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The robust local stabilization of uncertain discrete-time systems with time-varying state delayed and subject to saturating actuators
is investigated in this work. A convex optimization method is proposed to compute robust state feedback control law such that the
uncertain closed-loop is locally asymptotically stable if the initial condition belongs to an estimate of the region of attraction for
the origin. The proposed procedure allows computing estimates of the region of attraction through the intersection of ellipsoidal
sets in an augmented space, reducing the conservatism of the estimates found in the literature. Also, the conditions can handle the
amount of delay variation between two consecutive samples, which is new in the literature for the discrete-time case. Although
the given synthesis conditions are delay dependent, the proposed control law is delay independent, yielding to easier real time
implementations. A convex procedure is proposed to maximize the size of the set of safe initial conditions. Numerical examples are
provided to illustrate the effectiveness of our approach and also to compare it with other conditions in the literature.

1. Introduction

We are concerned with the robust local stabilization of
discrete-time systems with time-varying delay in the state
subject to saturating actuators. Note that discrete-time sys-
tems with delayed state have been widely investigated in the
literature and, in most of the cases, the approach based on
Lyapunov-Krasovskii function has been used [1, 2]. Recent
advances on discrete-time delayed state systems include
several works where an improved (double) summation
inequality is employed or some tighter sum over bounds (for
instance, Wirtinger’s inequalities) yielding less conservative
analysis conditions [3–6]. Although handling time-varying
delay, none of these conditions are able to take into account
bounds on the amount of variation of the delay between
two successive instants. The estimate of region of safe initial
conditions is also considered in [7] through augmented
delay-free state representation by means of D-invariant and
D-contractive sets. Besides this work, we can find similar
studies in [8–11], but the saturating actuator is not addressed.
However, it is interesting to reinforce that the delay is constant

and known. In fact, differently from the continuous-time
case, all conditions we have found in the literature assume
that the time-varying delay, 𝜏𝑘, can jump from its lower
bound, usually 𝜏𝑘 = 𝜏 = 1 at one instant, to its maximum
value, 𝜏, in the next instant, i.e., 𝜏𝑘+1 = 𝜏. Therefore, it
is expected that such an assumption leads to conservative
analysis and synthesis conditions.

Another relevant issue in control systems concerns sat-
urating actuators, which can reduce performance or even
leads the closed-loop system to unstable behavior [12, 13].
Therefore, a fundamental (and difficult) task is to estimate
the region of safe initial conditions, i.e., an estimate of the
set of initial conditions such that the closed-loop trajectories
starting from there remain bounded and go asymptotically
to the origin (the local equilibrium point). Such a region is
not easily characterized specially for delayed state systems,
because it is required to characterize a sequence of vectors
and not only a vector for a complete initial condition
(thus ensuring uniqueness of solutions). A few works are
found in the literature handling saturating actuators in the
context of discrete-time delayed systems such as [14–19].
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The description of the saturating function can be done by a
polytopic based representation [15–17] or through a sector
condition approach as in [14, 17–19] in the context of fuzzy
systems. The estimates of the region of initial conditions
may be characterized in different ways as we can verify in
literature. One of the first approaches was to represent such a
region by ball in R𝑛. In this case, both the current state and
the delayed ones are required to belong to the ball [15, 16]. A
more general approach has been considered in [14, 17], where
two balls in R𝑛 have been used: one where the current and
delayed states must belong and the other to bound the norm
of the time variation of the sequence of initial states. By a
special choice of the radius of later ball, one can recover the
representation in [15, 16]. This is discussed later in this work.
A more recent approach used in [18, 19] also employs two
sets to characterize the region of safe initial conditions: an
ellipsoidal set inR𝑛 that contains the current state vector and
a ball in R𝑛, where all delayed states must belong. However,
none of these works can handle bounds on the amount of
variation of the delay between two successive samples.

Inspired by [20], we introduce a new characterization
of the region of initial conditions by using an augmented
space where each point corresponds to a sequence of vectors
corresponding to an initial condition. The delayed system is
represented by an augmented delay-free switched systemwith
the delay as the switch function. The saturating actuator is
handled by the generalized sector condition [21]. As argued
by the authors of [20], this approach has a great appeal-
ing because an augmented Lyapunov candidate function
is employed, which is equivalent to a quite general set of
Lyapunov-Krasovskii candidate functions. Thanks to this
approach, we can handle the case with null delay, which is
usually avoided in the literature. See [3–6, 14–20, 22]. Another
highlight of our work is the possibility of feedback of the
current state or the current state with all delayed ones or
with only the delayest one. These control laws are all delay
independent in the sense that they dismiss the knowledge of
the current state value, which facilitate their use in control
applications. On the other hand, the proposed conditions
are delay-dependent ones. Two numerical examples are
presented to illustrate our approach. Also, we compare our
approach with others found in the literature showing that our
conditions lead to less conservative results.

Notation. The symbol ⋆ represents the transpose of the
blocks symmetric with respect to themain diagonal of square
symmetric matrices with real entries. Matrices I and 0 stand
for identity and null matrices, respectively, with appropriate
dimensions.The sets of real and integer numbers are noted by
R andZ, respectively.The set ofmatrices with real entries and
with dimensions𝑚×𝑛 isR𝑚×𝑛. A block diagonal matrix with
the matrices 𝑀1 and 𝑀2 in the diagonal blocks is noted as
block-diag {𝑀1,𝑀2}. The 𝑖𝑡ℎ line of the matrix (or vector)𝑀 is denoted by 𝑀(𝑖). If 𝜑 is a sequence of vectors, then its𝑗𝑡ℎ element is noted by [𝜑]𝑗. The sequence 𝜑𝑑,𝑘 ∈ 𝐸𝜙, with𝐸𝜙 = 𝐸1 × 𝐸2 × ⋅ ⋅ ⋅ × 𝐸𝑑+1, 𝐸𝑗 ⊆ R𝑛, has its 𝑗𝑡ℎ element
given by [𝜑𝑑,𝑘]𝑗 = 𝑥𝑘+𝑗−(𝑑+1) ∈ 𝐸𝑗, 𝑗 = 1, . . . , 𝑑 + 1. Thus,𝜑𝑑,𝑘 = {𝑥𝑘−𝑑, 𝑥𝑘−(𝑑−1), . . . , 𝑥𝑘}. ‖𝜑𝑑,𝑘‖ = sup𝑗=1,...,𝑑+1|[𝜑𝑑,𝑘]𝑗|
and | ⋅ | refers to the Euclidean norm.

2. Problem Statement

Consider the class of uncertain discrete-time systems with
state delay and saturating actuators described by

𝑥𝑘+1 = 𝐴 (𝛼) 𝑥𝑘 + 𝐴𝑑 (𝛼) 𝑥𝑘−𝜏𝑘 + 𝐵 (𝛼) sat (V𝑘) , (1)

where 𝑥𝑘 = 𝑥(𝑘) ∈ R𝑛 is the state vector, V𝑘 is the linear
control signal, sat(V𝑘) is a decentralized vectorial saturation
function: sat(V𝑘)(𝑖) = V𝑘(𝑖), if |V𝑘(𝑖)| ≤ V(𝑖), sat(V𝑘)(𝑖) =
sign(V𝑘)V(𝑖), otherwise, with V(𝑖), 𝑖 = 1, . . . , 𝑝, being the
symmetrical bound on the values achieved by the 𝑖𝑡ℎ actuator.
The delay in the state is time-varying and represented by 𝜏𝑘
verifying

0 ≤ 𝜏𝑘 ≤ 𝜏. (2)

The matrices of the system are denoted by Υ(𝛼) ≡[𝐴(𝛼) 𝐴𝑑(𝛼) 𝐵(𝛼)] ∈ R𝑛×(2𝑛+𝑝) = [𝐴 𝐴𝑑 𝐵](𝛼) with the
time-invariant uncertain parameter 𝛼 ∈ Ξ where

Ξ = {𝛼 ∈ R
𝑁 : 𝑁∑
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁} , (3)

thematricesΥ(𝛼) belonging to the polytopeSwith𝑁 known
vertices

S = {Υ (𝛼) ∈ R
𝑛×(2𝑛+𝑝) | Υ (𝛼) = 𝑁∑

𝑖=1

𝛼𝑖Υ𝑖, 𝛼 ∈ Ξ} , (4)

and Υ𝑖 ≡ [𝐴 𝑖 𝐴𝑑,𝑖 𝐵𝑖] = [𝐴 𝐴𝑑 𝐵]𝑖. The uniqueness of
the solution of (1) is to ensure assuming an initial condition
given by the sequence 𝜑𝜏,0. Note that, due to the saturating
actuator, an estimate of the initial conditions is also required
to ensure the closed-loop stability of (1) with any control law
yielding V𝑘, as discussed later in this work. A contribution of
this approach is to consider the time variation of the delay 𝜏𝑘
bounded as follows:󵄨󵄨󵄨󵄨𝜏𝑘+1 − 𝜏𝑘󵄨󵄨󵄨󵄨 ≤ Δ𝜏max ≤ 𝜏. (5)

Therefore, the transitions of 𝜏𝑘 between two successive
instants 𝑘 and 𝑘+1 are such that if 𝜏𝑘 = 𝜏, then 0 ≤ 𝜏−Δ𝜏max ≤𝜏𝑘+1 ≤ 𝜏 + Δ𝜏max ≤ 𝜏. We defineC(𝜏) as the set that contains
all possible values that can be assumed by the delay in the next
sample, given its current value 𝜏𝑘 = 𝜏:

C (𝜏) = {𝜏+ ∈ I ⊂ Z : I
≜ [max (𝜏, 𝜏 − Δ𝜏max) , min (𝜏, 𝜏 + Δ𝜏max)]} , (6)

where 𝜏+ = 𝜏𝑘+1. Then, for 𝜏 = 5, 𝜏𝑘 = 1, and Δ𝜏max = 2, we
have C(𝜏) = {0, 1, 2, 3}, which is the set of all possible values
that can be assumed by 𝜏𝑘+1.

The following delay independent control law is investi-
gated to robust stabilize system (1):

V𝑘 = K𝑥𝑘, (7)

where K = [𝐾0 𝐾1 ⋅ ⋅ ⋅ 𝐾𝜏] ∈ R𝑝×(𝜏+1)𝑛 and 𝑥𝑘 =
[𝑥𝑇𝑘 𝑥𝑇𝑘−1 ⋅ ⋅ ⋅ 𝑥𝑇𝑘−𝜏]𝑇 ∈ R(𝜏+1)𝑛. Two particular structures
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of interest for (7) are (i)𝐾𝑖 = 0, 𝑖 = 1, . . . , 𝜏, where only
the current state is used in the feedback, and (ii)𝐾𝑖 = 0, 𝑖 =1, . . . , 𝜏 − 1, where only the current state and the delayed one
are employed to stabilize the closed-loop system. Note that
control law (7) dismisses the real time knowledge of 𝜏𝑘 and,
thus, it is called delay independent. Moreover, its application
in real process is easier than control laws depending on the
delay, as, for instance, V𝑘 = 𝐾0𝑥𝑘 + 𝐾𝜏𝑥𝑘−𝜏𝑘 . Observe that the
notion of stability in state delayed systems requires that all
elements of the sequence 𝜑𝜏,𝑘 goes to the origin as 𝑘 󳨀→ ∞
[1, 26].

Because of the saturation of the actuator, there are initial
conditions 𝜑𝜏,0 that may diverge from the origin even if the
nonsaturated closed-loop system is stable; i.e., the elements
of the sequence 𝜑𝜏,𝑘 do not go to zero as 𝑘 󳨀→ ∞. Therefore,
we adapt the definition of region of attraction,RA, from [13]
as follows.

Definition 1 (region of attraction,RA). The region of attrac-
tionRA of the origin for system (1) is the set of all sequences𝜑𝜏,0 whose respective trajectories converge asymptotically to
the origin, i.e., lim𝑘󳨀→∞𝜑𝜏,𝑘 = {0, . . . , 0}.

Therefore, under saturated actuators it is necessary to
determine the set RA or a subset of it, LV ⊂ RA, as large
as possible, such that the local stability can be ensured. As it
is widely known in the literature, the determination of RA

is very difficult task [13, p. 15] and the determination of an
estimate LV ⊂ RA usually leads to a numerical tractable
conditions. In this sense, the following problem is proposed.

Problem 2 (robust local stabilization). Determine the robust
control gainmatrixK and characterize an estimateLV of the
region of attraction RA such that the trajectories of system
(1)–(5) under control law (7) and initial conditions given by
all sequences 𝜑𝜏,0 with elements taken from LV ∈ RA

converge to the origin, for all 𝛼 ∈ Ξ.
Note that it is embedded in Problem 2 the issue of

consider a bound on the time variation of the delay, which
is also a contribution of this work.

3. Auxiliary Results

In what follows, we present some auxiliary results used to
obtain our main contributions. Inspired by [20], the system
(1) is represented as an augmented switched system, where
the delay 𝜏𝑘 is the switching function:

𝑥𝑘+1 = A (𝛼, 𝜏𝑘) 𝑥𝑘 + B (𝛼) sat (V𝑘) , (8)

where

A (𝛼, 𝜏𝑘)
= [ 𝐴 (𝛼) + Γ0,𝛼,𝜏𝑘 Γ1,𝛼,𝜏𝑘 ⋅ ⋅ ⋅ Γ𝜏−1,𝛼,𝜏𝑘 Γ𝜏,𝛼,𝜏𝑘I𝑛𝜏 0𝑛𝜏×𝑛

] , (9)

Γ𝑖,𝛼,𝜏𝑘 = 𝐴𝑑(𝛼) if 𝑖 = 𝜏𝑘 and Γ𝑖,𝛼,𝜏𝑘 = 0𝑛×𝑛, otherwise,
B(𝛼) = [𝐵𝑇(𝛼) 0𝑝×𝑛𝜏]𝑇, and 𝑥𝑘 given after (7). Using the

control law (7) into system (8), we can get 𝑥𝑘+1 = A(𝛼, 𝜏𝑘)𝑥𝑘+
B(𝛼)sat(K𝑥𝑘). With the aid of the dead zone function,Ψ(V𝑘) = V𝑘 − sat(V𝑘), we sum and subtract B(𝛼)K𝑥𝑘 in
the right side of (8) to get 𝑥𝑘+1 = (A(𝛼, 𝜏𝑘) + B(𝛼)K)𝑥𝑘 −
B(𝛼)Ψ(K𝑥𝑘). To simplify the notation, we assume Ã(𝛼, 𝜏𝑘) =
A(𝛼, 𝜏𝑘)+B(𝛼)K and the closed-loop system can be rewritten
as

𝑥𝑘+1 = Ã (𝛼, 𝜏𝑘) 𝑥𝑘 − B (𝛼)Ψ (K𝑥𝑘) . (10)
Lemma 3 (generalized sector condition [21]). Assume V𝑘
given by (7), V = −V > 0 and a matrix 𝐺 ∈ R𝑝×(𝜏+1)𝑛, such
that

S = {𝑥𝑘 ∈ R
(𝜏+1)𝑛 : 󵄨󵄨󵄨󵄨(K(ℓ) − 𝐺(ℓ)) 𝑥𝑘󵄨󵄨󵄨󵄨 ≤ V(ℓ), for ℓ

= 1, . . . , 𝑝.} . (11)

If 𝑥𝑘 ∈ S, then Ψ(K𝑥𝑘)𝑇𝑇[Ψ(K𝑥𝑘) − 𝐺𝑥𝑘] ≤ 0 is satisfied for
any positive definite diagonal matrix 𝑇 ∈ R𝑝×𝑝.

The stability here is investigated by means of Lyapunov’s
Theorem [1]. A candidate function 𝑉(𝜑𝜏,𝑘, 𝛼, 𝜏𝑘) > 0 is called
a Lyapunov function if there exist positive constants 𝜖𝑖, for𝑖 = 0, 1, 2, such that 𝜖0‖𝑥𝑘‖2 ≤ 𝑉(𝜑𝜏,𝑘, 𝛼𝑘, 𝜏𝑘) ≤ 𝜖1‖𝑥𝑘‖2,
and Δ𝑉(𝜑𝜏,𝑘, 𝛼𝑘, 𝜏𝑘) = 𝑉(𝜑𝜏,𝑘+1, 𝛼, 𝜏𝑘+1) − 𝑉(𝜑𝜏,𝑘, 𝛼, 𝜏𝑘) ≤−𝜖3‖𝑥𝑘‖2 < 0. In this work, we use the following augmented
Lyapunov candidate function:

𝑉 (𝜑𝜏,𝑘, 𝛼, 𝜏𝑘) = 𝑥𝑇𝑘𝑊(𝛼, 𝜏𝑘)−1 𝑥𝑘, (12)
where

𝑊(𝛼, 𝜏𝑘) = 𝑁∑
𝑖=1

𝛼𝑖𝑊𝑖 (𝜏𝑘) , 𝛼 ∈ Ξ. (13)

It is worth noting that (12)-(13) encompass several Lyapunov-
Krasovskii candidate functions (see [20]) and, thus, can yield
less conservative stability and synthesis conditions. Also note
that the mapping provided by (12)-(13) slightly differs from
that proposed in [20] because of the inversion of𝑊(𝛼, 𝜏𝑘).

The estimate of RA is performed here through the level
set LV associated with a contractive set determined by the
augmented Lyapunov function.

Definition 4 (level set,LV). Suppose that the function given
by (12)-(13) is a Lyapunov function for system (8) with (3)-
(5). The level set LV associated with (12)-(13) is defined as
the intersection of the ellipsoidal sets E(𝑊(𝛼, 𝜏𝑘) = {𝑥𝑘 ∈
R𝑛(𝜏+1) : 𝑥𝑇𝑘𝑊(𝛼, 𝜏𝑘)−1𝑥𝑘 ≤ 1}, for all 𝛼 ∈ Ξ and 𝜏𝑘 ∈{0, . . . , 𝜏}.

It is worth saying that the computation of the setLV can
be done as indicated in the next lemma, which is adapted
from [27].

Lemma 5. Suppose a L-K function given by (12)-(13).The level
setLV can be calculated as

LV = ⋂
𝜏∈{0,...,𝜏}
𝛼∈Ξ

E𝑊(𝛼,𝜏𝑘)−1 = ⋂
𝜏∈{0,...,𝜏}
𝑖∈{1,...,𝑁}

E𝑊𝑖(𝜏𝑘)−1 , (14)

with E𝑊𝑖(𝜏)−1 , for 𝑖 = {1, . . . , 𝑁} and 𝜏 ∈ {0, . . . , 𝜏}.



4 Mathematical Problems in Engineering

The level set LV from Lemma 5 is positively invariant
and, thus, a trajectory started inside it goes to the origin.
Therefore, LV is an estimate of RA, providing a set of safe
initial conditions for the elements of the sequence 𝜑𝜏,0: each
point in the space ofLV corresponds to a complete sequence
of initial conditions. Such a set characterization differs from
those used in [14–19], resulting in a more general region.
As shown in the numerical examples, our approach leads to
less conservative estimates of the region of attraction, thus
yielding a larger set of admissible initial conditions with
respect to other conditions in the literature.

4. Robust Local Stabilization

In what follows, we present our main contribution, providing
a solution to Problem 2.

Theorem 6. For a given scalar V, if there exist symmetric and
positive definite matrices 0 < 𝑊𝑖,𝜏 = 𝑊𝑇𝑖,𝜏 ∈ R(𝜏+1)𝑛×(𝜏+1)𝑛,𝜏 = 0, . . . , 𝜏, 𝑖 = 1, . . . , 𝑁, a diagonal positive definite matrix0 < 𝑆 ∈ R𝑝×𝑝, and matrices 𝑈 ∈ R(𝜏+1)𝑛×(𝜏+1)𝑛, 𝑌 ∈ R𝑝×(𝜏+1)𝑛,
and 𝑍 ∈ R𝑝×(𝜏+1)𝑛 such that the following LMIs are satisfied:

[[[
[
−𝑊𝑖,𝑗 A𝑖,𝜏𝑈 + B𝑖𝑌 −B𝑖𝑆⋆ 𝑊𝑖,𝜏 − 𝑈 − 𝑈𝑇 𝑍𝑇
⋆ ⋆ −2𝑆

]]]
]
< 0,

𝑖 = 1 . . . , 𝑁; 𝜏 = 0, . . . , 𝜏; 𝑗 ∈ C (𝜏) ,
(15)

[𝑊𝑖,𝜏 − 𝑈𝑇 − 𝑈 𝑌𝑇(ℓ) − 𝑍𝑇(ℓ)⋆ −V2(ℓ) ] ≤ 0,
𝑖 = 1, . . . , 𝑁; 𝜏 = 0, . . . , 𝜏; ℓ = 1, . . . , 𝑝,

(16)

with

A𝑖,𝜏 = [ 𝐴 𝑖 + Γ0,𝑖,𝜏 Γ1,𝑖,𝜏 ⋅ ⋅ ⋅ Γ𝜏−1,𝑖,𝜏 Γ𝜏,𝑖,𝜏
I𝑛𝜏 0𝑛𝜏×𝑛

] ,
B𝑖 = [ 𝐵𝑖

0𝑛𝜏×𝑝
] ,

(17)

and, for 𝑚 = 0, . . . , 𝜏, Γ𝑚,𝑖,𝜏 = 𝐴𝑑,𝑖 if 𝑚 = 𝜏 otherwise Γ𝑚,𝑖,𝜏 =
0𝑛×𝑛, then the control law (7), with

K = 𝑌𝑈−1, (18)

ensures that the origin of the closed-loop system consisting
of (1)-(7) is robustly asymptotically stable for every initial
condition 𝜑𝜏,0 whose elements are taken in the set LV ⊂ RA

computed as in Lemma 5. Moreover, (12)-(13) are a Lyapunov
function for this system.

Proof. If (15) is verified, then, by its block (1, 1) we have the
positivity of𝑊𝑖,𝑗 ensured and thus, by (12)-(13) we have that𝑉(𝑥𝑘) > 0 for 𝑥𝑘 ̸= 0. Moreover, if we multiply the left-hand
side of (15) by 𝛼𝑖 and sum it up for 𝑖 = 1, . . . , 𝑁, replace 𝑌 and

𝑍 by K𝑈 and 𝐺𝑈, respectively, and rename 𝑗 as 𝜏+ (meaning
the value of 𝜏𝑘 in the next instant), we get

[[[
[
−𝑊(𝛼, 𝜏+) A (𝛼, 𝜏) 𝑈 + B (𝛼)K𝑈 −B (𝛼) 𝑆

⋆ 𝑊 (𝛼, 𝜏) − 𝑈 − 𝑈𝑇 (𝐺𝑈)𝑇
⋆ ⋆ −2𝑆

]]]
]
< 0. (19)

By block (2, 2) of (19) we have ensured the regularity of𝑈 and
from [28], we use the fact −𝑈𝑇𝑊(𝛼, 𝜏)−1𝑈 ≤ 𝑊(𝛼, 𝜏) − 𝑈𝑇 −𝑈; pre- and postmultiply the resulting inequality by T1 =
block-diag {I, 𝑈−1, 𝑆−1} and its transpose to get

[[[
[
−𝑊(𝛼, 𝜏+) A (𝛼, 𝜏) + B (𝛼)K −B (𝛼)

⋆ −𝑊 (𝛼, 𝜏)−1 𝐺𝑇𝑆−1
⋆ ⋆ −2𝑆−1

]]]
]
< 0. (20)

We call Ã(𝛼, 𝜏) = A(𝛼, 𝜏) + B(𝛼)K and apply Schur’s
complement to obtain

[−𝑊(𝛼, 𝜏)−1 𝐺𝑇𝑆−1
⋆ −2𝑆−1]

+ [Ã (𝛼, 𝜏)𝑇−B (𝛼)𝑇 ]𝑊(𝛼, 𝜏+)−1 [Ã (𝛼, 𝜏) −B (𝛼)]
< 0.

(21)

By pre- and postmultiplying (21) by the augmented state𝑋𝑇𝑘 = [𝑥𝑇𝑘 Ψ(K𝑥𝑘)𝑇] and𝑋𝑘, whereΨ(K𝑥𝑘) is the decentral-
ized dead zone function, we can ensure that –𝑥𝑇𝑘𝑊(𝛼, 𝜏)−1𝑥𝑘
+ 2Ψ(K𝑥𝑘)𝑇𝑆−1𝐺𝑥𝑘 − 2Ψ(K𝑥𝑘)𝑇𝑆−1Ψ(K𝑥𝑘) + [𝑥𝑇𝑘 Ã(𝛼, 𝜏)𝑇 −Ψ(K𝑥𝑇𝑘 )B(𝛼)𝑇]𝑊(𝛼, 𝜏+)−1 [Ã(𝛼, 𝜏)𝑥𝑘 − B(𝛼)Ψ(K𝑥𝑘)] < 0.
By (10), we can replace Ã(𝛼, 𝜏)𝑥𝑘 − B(𝛼)Ψ(K𝑥𝑘) by𝑥𝑘+1 and reorganize the expression 2Ψ(K𝑥𝑘)𝑇𝑆−1𝐺𝑥𝑘 −2Ψ(K𝑥𝑘)𝑇𝑆−1Ψ(K𝑥𝑘) as −2Ψ(K𝑥𝑘)𝑇𝑆−1(Ψ(K𝑥𝑘) − 𝐺𝑥𝑘),
which allows to verify Ω𝑘 ≡ 𝑥𝑇𝑘+1𝑊(𝛼, 𝜏+)−1𝑥𝑘+1 −𝑥𝑇𝑘𝑊(𝛼, 𝜏)−1𝑥𝑘 − 2Ψ(K𝑥𝑘)𝑇𝑆−1(Ψ(K𝑥𝑘) − 𝐺𝑥𝑘) < 0. By (12)-
(13), we can write Δ𝑉(𝜑𝜏,𝑘, 𝛼, 𝜏𝑘) = 𝑥𝑇𝑘+1𝑊(𝛼, 𝜏𝑘+1)−1𝑥𝑘+1 −𝑥𝑇𝑘𝑊(𝛼, 𝜏𝑘)−1𝑥𝑘 and calling 𝑇 = 𝑆−1 we can conclude thatΔ𝑉(𝜑𝜏,𝑘, 𝛼, 𝜏𝑘) − 2Ψ(K𝑥𝑘)𝑇𝑇(Ψ(K𝑥𝑘) − 𝐺𝑥𝑘) ≤ Ω𝑘 < 0.
Therefore, we conclude that the feasibility of (15) ensures the
positivity of (12) with (13), the negativity of Δ𝑉(𝜑𝜏,𝑘, 𝛼, 𝜏𝑘),
and, by Lemma 3, we have that 𝑥𝑘 ∈ S. By Lyapunov’s
Theorem [1], the local stability of the uncertain discrete-time
system with state delay and bounded delay variation on time
(1)-(7) is ensured with the control gain given by (18) and
always the state trajectories of the closed-loop system evolve
inside the set S with 𝜖0 = 𝜎‖𝑥𝑘‖2, where 𝜎 is small enough
constant, 𝜖1 = max 𝜏=0,...,𝜏

𝑖=1,...,𝑁

𝜆max𝑊−1𝑖,𝜏 , and for some 𝜖3 > 0.
If (16) is also verified, then we multiply it by 𝛼𝑖 and sum

it up for 𝑖 = 1, . . . , 𝑁 and replace the block (1, 1) of the
resulting matrix by −𝑈𝑇𝑊(𝛼, 𝜏)−1𝑈 which is less than or
equal to𝑊(𝛼, 𝜏) − 𝑈𝑇 − 𝑈. Then, we pre- and postmultiply
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the resulting inequality by T2 = block-diag {𝑈−𝑇, 1} and
its transpose, respectively, and we use (18) to get

[
[
−𝑊(𝛼, 𝜏)−1 (K(ℓ) − 𝐺(ℓ))𝑇⋆ −V2(ℓ) ]

] ≤ 0. (22)

By using Schur’s complement and pre- and postmultiplying
the resulting expression by 𝑥𝑇𝑘 and 𝑥𝑘 we get

− 𝑥𝑇𝑘𝑊(𝛼, 𝜏𝑘)−1 𝑥𝑘
+ V−2(ℓ)𝑥𝑇𝑘 (K(ℓ) − 𝐺(ℓ))𝑇 (K(ℓ) − 𝐺(ℓ)) 𝑥𝑘 ≤ 0, (23)

whose consequence is, by Lemma 5, that LV ⊆ S and any
trajectory of the closed-loop system starting in LV remains
in S.

Remark 7. Theorem 6 provides a solution for Problem 2 and
up to the authors’ knowledge this is the first time that the
variation of the delay is taken into account in the context
of discrete-time systems with delay. Conditions (15)-(16)
encompass the case when Δ𝜏max = 𝜏−1, i.e., the case where it
is admissible that the delay value can jump from its minimal
value (𝜏 = 0) to its maximal value (𝜏 = 𝜏) from one instant𝑘 to another 𝑘 + 1. Also note that Theorem 6 can handle
null delays and, thus, it is more general than the conditions
proposed in [3–7, 7–19], which work only for delays equal to
or greater than 1.

Remark 8. The precisely known case can be addressed by
conditions in Theorem 6 just by suppressing 𝛼 and, as a
consequence, also the index 𝑖 on LMIs (15)-(16). So, it is
possible to show that the Lyapunov candidate function (12)-
(13) can be rewritten in a form closer to that proposed by
[20], i.e., without the inversion of 𝑊(𝛼, 𝜏𝑘). The numerical
complexity in this case is, obviously, smaller than that of the
conditions of Theorem 6.

Remark 9. Some structures of interest for the gainmatrixK in
(7) can be recovered from (15)-(18) by imposing some special
structures on matrices 𝑌 and 𝑈. To get K = [𝐾0 0 ⋅ ⋅ ⋅ 0], it
is enough to impose

𝑌 = [𝑌1,𝑝×𝑛 0] ,
𝑈 = [𝑈1,𝑛×𝑛 0

𝑈2,𝑛𝜏×𝑛 𝑈3,𝑛𝜏×𝑛𝜏] .
(24)

On the other hand, to get the gain K = [𝐾0 0 ⋅ ⋅ ⋅ 0 𝐾𝜏], it
is necessary to constrain the structure of 𝑌 and 𝑈 as

𝑌 = [𝑌1,𝑝×𝑛 0 𝑌2,𝑝×𝑛] ,
𝑈 = [[

[
𝑈1,𝑛×𝑛 0 0

𝑈2,𝑛(𝜏−1)×𝑛 𝑈3,𝑛(𝜏−1)×𝑛(𝜏−1) 𝑈4,𝑛(𝜏−1)×𝑛𝑈5,𝑛×𝑛 0 𝑈6,𝑛×𝑛
]]
]
. (25)

An interesting issue is that, in all cases, no structure is
imposed to the Lyapunov candidate matrices 𝑊𝑖,𝜏, 𝑖 =

1, . . . , 𝑁 and 𝜏 = 0, . . . , 𝜏, allowing a larger set of search for
gain K.

Remark 10. Another way to estimate the region of attraction
is through the set LV1 = {𝜑𝜏,0 : ‖𝜑𝜏,0‖ < 𝜌0} as it is done
in [15, 16]. In this case, the estimate of RA corresponds to𝜏 + 1 balls in R𝑛 with radius 𝜌, one for each delayed state𝑥−𝑘, 𝑘 = 0, . . . , 𝜏, and LV1 ⊆ LV ⊆ RA. In [14, 17–19], the
estimate of RA is given in terms of LV2 = {𝜑𝜏,0 : ‖𝜑𝜏,0‖ <𝜌1, ‖Δ𝜑𝜏,0‖ < 𝜌2}, with Δ𝜑𝜏,0 = 𝜑𝜏,1 − 𝜑𝜏,0. Note that the
set LV1 implies ‖Δ𝜑𝜏,0‖ < ‖𝜑𝜏,1‖ + ‖𝜑𝜏,0‖ < 2𝜌0. In all of
them, the parameters 𝜌𝑖, for 𝑖 = 0, 1, 2, are computed from
maximum eigenvalues of the Lyapunov-Krasovskii functions
matrices and upper value of the time-varying delay.

4.1. Maximizing the Estimate ofRA. An underlying issue on
Problem 2 is tomaximize the size of the estimate of the region
of attraction RA, i.e., to maximize the size of LV. Some
methods to this end are reported, for instance, in [13, 29]. One
possibility is to inflate the set

E𝐻 = {𝑥𝑘 ∈ R
𝑛(𝜏+1) : 0 < 𝑥𝑇𝑘𝐻𝑥𝑘 ≤ 1} , (26)

that is included inL𝑉. Such an inclusion is ensured by

[𝐻 I
I 𝑊𝑖,𝜏] ≥ 0, 𝜏 = 0, . . . , 𝜏, 𝑖 = 1, . . . , 𝑁. (27)

Thus, a convex optimization procedure can be formulated as

min trace (𝐻)
suject to (15) , (16) , and (27) . (28)

If the optimization procedure (28) has a feasible solution,E𝐻
is an approximation forLV ⊂RA. Naturally a more precise
determination is performed through (14) given in Lemma 5.

Remark 11. Thenumerical burden associated with the convex
optimization procedure (28) depends on the number of scalar
variablesV and the number of LMI rowsR. In our approach
we have V = 0.5(𝜏 + 1)𝑛[(𝜏 + 1)𝑛 + 1](𝑁 + 𝜏 + 1) + 2(𝜏 +1)𝑛[((𝜏 + 1)𝑛) + 𝑝] + 𝑝 andR = (𝜏 + 1)𝑛 + 𝑝 + 1. Although
these numbersmay be larger than some other approaches, the
achieved results are much less conservative as it is clear in the
next section.

5. Numerical Examples

All calculations performed in this section were done with
Python language and the library PICOS [30] with the solver
SDPA [31] that has, in general, solved the optimization
procedures with one-twentieths of the time spent by Matlab
under the same computer, an Intel 𝑖5 3470@3.2GHz with4Gb of RAM and running Ubuntu 16.04. In what follows,
the average solving time among simple and more complex
cases was 9s, including presolver processing. We present two
examples. In the first one, a scalar case is addressed allowing
the reader to get some insights on this new characterization
of the estimate of the region of attraction and to observe the
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Figure 1: Intersections of the estimates of the region of attraction for
the nominal system (gray mark) and for the uncertain system (blue
dots) with the planes 𝑥𝑘 × 𝑥𝑘−1, 𝑥𝑘 × 𝑥𝑘−2, and 𝑥𝑘−1 × 𝑥𝑘−2.

small conservatismof our approachwith respect to twoworks
in the literature. In the second example, we compare our
approach with other three works in the literature to illustrate
its efficacy.

5.1. Example 1. We study the scalar case with 𝜏 = 2 to
provide a better understanding of the proposed methods.
Thus, consider system (1) with𝐴 = 𝐴𝑛(1+𝛿),𝐴𝑑 = 𝐴𝑑𝑛(1+𝛿)
and 𝐵 = 𝐵𝑛(1 + 𝛿), and |𝛿| ≤ 0.3 an uncertain parameter. The
nominal parameters are𝐴𝑛 = 2,𝐴𝑑𝑛 = −0.1, and 𝐵𝑛 = 1, and
the symmetric saturation limit V = 0.7. Therefore, we have a
polytope with two vertices computed at the extreme values of𝛿.

Firstly, we have designed a controller for both the nominal
system and the uncertain system, using Δ𝜏max = 1 through
the optimization procedure (28). The following gains were
obtained: K𝑛 = [−1.0164 0.0359 0.0284] for the nominal
case and K𝑟 = [−1.2720 0.0419 0.0336] for the uncertain
case. Although very close from each other, these gains lead
to different estimates of LV ⊂ RA. In Figure 1, we present
the intersection of such regions with the planes 𝑥𝑘 × 𝑥𝑘−1,𝑥𝑘 × 𝑥𝑘−2, and 𝑥𝑘−1 × 𝑥𝑘−2. The gray dot marks refer to the
cut on the estimate LV of the nominal system and the blue
dot marks refer to the cut of the estimate LV related to the
uncertain case. It is clear that the uncertainty reduces the
size to the safe initial conditions. Through a spacial grid, the
volumes of the estimates of safe initial conditions are for both
the nominal case and the uncertain one. We verified that the
estimate of region of attraction for the nominal is about 95%

greater than that we got for the uncertain system. To illustrate
the low conservatism of our approach, we have picked two
possible systems and presented their phase portrait: one
corresponding to the nominal system and the other taken
inside the polytope, with 𝛼1 = 2/9, thus Υ([2/9 7/9]𝑇) =(2/9) [𝐴1 𝐴𝑑1 𝐵1] + (7/9) [𝐴2 𝐴𝑑2 𝐵2]. The projections
of parametrized response for four different initial conditions
are presented with the ellipsoidal cuts shown in Figure 1.
The lines in cyan and in yellow correspond to the nominal
system: one starting in the estimate of the region of attraction
of the nominal system, {𝑥0, 𝑥−1, 𝑥−2} = {0.25, −2.1, −3.6},
gray dots, trajectory in cyan line; and another starting close,
but outside it, {𝑥0, 𝑥−1, 𝑥−2} = {0.435, −3.2, −4}, trajectory
in yellow line. Note that the initial sequence taken outside
the estimated region of attraction yields a sequence that does
not converge to the origin, although its trajectory passes very
close to the estimated region. With regard to the uncertain
system, we have taken two initial sequences: one starting
in the estimate region of attraction of the uncertain system
close to its boundary, {𝑥0, 𝑥−1, 𝑥−2} = {−0.554, 0, 0}, blue
dots region, trajectory in red line; and another starting
outside the estimated region of the uncertain system, but
inside the one for the nominal system, {𝑥0, 𝑥−1, 𝑥−2} ={−0.621, 0.0355, 0.012}, gray dot, trajectory in black line. It
is clear that our approach achieved a very nice estimate
of RA. As expected trajectories in red and cyan lines go
to the origin. On the other hand, trajectories in black and
yellow lines, even starting very close to their respective safe
initial conditions, diverge from the origin. Moreover, if one
considers the approach in [15, 16] the bound on the estimation
is, in the best case, limited by the black divergent trajectory
yielding a small radius for LV1 (less than 0.62) and thus is
much more conservative than ours which is about 8.7 times
bigger than the optimal corresponding sphere.

In what follows, we evaluate the size of LV for the
uncertain system under different values of 𝜏 and Δ𝜏max,
through the optimization procedure (28). For each value of𝜏 ∈ {3, . . . , 7}, we have varied Δ𝜏max from 0 up to 𝜏 − 1. We
have compared the percentage of augmentation in the volume
of the estimateLVwith respect to the case ofmaximumdelay
variation:

𝑅% = ( Vol (LVΔ𝜏max
)

Vol (LVΔ𝜏max=𝜏−1
) − 1) × 100%, (29)

where Vol(LV∙) is volume of the estimate of the region of
attraction obtained under the condition ∙. This volume has
been verified through a regular spacial grid. The results are
shown in Figure 2, where the ordinate axis is the ln𝑅% (thus,
8 in such a figure is about 2120%). It is clear that the smaller
the Δ𝜏max, the bigger the size of the estimate of the region of
attraction. Also note the case where Δ𝜏max = 0, i.e., the delay
is uncertain but time-invariant. In this case the estimates
of the region of attraction are much bigger than the case
typically handled in the literature, where Δ𝜏max = 𝜏 − 1. This
clearly shows the relevance of our approach in considering
the bounds on the delay variation to get a less conservative
estimate of the region of attraction.
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Table 1: Comparison of the radius of the ball inscribed in the estimate region of attraction.

Delay [23, Corollary 1] [24, Theorem 1] [25, Corollary 1] [25, Theorem 1] Opt. Proc. (28)Δ𝜏 = 0 0.0806 0.0742 0.0772 — 0.1694Δ𝜏 = 3 — — — Infeasible 0.1289Δ𝜏 = 5 — — — Infeasible 0.1279
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Figure 2: Percentage augmentation of the estimate of the region
of attraction (𝑅%, see the text) as a function of the maximum time
variation of the delay, for 𝜏 = 3 (red square), 𝜏 = 4 (blue cross), 𝜏 = 5
(green circle), 𝜏 = 6 (purple star), and 𝜏 = 7 (󳶃).

5.2. Example 2. Consider a continuous-time system treaded
in Example 2 of [23] that has been discretized here with
sample time 𝑇𝑠 = 0.24𝑠 and we got

𝐴 = [1 + 𝑇𝑠 0.6𝑇𝑠−𝑇𝑠 1 + 0.8𝑇𝑠] ,
𝐴𝑑 = [ 𝑇𝑠 0.5𝑇𝑠−0.5𝑇𝑠 0 ] ,
𝐵 = [𝑇𝑠𝑇𝑠] .

(30)

Initially assume the delay of the continuous-time system
as 1.2s which leads to 𝜏 = 5 samples. In the sequel, we
describe two numerical experiments performed to compare
our approach with others found in the literature.

Firstly, we look for robust gains to provide local stability
and that maximize the estimate of the region of attraction,
RA. Because of discretization, the variation of one sample is
already larger than the bounded considered in continuous-
time case by [24] and thus, its conditions cannot be applied
even for Δ𝜏 = 1. The conditions found in [23] are applied
only for time-invariant delay and those in [25] can handle
the continuous-time version of the time-varying delay. Note
that the conditions in [23–25] apply only to precisely known
systems and yield a region of attraction described by a ball
in R𝑛 with radius 𝑟. The respective computed values are
presented in Table 1.

On the other hand, our approach tracts time-varying
delay with bounded time variation and the achieved results
are also shown in the last column of the same table forΔ𝜏 ∈ {0, 3, 5}. Remembering that Δ𝜏 = 0 implies uncertain

and time-invariant delay. Following Remark 10, the achieved
radius value in our approach corresponds to the biggest ball
inscribed in estimated RA computed by the optimization
procedure (28) and taking the smallest axis length among
matrices 𝑊−11,𝑗 , 𝑗 = 0, . . . , 𝜏. It is worth mentioning that
even for the worst case of time-delay variation, Δ𝜏 = 5, the
obtained radius by our approach is more than 58.6% greater
than the other approaches, at least.

As we have mentioned in Remark 10, the real estimated
region given by our approach is much larger than this ball.
For instance, with Δ𝜏 = 3 we can found the sequence:

𝜑5,0 = {[0.02480.2274] , [
0.0724
0.0026] , [

0.049
0.0098] , [

0.0136
0.0039] ,

[−0.0483−0.0129] , [
−0.3795
−0.1603]}

(31)

which has ‖𝜑5,0‖ = 0.2287 that is about 77% larger than the
estimated norm achieved by [23], in the time-invariant delay
case.

The second numerical experiment performed consists in
considering the uncertain time sampling interval which leads
to an uncertainmodel representation. To this endwe suppose
that the sampling time belongs to the interval 0.2𝑠 ≤ 𝑇𝑠 ≤0.3𝑠.This leads system (1)with (30) to be represented in a two-
vertex polytope. Furthermore, the delay in continuous-time
becomes represented in discrete-time version by 4 ≤ 𝜏 ≤ 6
samples.We have performed the optimization procedure (28)
for Δ𝜏 = 0 and got an estimate of the RA where the bigger
ball inscribed in it has a radius of 0.1870. This illustrates that,
even with an uncertain sampling time, our approach yields
better results than those achieved with [23–25] for precisely
known system with time-invariant delay (see Table 1). As we
mentioned before, our approach can find sequences such as

𝜑6,0 = {[0.13120.3585] , [
0.1823
0.0613] , [

0.1139
0.0383] , [

0.0246
0.0082] ,

[−0.0987−0.039 ] , [
−0.1731
−0.0615] , [

−0.3618
−0.1317]}

(32)

which has ‖𝜑6,0‖ = 0.3817. Note that despite the uncertainty
in thematrices of the system, the delay interval is shorter and,
as a consequence, the estimate forRA is even greater than the
previous (precisely known) case.

6. Conclusions

We have presented new convex conditions formulated in
terms of LMIs to design state feedback control law that
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robustly locally stabilizes uncertain discrete-time systems
with time-varying delay actioned by saturating actuators and
under bounded time variation delay. All matrices of the
systems are supposed to be affected by polytopic uncertainty.
It has been shown that taking into account a constraint on
the time variation of the delay can lead to less conservative
analysis and synthesis conditions. We have given a new
characterization of the region of attraction and the proposed
conditions allow computingmuch less conservative estimates
of such a region. Although the proposed conditions are delay
dependent—which is recognized as a nice property in the
literature—the designed control law is delay independent,
which facilitates the real time implementation. We have
compared our approach with others found in the literature
through two numerical examples, showing the efficiency of
our proposal.
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and E. N. Gonçalves, “Discrete Time Systems,” InTech, 2011, ch.
Uncertain Discrete-Time Systems with Delayed State: Robust Sta-
bilization with Performance Specification via LMI Formulations,
pp. 295–326, http://goo.gl/P4cAyc.

[3] C.-K. Zhang, Y. He, L. Jiang, and M. Wu, “An improved
summation inequality to discrete-time systems with time-
varying delay,” Automatica, vol. 74, pp. 10–15, 2016.

[4] A. Seuret, F. Gouaisbaut, and E. Fridman, “Stability of discrete-
time systems with time-varying delays via a novel summa-
tion inequality,” Institute of Electrical and Electronics Engineers
Transactions on Automatic Control, vol. 60, no. 10, pp. 2740–
2745, 2015.

[5] P. T. Nam, H. Trinh, and P. N. Pathirana, “Discrete inequalities
based on multiple auxiliary functions and their applications to
stability analysis of time-delay systems,” Journal of The Franklin
Institute, vol. 352, no. 12, pp. 5810–5831, 2015.

[6] Z. Feng, J. Lam, and G.-H. Yang, “Optimal partitioning method
for stability analysis of continuous/discrete delay systems,”
International Journal of Robust and Nonlinear Control, 2013.

[7] R. H. Gielen, M. Lazar, and S. Olaru, “Set-induced stability
results for delay difference equations,” in Time delay systems:

methods, applications and new trends, vol. 423 of Lect. Notes
Control Inf. Sci., pp. 73–84, Springer, Berlin, 2012.

[8] W. Lombardi, S. Olaru, G. Bitsoris, and S.-I. Niculescu, “Cyclic
invariance for discrete time-delay systems,”Automatica, vol. 48,
no. 10, pp. 2730–2733, 2012.

[9] M. T. Laraba, S. Olaru, S.-I. Niculescu, and G. Bitsoris, “Invari-
ant sets for discrete time-delay systems: Set factorization and
state representation,” in Proceedings of the 2015 19th Interna-
tional Conference on System Theory, Control and Computing
(ICSTCC), pp. 7–12, Cheile Gradistei, Romania, October 2015.

[10] M. T. Laraba, S. Olaru, S.-I. Niculescu et al., “Set invariance
for delay difference equations,” in Proceedings of the 12th IFAC
Workshop on Time Delay Systems, TDS 2015, pp. 215–220, USA,
June 2015.

[11] M.-T. Laraba, S. Olaru, S.-I. Niculescu et al., “Guide on set
invariance for delay difference equations,” Annual Reviews in
Control, vol. 41, pp. 13–23, 2016.

[12] T. Hu and Z. Lin, Control Systems with Actuator Saturation:
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