation we include a sketch of the

proof here, which is a generalization of that in [21].

Theorem 4.1. A connected compact differential manifold E is a nilmanifold if and only

if it is the total space of a principal torus bundle over a nilmanifold.

Proof. We already showed how a nilmanifold can be realized as the total space of a torus

bundle over a nilmanifold so we focus on the converse.

Let E be a compact manifold and q : E −→ M a principal fiber bundle map with an

m-dimensional torus T as structure group and M = Γ\N a nilmanifold. Denote a and n

the Lie algebras of T and N respectively.

Let ω be a connection in E and let Ω be its curvature form. Recall that all possible Ω

lie inside a unique cohomology class [16]. This is an a-valued 2-form on E and since T is

abelian we have Ω = q∗Ω0 with dΩ0 = 0. There exist an N -invariant closed 2-form Ψ0 on M

and a 1-form θ, both with values on a, such that Ω0−Ψ0 = dθ [19]. The 2-form ω̃ = ω−q∗θ
defines a connection in E with curvature Ω̃ = dω̃ = dω − dq∗θ = Ω− q∗dθ = q∗Ψ0. Notice

that Ψ0 is induced by the left translation of a 2-form Ψ : n× n −→ a, which is closed in n.

Each Z ∈ a induces a vector field in E and this assignment from a to X (E) is injective,

so we identify Z ∈ a with its corresponding vector field in E. Moreover, each X ∈ n induces

a left invariant vector field on N which projects to a vector field on M , we denote X̃ the
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vector field on E which is its horizontal lift with respect to ω̃. The following is an equality

for vector fields in E induced by X,Y ∈ n

[X̃, Ỹ ] = [̃X,Y ] + Ω̃(X̃, Ỹ ) = [̃X,Y ] + Ψ0(X,Y ) = [̃X,Y ] + Ψ(X,Y ). (4.1)

Let g = n ⊕ a = nΨ be the central extension of n by Ψ and let G be the simply

connected nilpotent Lie group with Lie algebra g. Then A = exp a is a closed, connected

and simply connected central ideal of G [27, Theorem 3.6.2]. Moreover N ' G/A, we

denote β : G −→ N the quotient map.

Define ξ : g −→ X (E), given by ξ(X) = X̃ if X ∈ n and ξ(Z) = Z if Z ∈ a. The fact

that [Ỹ , Z] = 0 for any horizontal lift Ỹ of a vector field in M and eq. (4.1) imply that ξ

is an injective Lie algebra homomorphism.

The map ξ is an infinitesimal action of G on E and E is compact so we can lift this

action [27, Theorem 2.16.9] to a right action of G on E. Given g ∈ G and x ∈ E, let X ∈ g

be the unique such that exp X = g, then the action of g on x is

x · g = σξ(X),x(1), where σξ(X),x is the integral curve of ξ(X) starting at x. (4.2)

In the rest we prove that this is a transitive action and with discrete isotropy.

The action in (4.2) behaves as follows. If g ∈ A then g = expZ for some Z ∈ a

and ξ(Z)x = d
dt |0(x · expT tZ), so we have σξ(Z),x(t) = x · expT tZ, where expT : a −→ T .

Hence x · g = x · expT Z. In particular x · g = x if and only if x = x · expT Z and this

occurs if and only if Z ∈ Zm. Thus the isotropy subgroup Gx of any point x ∈ E verifies

Gx ∩A = expZm.

Let now g = expY for some Y ∈ n. Then σξ(Y ),x is an horizontal curve which is

the horizontal lift through x of τ , where τ(t) = Γu expN tY , Γu = q(x). Notice that the

infinitesimal vector field on E generated by Y by the G-action is the horizontal lift of the

infinitesimal vector field generated by Y on M by the N -action. Finally, let g = expX

where X = Y + Z, Y ∈ n, Z ∈ a. Consider γ(t) = σξ(Y ),x(t) · expT tZ. Then γ(0) = x and

for t0 ∈ R we have

d

dt |t0
γ(t) =

d

dt |t0

(
σξ(Y ),x(t) · expT t0Z

)
+
d

dt |t0

(
σξ(Y ),x(t0) · expT tZ

)
. (4.3)

The curve σξ(Y ),x(t) ·expT t0Z is the horizontal lift of an integral curve of the vector field on

M induced by Y through the point x · expT t0Z, thus its derivative at t0 is the vector field

ξ(Y ) evaluated at the point σξ(Y ),x(t0) · expT t0Z = γ(t0). In addition, σξ(Y ),x(t0) · expT tZ

is a curve tangent to the fiber and its derivative at t0 is Z evaluated at γ(t0). Therefore
d
dt |t0

γ(t) = Ỹγ(t0) + Zγ(t0) = ξ(X)γ(t0) and thus σξ(X),x(t) = γ(t) = σξ(Y ),x(t) · expT tZ. In

particular

x · g = σξ(Y ),x(1) · expT Z. (4.4)

Let e be the identity of N and fix x0 ∈ q−1(e). Let W = q−1(U) where U a neighbor-

hood of Γ ∈M , choose w ∈W and denote r = q(w). There is some n ∈ N such that Γ·n = r

and moreover n = expN Y for some Y ∈ n. Thus q(σξ(Y ),x0(1)) = r, since σξ(Y ),x0 is the hor-

izontal lift of Γ expN tY through x0. So there is some a ∈ T such that σξ(Y ),x0(1) · a = w.
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Let Z ∈ a be such that expT Z = a, then we obtain w = σξ(Y ),x0(1) · expT Z which by

eq. (4.4) is x0 · g for g = exp(Y +Z). Therefore W ⊂ x0 ·G and the x0 orbit is open. Since

the orbit is also closed we have x0 ·G = E and the action is transitive.

In particular E is diffeomorphic to Gx0\G where Gx0 is the isotropy at x0. By con-

struction dimG = dimN + dimT = dimM + dimT = dimE so the isotropy is a discrete

subgroup of G and E is a nilmanifold.

Continue with the notation in the proof. Consider the map α : G −→ E given by

g 7→ x0 · g, and π : N −→M the quotient map. At this point is clear that the following is

a commutative diagram

G
α−→ E

β ↓ ↓ q
N

π−→ M,

(4.5)

and if we denote Λ = Gx0 then β(Λ) = Γ, that is, ΛA/A = Γ. Moreover, Λ∩A = expT Zm

and thus T ' Λ ∩A\A. We obtain the following.

Corollary 4.2. Let q : E −→M be a principal torus bundle with M = Γ\N a nilmanifold.

Then there exists a simply connected nilpotent Lie group G, a central subgroup A of G and

a lattice Λ of G such that q : E −→M is equivalent to (G,A,Λ) as principal bundles.

From the proof above, in the triple (G,A,Λ) the Lie group G is the central extension

of N by the curvature of a connection in q : E −→M , A is a central subgroup of G of the

same dimension of the fiber and Λ is a lattice of G projecting over Γ by β.

4.2 T -duality on nilmanifolds

Because of its natural structure of principal torus bundles, nilmanifolds are, then, a good

context to work with T -duality as introduced in subsection 2.2.

Fix a principal torus bundle q : E −→ M where M is a nilmanifold and identify it

with its corresponding triple (G,A,Λ) given by Corollary 4.2.

Definition. An invariant closed 3-form H on E is admissible for the bundle q : E −→M

if H(X,Y, ·) = 0 for any X,Y vector fields tangent to A.

Admissibility of the 3-form is independent of the lattice. In fact, if H is admissible for

q : E −→M , identified with (G,A,Λ), then H is admissible for (G,A, Λ̃) for any Λ̃ lattice

in G. Clearly, H being admissible for (G,A,Λ) implies (g, a, H) is an admissible triple.

Definition. Let q : E −→ M be a principal torus bundle and let H be an admissible

closed 3-forms. A manifold E∨ together with a 3-form H∨ is said to be invariantly dual

to (E,H) if E∨ is the total space of a principal torus bundle over M , H∨ is an admissible

form for this bundle and (E∨, H∨) is T -dual to (E,H) with invariant 2-form F in the

correspondence space. (Notice that E ×M E∨ is also a nilmanifold.)

The following is a clear result.
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Proposition 4.3. Let E and E∨ be torus bundles over the same nilmanifold M and let

H and H∨ be corresponding admissible closed 3-forms for each bundle. If (E,H) and

(E∨, H∨) are invariant T -duals then (g, a, H) and (g∨, a∨, H∨) are dual triples.

The next example is due to Mathai and Rosenberg [18] (see also [17]).

Example 4.4. The 3-dimensional Heisenberg Lie group H3 can be realized on R3 with its

usual differentiable structure together with the multiplication law

(x, y, z) · (x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − yx′)

)
.

A basis of left invariant vector fields satisfying the relation [X1, X2] = X3 and its corre-

sponding dual basis is given, at (x, y, z) ∈ R3, by

X1 = ∂x − y
2∂z ω1 = dx

X2 = ∂y + x
2∂z ω2 = dy

X3 = ∂z ω3 = dz + 1
2(ydx− xdy).

Finally, the exponential map exp : h3 −→ H3 is the identity, that is, exp(aX1+bX2+cX3) =

(a, b, c) for all a, b, c ∈ R.

As usual, identify the tangent bundle of H3 × H3 at a point (g, g′) with the sum of

the tangent bundle at g and g′; similarly for the cotangent bundle. Denote p and p∨ the

projections over the first and second coordinates, respectively. Restrict these projections to

the Lie subgroup C = {(g, g′) ∈ H3×H3 : g = (x, y, z), g′ = (x, y, z′), x, y, z, z′ ∈ R}, then

we have Ωi := p∗ωi = (ωi, ωi) for i = 1, 2, p∗ω3 = (ω3, 0) =: Ω3 and p∨∗ω3 = (0, ω3) =: Ω̃3,

where dΩ3 = dΩ̃3 = Ω1 ∧ Ω2. These are invariant 1-forms in C.

For each k ∈ N let Λk be the discrete cocompact subgroup Λk = Z × Z × 1
2kZ and

denote Ek = Λk\H3. This is the total space of a principal S1 bundle over T 2 and if A is

the center of H3, then (H3, A,Λk) is the associated triple to this bundle.

Let T 3 = Z3\R3 be the 3-torus and let fk : Ek −→ T 3, fk(Λk(x, y, z)) = Z3(x, y, 2kz);

this is a well defined differentiable mapping. Let volk = f∗k (vol) where vol = dx∧dy∧dz is

the canonical volume form in T 3, then volk = 2kω1 ∧ ω2 ∧ ω3 and it is clearly an invariant

closed 3-form in Ek; moreover volk is admissible for (H3, A,Λj), for any j. For each j, k ∈ N,

the pair (Ek, 2jvolk) is invariantly T -dual to (Ej , 2kvolj), as we establish below.

The subgroup Λk × Λj ∩ C is a lattice of C since the nilmanifolds fiber over M = T 2.

Moreover W := Λk ×Λj ∩C\C is the correspondence space for the bundle maps q and q∨.

The invariant forms Ωi and Ω̃3 are induced to W so we take F = 4jkΩ̃3 ∧ Ω3 which is an

invariant non-degenerate 2-form in W . We now have

dF = 4jk(Ω1 ∧ Ω2 ∧ Ω3 − Ω̃3 ∧ Ω1 ∧ Ω2)

= 2j(2kΩ1 ∧ Ω2 ∧ Ω3)− 2k(2jΩ1 ∧ Ω2 ∧ Ω̃3)

= p∗(2jvolk)− p∨∗(2kvolj),

so the (invariant) T -duality is proved.
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Remark. The previous example can be extended. For any j, k ∈ N the pair (Ek, H) is

invariantly T -dual to (Ej , H), if H is a non-zero left-invariant closed 3-form in H3 (induced

to the nilmanifold).

In fact both Ek and Ej are torus bundles over T 2, and because of dimensionality

reasons, H = λω1 ∧ ω2 ∧ ω3 for some λ 6= 0. As above, the 2-form F = λΩ̃3 ∧Ω3 gives the

duality.

Notice that Ej is not diffeomorphic to Ej′ if j 6= j′ since Λj is not isomorphic to Λj′ .

Let q : E −→ M be a torus bundle over a nilmanifold, let H be an admissible 3-form

and let (g, a, H) be the associated Lie algebra admissible triple. Consider G∨ the simply

connected nilpotent Lie group associated to a Lie algebra g∨ dual to g as described in

Theorem 3.4. We will prove an existence result under the assumption that H satisfies a

rational condition which, in particular, warrants the existence of lattices in G∨.

The principal torus bundle q : E −→ M over the nilmanifold M is equivalent to the

bundle (G,A,Λ). The set Λ• = spanZ exp−1(Λ) is a discrete subgroup of g of maximal

rank and Λ• ∩ a is a discrete subgroup of a. The quotient map β : G −→ N projects Λ to

the lattice Γ in N . The discrete subgroup of n corresponding to Γ is Γ• = spanZ exp−1(Γ)

and satisfies β∗(Λ•) = Γ•, where here β∗ is the differential of β at the identity.

The set g0 = spanQ exp−1(Λ) is a Lie algebra over Q and g = g0 ⊗Q R. We may

choose a basis B = {Y1, . . . , Ys, X1, . . . , Xm} of g0 such that Λ• ∩ a = ZX1 + · · · + ZXm;

the structure coefficients in this basis are rational numbers.

Theorem 4.5. Let q : E −→ M be a principal torus bundle, identified to (G,A,Λ), and

let H be an admissible closed 3-form. Let (g∨, a∨, H∨) be a dual triple to (g, a, H).

Assume ιXiH(Yj , Yk) ∈ Q for all i, j, k in a basis as above. Then there exists a lattice

Λ∨ in G∨ such that (G∨, A∨,Λ∨) is invariantly T -dual to q : E −→M .

Proof. Let Z1, . . . , Zm be a basis of a∨ so that B∨ = {Y1, . . . , Ys, Z1, . . . , Zm} is a basis of

g∨ = n⊕ a∨. The Lie brackets of these basic elements are

[Yi, Yj ]g∨ = [Yi, Yj ]n + ιX1H(Yi, Yj)Z1 + · · ·+ ιXmH(Yi, Yj)Zm.

Thus the structure constants corresponding to the basis B∨ are rational. Consider the

subset Λ∨• = Γ•+ZZ1 + · · ·+ZZm of g∨; this is a discrete (aditive) subgroup of g∨ since Γ•
is such a subgroup of n and g∨ = n⊕ a∨. Moreover, Γ• is of maximal rank m+ s and it is

contained in g0 = spanQ B∨. According to [22, Theorem 2.12] the subgroup generated by

exp(Λ∨• ), which we shall denote Λ∨, is a discrete subgroup of G∨ and Λ∨\G∨ is compact.

We need to show that A∨Λ∨/A∨ ' Γ = AΛ/A in order to prove that Λ∨\G∨ is in fact

the total space of a torus bundle over Γ\N .

Denote β∨ : G∨ −→ N the quotient map and its differential at the identity by β∨∗ .

Because of the definition and the commutative diagram

g∨
exp−→ G∨

β∨∗ ↓ ↓ β∨

n
exp−→ N,
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we have that β∨(Λ∨• ) = Γ• which implies β∨∗ (exp Λ∨• ) = exp Γ• and, since β∨ is an homo-

morphism β∨(〈exp Λ∨• 〉) = 〈exp Γ•〉, or equivalently, A∨Λ∨/A∨ = β∨(Λ∨) = Γ.

Example 4.6. Let G = H3 × R modeled on R4 using the coordinates (x, y, z, t) where

(x, y, z) ∈ H3 given in Example 4.4 and t is the coordinate on R. We have Xi, i = 1, · · · , 4
a basis of left invariant vector fields such that the only nonzero bracket on this basis is

[X1, X2] = X3. Let Λ be the discrete subgroup of G of points with each coordinate an

integer, Λ = Z4. The manifold E = Λ\G is known as the Kodaira-Thurston nilmanifold.

Let A = Z(G) and H = 0 then, clearly, H is an admissible closed 3-form for (G,A,Λ)

and H satisfies the rational condition in Theorem 4.5. Moreover, in Example 3.11 we have

seen that (h3 ⊕ R, a, 0) is dual to (a4, a2, H
∨) with ai abelian Lie algebras of dimension

i, and H∨ 6= 0. Thus there exists a lattice Λ∨ ⊂ R4 such that (E, 0) is T -dual to T 4 =

(Λ∨\R4, H∨). In particular, there is a bijection between invariant generalized complex

structures on E and those on T 4, with the corresponding 3-forms.

Remark.

a) T -duality between the Kodaira-Thurston nilmanifold and the 4-dimensional torus,

and the correspondence of generalized complex structures, has been studied by Aldi

and Heluani [3], via the understanding of the complex structures on the 8-dimensional

product space E × T 4.

b) The homological mirror symmetry between the Kodaira-Thurston nilmanifold and T 4

was recently established by Abouzaid, Auroux, Katzarkov and Orlov [2] (see also [1]).

c) In [10] it was already noticed that every 2-step nilmanifold with vanishing 3-form is

T -dual to a torus with nonvanishing 3-form.
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