
Received: 21 April 2017 Revised: 24 April 2018 Accepted: 27 April 2018
RE S EARCH ART I C L E

DOI: 10.1002/sim.7827
Models for the propensity score that contemplate the
positivity assumption and their application to missing data
and causality
J. Molina1 | M. Sued1,2 | M. Valdora3
1Universidad de Buenos Aires, Ciclo
Básico Común, Buenos Aires, Argentina
2Consejo Nacional de Investigaciones
Científicas y Técnicas, Buenos Aires,
Argentina
3Universidad de Buenos Aires, Facultad
de Ciencias Exactas y Naturales, Instituto
de Cálculo, Buenos Aires, Argentina

Correspondence
M. Valdora, Instituto de Cálculo, Facultad
de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Intendente
G'iraldes 2160, Ciudad Universitaria,
Buenos Aires 1428, Argentina.
Email: mvaldora@dm.uba.ar

Funding information
Universidad de Buenos Aires, Grant/
Award Numbers: 20020130100279BA and
20020150200110BA
Statistics in Medicine. 2018;0:1–16.
Generalized linear models are often assumed to fit propensity scores, which are

used to compute inverse probability weighted (IPW) estimators. To derive the

asymptotic properties of IPW estimators, the propensity score is supposed to

be bounded away from zero. This condition is known in the literature as strict

positivity (or positivity assumption), and, in practice, when it does not hold,

IPW estimators are very unstable and have a large variability. Although strict

positivity is often assumed, it is not upheld when some of the covariates are

unbounded. In real data sets, a data‐generating process that violates the

positivity assumption may lead to wrong inference because of the inaccuracy

in the estimations. In this work, we attempt to conciliate between the strict

positivity condition and the theory of generalized linear models by incorporating

an extra parameter, which results in an explicit lower bound for the propensity

score. An additional parameter is added to fulfil the overlap assumption in the

causal framework.
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1 | INTRODUCTION

In the last 20 years, inverse probability weighted (IPW) estimators have attracted considerable attention in the statistical
community. Among other things, they are used for estimating a population mean E(Y) from an incomplete data set
under the missing‐at‐random (MAR) assumption. Missing at random establishes that the variable of interest Y and
the response indicator A are conditionally independent given an always observed vector X of covariates. See Robins
et al,1,2 Little and An,3 and Kang and Schafer.4 In the causal framework, IPW estimators are used for estimating the
average effect of a binary treatment on a scalar outcome under the assumption of no unmeasured confounders in
observational studies. See Rosenbaum,5 Hirano et al,6 Lunceford and Davidian,7 and Crump et al.8

In the missing data setting, the propensity score, also known as the selection probability, is defined as the response
probability given the vector of covariates X, whereas, in the causal context, the propensity score is the conditional
probability of treatment assignment given a set of measured baseline covariates. Inverse probability weighted estimators
are essentially weighted means of observed responses in which the weights are determined as the inverse of the
estimated propensity scores. The aim of these weights is to compensate for the missing responses.

One of the conditions required to derive the asymptotic properties of IPW estimators is the strict positivity condition
(also known as the positivity assumption). It states, in the missing data setting, that the propensity score is bounded
away from 0 and, in the causal context, that the propensity score is bounded away from 1 and 0 (see Robins et al,2
Copyright © 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/sim 1
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Kang and Schafer,4 Lunceford and Davidian,7 and Crump et al8). Besides theoretical issues, the violation of the strict
positivity condition causes the estimates to be very unstable and to have a large variability. See also Little and Rubin9

and Cole and Hernan.10

Most users of IPW procedures assume models for the propensity score that are usually incompatible with the
positivity condition. For instance, this is the case of the generalized linear models (GLMs), when some of the covariates
are unbounded. Despite this incompatibility, GLMs are the most popular models considered in the field.

In this work, we present a slight modification to the GLM originally postulated for the propensity score that is
compatible with the strict positivity condition. When the covariate is 1‐dimensional and a logistic regression is
considered, this model agrees with the so‐called 4‐parameter logistic regression model in the dose‐response literature;
see, for instance, Ritz et al.11 The proposed model can also be used in designed experiments, in which the treatment
is assigned randomly based on X. In this way, the validity of the overlap assumption is guaranteed.

To explore plausible applications of the modified model, we revise a real example in the causal context. We consider
the data collected by Tager et al,12,13 who investigate the effects of cigarette smoking on children's pulmonary function.
They study the effect of parental smoking on the pulmonary function of their children as well as the effect of direct
smoking by the children themselves. Besides, in his book, Rosner14 performs another analysis of the mentioned data.
The author considers the forced expiratory volume (FEV) of a group of children as a response variable as well as their
height, age, sex, and a binary variable indicating whether or not they smoke. Kahn15 studies these data using linear
regression. In this work, we study the effect of smoking in the FEV of children by estimating the average treatment
effect (ATE). This is an example of an observational study in which, under the assumption of no unmeasured
confounders, the ATE can be estimated using IPW procedures. The validity of no unmeasured confounders is beyond
the scope of this work, and thus, the estimates here presented for the ATE are included only to illustrate the use of
the new model for the propensity score. Since the proportion of smokers among the younger children is very small,
the corresponding propensity scores take on values near 0, and therefore, the classical IPW estimators may have a large
variance. In situations such as this, we expect that the models we propose in this work will provide more stable estima-
tors than the classical IPW procedures.

To achieve more stability in IPW estimators, Lunceford and Davidian7 proposed adding an extra set of weights.
These weights help to moderate the extreme values of the propensity score. They showed both theoretically and by
simulations that this set of weights decreases the variance of IPW estimators. In Section 4, we give a precise description
of this method, which we shall note LD for brevity. The problem of near violation of the positivity assumption has been
attacked by many authors by means of trimming extreme values of the propensity score. In particular, Crump, Hotz,
Imbens, and Mitnik8 showed that, by eliminating from the sample observations with propensity score near 0 or 1,
the variance of the final estimator decreases. They found the optimal cut‐off value for this trimming, which depends
on the sample. Even though this method is shown to decrease the variance of the ATE estimator, there is no control
on the bias introduced by the trimming process. In fact, the estimators they proposed are not consistent for the ATE.
Instead, they estimate a different parameter, namely, the ATE conditional to the propensity score belonging to a subin-
terval of (0,1). This estimator shall be noted CHIM in the rest of this work

In recent years, several authors have applied machine learning methods, such as classification and regression trees
(CART), random forests, bagging, and boosted CART, to estimate the propensity score needed for IPW estimators; see,
for example, Lee et al.16 These methods are extremely useful when the number of covariates is large. Besides, most of
them have the great advantage that no model needs to be assumed in order to apply them. However, the presence of
covariates with estimated missing probability very near 0 or with probability of treatment assignment near 0 or 1 can
still cause instability and high variability in the final estimators. On the other hand, IPW methods are still widely
applied to datasets with a small or moderate number of covariates in situations in which the access to fast computers
and advanced technology is still limited. In these cases, the use of computer intensive methods may be unjustified or
even unfeasible. A combination of the proposal of machine learning methods and trimming has also been considered
in Kang et al.17

The paper is structured as follows: in Section 2, we review methods based on propensity scores for estimating a
population mean from incomplete data, and we present our model for the propensity score in that missing data context.
In Section 3, we review methods for estimating ATEs that use weighting by the inverse of the probability of treatment
and present our model in the causality context. In Section 4, we study the performance of our model through its impact
in IPW estimators by means of a Monte Carlo study and compare it with other existing proposals. In Section 5, we apply
the proposed method to estimate the mean cost of hospital stay in a group of patients of a particular hospital, with
artificially omitted responses. As an illustration, in Section 6, we apply these methods to estimate the effect of smoking
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in children. The proofs corresponding to the results presented in Section 2 are relegated to Appendix A, while those
related to Section 3 can be similarly deduced and are, therefore, omitted.
2 | MISSING DATA

Assume that we are interested in estimating the mean value of a scalar response Y, based on a sample composed by an
always observed vector X∈Rp of covariates, while the response of interest is missing by happenstance for some subjects.
We will assume that data are MAR.18 This means that the missing mechanism is not related to the response of interest
and it is only related to X, the observed vector of covariates. Let A be a binary variable indicating whether Y is observed
or not, namely, A=1 if Y is observed and A=0 if Y is missing. Missing at random establishes that

PðA ¼ 1jX ;YÞ ¼ PðA ¼ 1jXÞ ¼ πðXÞ: (1)

π(X) is known in the literature as the propensity score or selection probability.19 This condition will be assumed along
the remainder of this section. Up to integrability conditions, under the MAR assumption, μ0=E(Y) can be represented
in terms of the distribution of the observed data as EðY Þ ¼ E AY=πðXÞf g. This representation invites us to estimate μ0 by

μ̂ðπ̂nÞ ¼ Pn
AY

π̂nðXÞ
� �

; (2)

where π̂ðXÞ is a consistent estimator of π(X) and Pn is the empirical mean operator, ie, PnV ¼ n−1∑n
i¼1Vi. These

estimators are in consonance with those proposed by Horvitz and Thompson.20 Observed responses corresponding to
low values of the estimated propensity score are highly weighted since they should compensate for the high missing rate
associated to such a level of covariates. For more details, see Robins et al1 and Robins and Rotnitzky.21 Different ways of
estimating π(X) lead to different estimators for μ0; parametric and nonparametric estimators of the propensity score have
been considered. Most of the asymptotic results established for μ̂ðπ̂nÞ, defined in (2), require the strict positivity
condition, which establishes that P πðXÞ≥εf g ¼ 1, for some ε>0 (see Robins et al2 and Kang and Schafer4). For the sake
of completeness, we include the following result, which establishes the consistency of μ̂ðπ̂nÞ, defined in (2), under the
following assumptions:

C.1 supX∈K π̂nðXÞ−πðXÞj→0j almost surely (a.s.), for all compact set K⊂Rp.
C.2 There exists η0> 0 such that

P inf
X∈Rp

πðXÞ>η0
� �

¼ 1 and P lim inf
n→∞

inf
X∈Rp

π̂nðXÞ>η0
� �

¼ 1: (3)
Assumption C.1 states that the estimated propensity score converges to the true propensity score uniformly over all
compact sets. The first part of C.2 is the strict positivity condition, while the second part states that the same bound is
eventually satisfied by the estimated propensity score.

^
Lemma 1. Consider (Xi,Ai,Yi )i≥ 1 i.i.d., distributed as (X,A,Y), with π(X)=P(A=1|X). Let πnðXÞ be a
sequence of estimators of π(X). Assume that conditions C.1 and C.2 hold. Then, μ̂ðπ̂nÞ, defined in Equation 2,
converges to E(Y) a.s.
The class of estimators μ̂ðπ̂nÞ, defined in (2), has been considered by many authors. Robins, Rotnitzky, and Zhao1

studied an enlarged family that include this class as a particular case and established the asymptotic normality of such
estimators when π follows a parametric model. Little and An3 proposed to estimate the propensity by fitting a spline to
the logistic regression of the missing‐data indicator A on X. Kang and Shafer4 presented μ̂ðπ̂nÞ, where π follows a linear
logistic regression model. More generally, parametric models are often assumed for the propensity score, and, in
particular, GLMs play a prominent role among them. These models postulate that

πðXÞ ¼ ϕðβT0XÞ; (4)

where ϕ is a strictly increasing cumulative distribution function and β0∈R
p. Note that the intercept, if present, is

included in β0, assuming that the first entry of X equals 1. Taking ϕ(u)= 1/{1+ exp(−u)} results in the linear logistic
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model, which is one of the most popular choices in the literature. Unfortunately, GLMs prevent the validity of the strict
positivity condition, except when βT0X is bounded from below. Thus, strict positivity is typically violated as far as
unbounded covariates are included in the vector X. In practice, values of π̂nðX iÞ close to 0 may arise causing μ̂ðπ̂nÞ
to be a very unstable estimator, having a large variability (see also Little and Rubin9).

In this work, we attempt to conciliate between the strict positivity condition and the most popular parametric
models used for the propensity score. To do so, we slightly perturb the original parametric model postulated by the
practitioner by incorporating an explicit lower bound for the propensity score. Namely, model (4) is replaced by

πðXÞ ¼ ð1−ε0ÞϕðβT0XÞ þ ε0;

where ε0∈ [0,1] and β0∈R
p. This model contemplates the validity of the strict positivity condition as far as ε0> 0, and thus,

we call it strictly positive propensity score (SPPS) model for the missing mechanism. Let θ ¼ ðε; βTÞT∈ Θ ⊂ Rpþ1, with
ε∈ [0,1] and β∈Rp. Define

πðX; θÞ ¼ ð1−εÞϕðβTXÞ þ ε; (5)

and assume that, for some θ0∈Θ, π(X)=π(X,θ0). To identify the parameter θ0 from the distribution of (X,A), we will make
the following assumptions.

A.1 The function ϕ:R→ð0; 1Þ is a strictly increasing smooth cumulative function (ϕ∈C2ðRÞ).
A.2 The distribution of the observed covariates is not concentrated at a hyperplane.
A.3 For all β∈Rp such that A|X∼A|βTX, the support of βTX is unbounded from below:

PðβTX≤uÞ>0 ; for allu∈R:
Conditions A.1 and A.2 are typically required for the identification of β0 in a GLM (4) (see McCullagh and Nelder22),
while condition A.3 is used for the identification of ε0. Roughly speaking, it means that any linear combination βTX that
carries all the information on X relevant for A is necessarily unbounded from below. If this condition does not hold, the
positivity assumption is automatically satisfied, and there is no need for the enlarged model. Estimating using the extra
parameter would induce an overfitting phenomenon. The identifiability of the parameter θ0, indexing the proposed
model, is established in the following lemma.
Lemma 2. Let (X,A) be a random vector, such that P(A=1|X)=π(X,θ0), with π(X,θ) defined in (5). Under
A.1 to A.3, we get that

PfπðX; θÞ ¼ πðX; θ0Þg<1 ; ∀θ≠θ0: (6)
Substituting πðX; θ̂nÞ for π̂nðXÞ in (2), we propose to estimate the mean of Y by

μ̂n ¼ Pn
AY

πðX; θ̂nÞ

( )
; (7)

where θ̂n is any consistent estimator of θ0 under model (5). In principle, the parametric nature of the proposed model
invites to estimate θ0 following a maximum likelihood principle. On the other hand, we are postulating a parametric
model for the regression function of a binary response, and, therefore, nonlinear least squares (LS) procedures can also
be invoked to estimate θ0. These 2 estimators are consistent and asymptotically normal under regularity conditions.
Such conditions typically involve finite moment assumptions and, thus, are satisfied when the support of X is compact.
This compactness condition is not necessary but helps to avoid technical complications. Similar arguments as those used
in Valdora and Yohai23 can be used to prove the consistency and asymptotic normality of these estimators under
minimal assumptions. A rigorous study of this issue is beyond the scope of this work.

We now establish the asymptotic properties of μ̂n, defined in (7). To do so, let _ϕðuÞ and €ϕðuÞ denote the first and
second derivatives of ϕ(u), respectively, and let _πðX; θÞ denote the column vector of partial derivatives of π(X,θ) with
respect to each entry of the vector θ.

Theorem 1. Consider (X ,A ,Y ) i.i.d., distributed as (X,A,Y), with π(X)=P(A=1|X). Assume that π(X)
i i i i≥ 1

=π(X,θ0), for π(X,θ) defined in (5), with ε0>0.
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(i) Consistency: Assume that θ̂n converges to θ0 a.s. (or in probability). If _ϕðuÞ is a continuous function, then
μ̂n, defined in (7), converges to μ0 a.s. (or in probability).
(ii) Asymptotic normality: Assume that there exists an influence function IFθ0ðX;AÞ with EfIFθ0ðX;AÞg ¼ 0
and EfjjIFθ0ðX;AÞjj2g<∞, such that

ffiffiffi
n

p ðθ̂n−θ0Þ ¼ 1ffiffiffi
n

p ∑
n

i¼1
IFθ0ðXi;AiÞ þ oPð1Þ: (8)

Then, if €ϕðuÞ is continuous, ffiffiffi
n

p ðμ̂n−μ0Þ is asymptotically normal, with mean zero and asymptotic variance:

asvarf ffiffiffi
n

p ðμ̂n−μ0Þg ¼ E AY=πðX; θ0Þ−μ0−CTIFθ0ðX;AÞ
� �2h i

; (9)

where C ¼ E
m1ðXÞ _πðX; θ0Þ

πðX; θ0Þ
� �

; with m1ðXÞ ¼ EðY jA ¼ 1;XÞ: (10)
The theorem says that in order to get the asymptotic distribution of μ̂n, we need to have a linear expansion for the
estimator θ̂n of θ0.

At this point, it is worth mentioning that both maximum likelihood and nonlinear LS estimators are indeed
M‐estimators, which, under regularity conditions, are consistent and satisfy the linear expansion presented in (8) with
influence function IFθ0ðX;AÞ given by

IFml
θ0 ðX;AÞ ¼ E πðX; θ0Þ−1ð1−πðX; θ0ÞÞ−1 _πðX; θ0Þ _πðX; θ0ÞT

n oh i−1 A−πðX; θ0Þ
πðX; θ0Þð1−πðX; θ0ÞÞ

_πðX; θ0Þ

and

IFls
θ0ðX;AÞ ¼ Ef _πðX; θ0Þ _πðX; θ0ÞTg�−1fA−πðX; θ0Þg _πðX; θ0Þ;

h
for the maximum likelihood and the LS procedure, respectively; (see Van der Vaart24).
3 | AVERAGE TREATMENT EFFECT

Causal inference is a second field where IPW procedures play a crucial role. Consider, for instance, a dichotomous treat-
ment variable T, where T=1 represents an active treatment and T=0 means that a control is assigned. The potential out-
comes framework, introduced by Neyman25 and Rubin,26 is used to quantify the effect of the treatment on some response
of interest, whenever this difference is different from zero. To do so, 2 potential outcomes (or counterfactual variables) Y (0)

and Y (1) are defined to represent the outcome variable of interest that would be seen if an individual were to receive the
treatment and the control, respectively. We are interested in estimating the ATE, defined as the difference between the
mean values of the potential outcomes: τ0=E(Y (1))−E(Y (0)). E(Y (1)) (respectively E(Y (0))) represents the hypothetical
mean of the response for the population of individuals where all of them are assumed to receive treatment (respectively
control). So the difference between these means may be considered a resultant of the treatment, meaning that it has a
“causal effect” on the response of interest, whenever this difference is different from zero.

The potential outcomes Y (1) and Y (0) constitute an artificial contraption that allows us to conceptualize what wemean
by “causality.” Only one of these variables is observed in each individual, and it is related to the observed response
through the consistency assumption, which establishes (see Cole and Frangakis27) that if an individual follows the
treatment (T=1), then the potential outcome Y (1) is precisely his observed outcome. It also establishes the same thing
for the control case. Therefore, under the consistency assumption, the observed outcome Y is related to the counterfactual
variables through the identity Y=TY (1)+ (1−T)Y (0). Thus, estimating the ATE is a missing data problem, since one of the
counterfactuals (Y (1) or Y (0)) is missing for each individual. To identify τ0, we assume that a vector X with all possible
counfounders is observed at each subject. This means that potential outcomes Y (1) and Y (0) are conditionally independent
of the treatment exposure T given X:
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ðY ð0Þ;Y ð1ÞÞ∐TjX : (11)

This condition is known in the literature as strongly ignorable treatment assignment or no unmeasured confounders (see
Rosenbaum and Rubin19) and will be assumed in the remainder of this section. In particular, (11) implies that

E Y ð1Þ
� �

¼ E
TY
πðXÞ
� �

; E Y ð0Þ
� �

¼ E
ð1−TÞY
1−πðXÞ
� �

; (12)

where now the propensity score π(X) is defined by π(X)=P(T=1|X). These representations of E Y ð1Þ	 

and E Y ð0Þ	 


immediately suggest the estimator for the ATE proposed by Rosenbaum,5 given by

τ̂ðπ̂nÞ ¼ Pn
TY

π̂nðXÞ
� �

−Pn
ð1−TÞY
1−π̂nðXÞ
� �

; (13)

where π̂nðXÞ is a consistent estimator of π(X). Notice that (13) involves 2 estimators such as those treated in Section 2. In
the first term, T plays the role of A, while in the second one, 1−T does. The conditions required of A in the missing data
setting now have to be required of both T and 1−T. This is the reason for conditions C.3 and A.3 below.

C.3 There exists η1< 1 such that

P sup
X∈Rp

πðXÞ<η1
� �

¼ 1 and P lim sup
n→∞

sup
X∈Rp

π̂nðXÞ<η1
� �

¼ 1:
Lemma 3. Consider (X ,T ,Y ) i.i.d., distributed as (X,T,Y), with π(X)=P(T=1|X). Let π̂ ðXÞ be a
i i i i≥ 1 n

sequence of estimators of π(X). Assume that conditions C.1‐C.3 hold. Then, τ̂ðπ̂nÞ, defined in (13), converges
to E(Y(1))−E(Y(0)) a.s.
Lunceford and Davidian,7 following the general framework of Robins et al1 and the theory of M‐estimation (see
Stefanski and Boos28), presented large‐sample theoretical properties of τ̂ðπ̂nÞ, defined in (13), when π̂n is a parametric
estimator of π, which is assumed to follow a linear logistic model. Yao, Sun, and Wang29 postulated a GLM for the pro-
pensity score, as in (4), and estimated π(X) with ϕ β̂T

nXÞ
�

, where β̂n denotes the MLE under model (4). Nonparametric
versions of (13) were presented and analyzed by Hirano, Imbens , and Ridder,6 who proposed splines in order to
estimate π(X). Their estimator achieves the semiparametric efficiency bound established by Hahn.30 Both π̂nðXÞ−1
and f1−π̂nðXÞg−1 are now involved in the estimator presented in (13). Thus, in this scenario, the strict positivity
assumption is restated in terms of a lower and an upper bound for the propensity score, which is now assumed to be
bounded away from 0 and 1, in the sense that P ε≤πðXÞ≤1−δf g ¼ 1, for some ε and δ greater than 0. This assumption,
also known as (existence of) “overlap” in the covariate distribution, is usually assumed to derive the asymptotic prop-
erties of τ̂ðπ̂nÞ, for the different estimators π̂n of π considered in the literature; see Robins et al,2 Hirano et al,6 Lunceford
and Davidian,7 and Crump et al.8 Besides, the lack of overlap leads to an erratic behavior of τ̂ðπ̂nÞ, making the precise
estimation of τ0 difficult. To deal with this issue, some authors proposed trimmed versions of (13); see Crump et al8 and
Cole and Hernan.10

As already mentioned in Section 2, GLMs for the propensity score are typically incompatible with the strict positivity

assumption. Thus, using the same ideas developed in the missing data setting, for θ ¼ ðε; δ; βTÞT∈Θ⊆Rpþ2, where
ε,δ∈ [0,1] with ε+ δ<1 and β∈Rp; we propose the following model

πðX; θÞ ¼ ð1−δ−εÞϕðβTXÞ þ ε (14)

and assume that π(X)=π(X,θ0), for some θ0∈Θ. This model can be used in designed experiments where the treatment is
assigned randomly based on X. In this way, the overlap condition will be automatically satisfied. When X is comprised
of an intercept and a scalar variable and ϕ is the logistic function, we get the “4‐parameter logistic regression model,”
which is used for fitting dose‐response curves; see Ritz et al.11 In addition to A.1, A.2, and A.3, we need the following
assumption to identify the parameter θ0:
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A.4 For all β∈Rp such that T|X∼A|βTX, the support of βTX is unbounded from above:

PðβTX≤uÞ<1 ; for allu∈R:

Lemma 4. Under A.1 to A.4, we get that P{π(X,θ)=π(X,θ )} < 1 for all θ≠θ .
0 0
Model (14) intends to preserve as much as possible from the original family postulated for the propensity, ϕ(βTX).
The proposed modification contemplates the strict positivity condition by the inclusion of ε and δ. Model (14) will be
called SPPS model for treatment assignment, or simply SPPS model if the context is clear. So the estimator for the
ATE that we propose is given by

τ̂n ¼ Pn
TY

πðX; θ̂nÞ

( )
−Pn

ð1−TÞY
1−πðX; θ̂nÞ

( )
; (15)

where θ̂n is any consistent estimator of θ0 under model (14). The following result establishes the consistency and asymp-
totic normality of τ̂n. The asymptotic variance presented below is similar to that given in Yao et al29 and Lunceford and
Davidian,7 where a GLM is assumed for the propensity score.
Theorem 2. Consider (Xi,Ti,Yi )i≥ 1 i.i.d., distributed as (X,T,Y), with π(X)=P(T=1|X). Assume that π(X)
=π(X,θ0), for π(X,θ) defined in (14), with ε0> 0 and δ0> 0. Assume that θ̂n converges to θ0 a.s. (or in proba-
bility). Suppose _ϕðuÞ is a continuous function, then τ̂n, defined in (15), converges to τ0 a.s. (or in probability).
Moreover, if θ̂n satisfies a linear expansion, as in (8) but replacing Ti for Ai with influence function IFθ0ðX;TÞ
with EfIFθ0ðX;TÞg ¼ 0 and EfjjIFθ0ðX;TÞjj2g<∞, and €ϕðuÞ is continuous, then ffiffiffi

n
p ðτ̂n−τ0Þ is asymptotically

normal, with mean zero and asymptotic variance

asvarf ffiffiffi
n

p ðτ̂n−τ0Þg ¼ E
TY

πðX; θ0Þ−
ð1−TÞY

1−πðX; θ0Þ− τ0−DT IFθ0ðX;TÞ
� �2
" #

; (16)

where D ¼ E
m1ðXÞ _πðX; θ0Þ

πðX; θ0Þ þm0ðXÞ _πðX; θ0Þ
1−πðX; θ0Þ

� �
; with mtðXÞ ¼ EðY jT ¼ t;XÞ ; t ¼ 0; 1: (17)
4 | MONTE CARLO STUDY

In this section, we report the results of a Monte Carlo study we performed in order to assess the advantages of
considering the proposed model over the traditional approach. In practice, several covariates will be available for
modeling the propensity score. To investigate performance in a realistic setting, Lunceford and Dadivian7 carried out
simulations involving continuous and discrete variables, some of them associated with both treatment exposure and
potential response and others associated with potential responses but not treatment exposure. We generated variables
as they did in one of their proposed scenarios, except for the variances involved in Σ, defined below. We considered
covariates X=(1, X1, X2, X3,V1,V2,V3), a binary variable T and an outcome Y such that the variable T follows a Bernoulli
distribution with

πðXÞ ¼ πðX; θ0Þ ¼ ε0 þ 1−δ0−ε0ð Þ 1þ expðβT0XÞ
� �

;−1

where θ0= (ε0, δ0, β0) and β0=(0,0.6,− 0.6,0.6,0,0,0).
We remark that, when ε0= δ0=0, this SPPS model reduces to the usual linear logistic model. Different settings of ε0

and δ0 were chosen. The outcome was generated as

Y ¼ ν0 þ ν1X1 þ ν2X2 þ ν3X3 þ ν4T þ ξ1V1 þ ξ2V2 þ ξ3V3 þ Z;

where Z is a normal standard variable independent of X and T, ν0; ν1; ν2; ν3; ν4ð Þ ¼ 0;−1; 1;−1; 2ð ÞT and ξ=(− 1,1,1).
The joint distribution of X was specified by taking X3 with Bernoulli(0.2) distribution and then generating V3 as
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Bernoulli with P(V3=1|X3)=0.75X3+ 0.25(1−X3). Conditional on X3, the vector X1;V1;X2;V2ð Þ was generated as mul-
tivariate normal NðρX3

;ΣÞ; where ρ0 ¼ −1;−1; 1; 1ð Þ; ρ1 ¼ 1; 1;−1;−1ð Þ; and

Σ ¼

3 0:5 −0:5 −0:5

0:5 3 −0:5 −0:5

−0:5 −0:5 3 0:5

−0:5 −0:5 0:5 3

0BBB@
1CCCA:

In Lunceford and Davidian,7 the elements in the diagonal of Σ equal 1, instead of 3. We have increased the variance of
the covariates to make the effect of working in an unbounded scenario more noticeable.

We generated Nrep=1000 samples of size n=2000 following the described model, under which the real value of the
ATE is τ0=2. For each sample, we computed 4 estimators, namely, τ̂O, τ̂P, τ̂LD, τ̂LDP, and τ̂CHIM . τ̂O is the original IPW
estimator, defined by modeling the propensity score with the linear logistic model. That is to say, τ̂O ¼ τ̂n given in (15)
assuming that πðXÞ ¼ ϕðβT1XÞ, with ϕ(u)=1/(1+ exp(−u)) for some β1∈R

7: τ̂P is defined in (15), fitting an SPPS
model (14) for the propensity score. On the other hand, τ̂LD denotes the estimator proposed by Lunceford and Davidian.7

It is a modified IPW estimator of τ0, in which the weights are redefined in such a way that they not do not take on
extremely large values. The authors showed that this modification gives rise to a more stable procedure. We applied
the same modification to the weights computed assuming the SPPS model and obtained the following estimator for
the ATE, which combines the proposal of Lunceford and Davidian7 and the SPPS model discussed in this work:

τ̂LDP ¼ Pn
T

πðX; θ̂nÞ
1−

C1

πðX; θ̂nÞ

( )" # !−1

Pn
TY

πðX; θ̂nÞ
1−

C1

πðX; θ̂nÞ

( )" #

− Pn
1−T

1−πðX; θ̂nÞ
1−

C0

1−πðX; θ̂nÞ

( )" # !−1

Pn
ð1−TÞY

1−πðX; θ̂nÞ
1−

C0

1−πðX; θ̂nÞ

( )" #
;

(18)

where

C1 ¼
Pn

T−πðX; θ̂nÞ
πðX; θ̂nÞ

( )

Pn
T−πðX;θ̂nÞ
πðX;θ̂nÞ

� �2
" #; C0 ¼ −

Pn
T−πðX; θ̂nÞ
1−πðX; θ̂nÞ

( )

Pn
T−πðX;θ̂nÞ
1−πðX;θ̂nÞ

� �2
" #;

and θ̂n is the maximum likelihood (ML) estimator of θ0 under model (14). Another possibility is to estimate θ0 using the
LS method. In all the simulations settings we considered, the ML method gave better results than the LS method; this is
why we only report the results obtained with the former. Potential advantages of using LS instead ML for fitting the
propensity score, such as robustness, may be the subject of further work. Finally, τ̂CHIM is the estimator proposed in
Crump et al.8 This estimator gave surprisingly good results in this setting, despite its lack of consistency. As in Crump
et al,8 we found in our simulations that the cut‐off value obtained by the CHIM procedure is near α=0.1, regardless of
the values of ϵ and δ used in the SPPS model (14) to generate the data. Therefore, if the samples are generated with ϵ0
and δ0 greater than 0.1, then the propensity score is automatically bounded between 0.1 and 0.9 and thus trimming as in
Crump et al8 has almost no effect; the estimator is essentially the same as the IPW estimator. In these cases, the CHIM
estimator is consistent and it benefits from the trimming procedure discarding observations with estimated propensity
score which, because of random fluctuations, may be small.

Several experiments, unreported here, were made in order to study the performance of the machine learning
techniques described in Lee et al16 in this simulation setting. We found that the best results were achieved by the
methods bagged CART and boosted CART. However, the large variability of the covariates in this simulation
setting causes extreme estimated propensity scores to appear occasionally. For this reason, LD, CHIM, and the method
we propose here give better results in this setting. Combining machine learning and trimming, as proposed in
Kang et al,17 improved these results, but they were still not as good as LD, CHIM, or the method proposed here.

To compute the maximum likelihood estimator for the SPPS model, we used an iterative procedure, combining a
coordinate descent method with the iteratively reweighted LS method implemented in R. The initial estimator of β0
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was taken to be the maximum likelihood estimator for the linear logistic model, while the initial estimators for ϵ0 and
1− δ0 were computed, respectively, as the minimum and maximum of the fitted values corresponding to the initial esti-
mator of β0. If the estimates of ϵ0 and 1− δ0 are both near 0.5, then, in order to avoid convergence problems, we simply
discard the modified model and estimate the propensity score using the linear logistic model. The functions necessary
for computing these estimators are available in R upon request.

For each estimator τ̂ , we computed an empirical mean squared error with the following formula:

MSEðτ̂Þ ¼ 1
Nrep

∑
Nrep

i¼1
τ̂−τ0Þ2:
	

(19)

The results of the Monte Carlo study are reported in Tables 1 and 2. In these simulations, we can see that in almost all
the situations considered, our proposed estimators give better results than the corresponding classical ones. The CHIM
method gives very good results in some situations. In others, such as when ϵ is small and δ is near 0.5, its performance is
quite poor. We understand that this is due to the bias introduced by the trimming process. To summarize these results,
we computed the maximum MSE attained by each estimator, among all the situations considered. The results are
presented in Table 3. Since in observational studies, the true model for the propensity score is always unknown, the
maximum MSE that can be attained by each estimator is an important measure of its performance. According to this
measure, both our proposed methods (τP and τLDP) give much better results than the others.

The remaining situations, when samples are generated with large values of both ϵ0 and δ0, are only included in our
report. In these cases, under the linear logistic model, even though the estimation of beta is not correct, the fitted values
preserve approximately the bounds imposed by the generating data process and are very near to those obtained fitting
the correct SPPS model. This is why there are not big differences in the final estimations of τ0. Thus, in practice, our
proposed estimator is useful when the fitted values of the propensity score are not all near 0.5 (larger than 0.3 with
T=0 and smaller than 0.7 with T=1). When ϵ0 and δ0 are both 0.4 or greater, our estimator has convergence problems.
If they are, our method may not converge, and the classical method has to be used.

The asymptotic normality of both μ̂n and τ̂n presented in Theorems 1 and 2 , respectively, can be used to derive
asymptotic confidence intervals. In each case, the asymptotic variance can be estimated though a plug‐in procedure.
This yields the following estimator:
TABLE 1 Empirical mean squared errors of different estimators of ATE for simulated data sets generated following the SPPS model with

different values of ϵ0 and δ0

δ|ϵ 0.05 0.1 0.2 0.3 0.4 0.5

0.01 τ̂ 0.904 0.473 0.078 0.083 0.179 0.266

τ̂P 0.05 0.045 0.047 0.054 0.069 0.089

τ̂LD 0.056 0.053 0.04 0.058 0.11 0.169

τ̂LDP 0.027 0.025 0.025 0.029 0.037 0.049

τ̂CHIM 0.026 0.051 0.075 0.039 0.008 0.006

0.02 τ̂ 1.085 0.564 0.097 0.059 0.121 0.182

τ̂P 0.035 0.03 0.03 0.033 0.042 0.052

τ̂LD 0.061 0.063 0.04 0.04 0.073 0.114

τ̂LDP 0.021 0.019 0.018 0.021 0.027 0.035

τ̂CHIM 0.026 0.051 0.073 0.037 0.007 0.007

0.05 τ̂ 1.214 0.69 0.144 0.037 0.044 0.065

τ̂P 0.022 0.017 0.013 0.015 0.018 0.021

τ̂LD 0.082 0.093 0.054 0.025 0.028 0.042

τ̂LDP 0.017 0.014 0.012 0.013 0.017 0.019

τ̂CHIM 0.024 0.047 0.067 0.032 0.006 0.008

Abbreviations: ATE, average treatment effect; SPPS, strictly positive propensity score.



TABLE 2 Empirical mean squared errors of different estimators of ATE for simulated data sets generated following the SPPS model with

different values of ϵ0 and δ0

ϵ|δ 0.05 0.1 0.2 0.3 0.4 0.5

0.01 τ̂ 1.437 1.139 0.31 0.1 0.183 0.353

τ̂P 0.071 0.048 0.049 0.054 0.064 0.079

τ̂W 0.059 0.064 0.068 0.081 0.127 0.206

τ̂LDP 0.031 0.028 0.03 0.033 0.039 0.05

τ̂CHIM 0.015 0.014 0.016 0.027 0.073 0.151

0.02 τ̂ 1.498 1.206 0.367 0.102 0.108 0.204

τ̂P 0.044 0.033 0.033 0.036 0.041 0.056

τ̂W 0.064 0.072 0.065 0.059 0.075 0.12

τ̂LDP 0.025 0.023 0.023 0.026 0.03 0.04

τ̂CHIM 0.016 0.015 0.015 0.025 0.068 0.139

0.05 τ̂ 1.214 1.046 0.393 0.114 0.047 0.054

τ̂P 0.022 0.021 0.02 0.022 0.028 0.038

τ̂W 0.082 0.098 0.08 0.049 0.032 0.037

τ̂LDP 0.017 0.016 0.016 0.017 0.022 0.03

τ̂CHIM 0.024 0.022 0.016 0.017 0.043 0.084

Abbreviations: ATE, average treatment effect; SPPS, strictly positive propensity score.

TABLE 3 Maximum mean squared errors of the ATE estimator computed by different methods for simulated data sets generated following

the SPPS model with different values of ϵ0 and δ0

Estimator Max MSE

τ̂ 1.498

τ̂P 0.089

τ̂LD 0.206

τ̂LDP 0.05

τ̂CHIM 0.151

Abbreviations: ATE, average treatment effect; SPPS, strictly positive propensity score.
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v̂ ¼ 1
n
∑
n

i¼1

TYi

πðXi; θ̂nÞ
−

ð1−TiÞYi

1−πðXi; θ̂nÞ
−τ̂n−D̂T IFθ̂n

ðXi;TiÞ
( )2

; (20)

with

D̂ ¼ 1
n
∑
n

i¼1

TiY i _πðXi; θ̂nÞ
πðXi; θ̂nÞ2

þ ð1−TiÞYi _πðXi; θ̂nÞ
ð1−πðXi; θ̂nÞÞ2

: (21)

Also, normal bootstrap intervals can be computed, as inWasserman.31, section 8.3 To illustrate these facts, we performed
a final simulation study to evaluate empirical coverage of the asymptotically normal intervals, with the asymptotic vari-
ance estimated by formulas (20) and (21) and by the bootstrap method. We considered the ε0= δ0=0.1 case in the data‐
generating process described above. The empirical coverage for nominal level 0.95 obtained was 0.9218, for the intervals
computed using v̂ defined in (20), and 0.9524 for the intervals computed using the bootstrap method.

Extensive simulations, unreported here, show that when the variance of the covariates is small, the estimation of the
nuisance vector of parameters θ0 is difficult and the estimations obtained are highly variable. The reason for this is that,
in these cases, different combinations of β, ϵ, and δ can result in very similar values of π(X,θ). The parameters of
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interest, μ0 and τ0, however, can be estimated precisely because their estimators depend on θ̂n only through πðX; θ̂nÞ.
Unfortunately, the estimators of the asymptotic variance given in (20) and (21) depend on the estimator of θ0 and its
asymptotic variance. We have found in our simulations that the estimation of the asymptotic variance of τ̂n improves
when the variance of X increases but can be unreliable when the variance of X is small. For this reason, we prefer to
use bootstrap intervals in real data examples.
5 | MISSING DATA EXAMPLE: HOSPITAL DATA

We considered a sample of 100 patients hospitalized in a Swiss hospital during 1999 for medical back problems. We
studied the relationship between the cost of stay (Cost, in thousands of Swiss francs) and some explanatory variables
that are available in administrative records: length of stay (LOS, in days); admission type (0 = planned, 1 = emergency);
insurance type (0 = regular, 1 = private); age (years); sex (0 = female, 1 = male); and discharge destination (1 = home,
0 = another health institution). This data set was used in Marazzi and Yohai32 and has no missing values. To study the
performance of our proposed estimators, we artificially deleted some of the responses and computed the estimators in
the sample with missing values. We repeated this procedure 1000 times.

In each replication, we generated a sample of dichotomous variables A1…An according to the following mechanism:

P Ai ¼ 1ð Þ ¼ ð1−ϵ0Þϕ −0:1∗ LOSi þ 1:1f g þ ϵ0;

for different values of ϵ0 and ϕ the logistic function. The responses with corresponding Ai=0 were deleted from the
sample and considered missing.

For each sample, we computed μ̂O, μ̂P, μ̂LD, μ̂LDP, and μ̂CHIM defined analogously to the corresponding τ̂ in the
previous section. Even though CHIM estimator was proposed in a causal context, we adapted it to the missing data
setting, by trimming only observations with estimated propensity score smaller than 0.1. The empirical mean cost of
stay, μ0= 11.12, was computed as the mean of all the n=100 responses in the complete sample. The MSE of each
estimator was computed as in (19), replacing μ0 for �̂τ and the corresponding estimator of μ0 based on the i− th sample
for τ̂ i. The results are summarized in Table 4.

An inspection of the data reveals that observation 31 is atypical; it corresponds to a patient with LOS=64 days, but a
relatively low cost of 25 733.45 francs. Fitting a linear regression model to predict the cost of hospital stay using the
available covariates results in an expected cost of 45 153.1 francs for patient 31.

In data sets such as this, where there is an observation with small propensity score and an atypical response, our
proposed estimator will in general be a great improvement over the existing methods.
6 | ATE EXAMPLE: CHILDREN 'S FEV DATA

This data set contains measurements of the FEV of 654 children and teenagers aged 3 to 19 years, together with their
height, age, sex, and a binary variable indicating whether or not they smoke. It is basically the data set considered in
Rosner,14 which has been included in the R package covreg33 with slight modifications. To estimate the average
smoking effect in the FEV in this population, we consider only children aged 9 or older since there are not any smokers
among the younger children in this data set.
TABLE 4 Estimates of the mean squared error of different estimators of the mean cost of stay for hospital dataa

ϵ τ̂O τ̂P τ̂LD τ̂LDP τ̂CHIM

0.05 3.2557 2.0862 1.0806 1.0386 2.3712

0.1 2.5065 1.3951 0.7985 0.7678 1.8034

0.2 1.7195 0.7321 0.4505 0.4369 1.2349

0.3 1.0738 0.3610 0.2885 0.2753 0.8718

0.4 0.6507 0.1993 0.1692 0.1699 0.6374

Missing values are artificially generated using an SPPS model (5) with different values of ϵ.

Abbreviation: SPPS, strictly positive propensity score.
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We wish to emphasize that this example is included to show the use of the proposed model in a causal inference
context. The reliability of results depend on the no unmeasured counfounders assumption, and the discussion on its
validity given the observed covariates is beyond the scope of this work. This example is therefore considered only as
an illustration of the application of the proposed methods.

All 4 estimates yielded a negative ATE but differed in the size of this effect. As a means to determine the significance
of these differences, we computed 95% normal confidence intervals where we estimated the standard error based on
1000 bootstrap samples. To obtain the bootstrap samples, we first broke the data set in 2, smokers (65 subjects) and non-
smokers (374 subjects). Then, we resampled separately 65 observations from the smokers group and 374 observations

from the nonsmokers group. Let τ̂ i be the estimator of the ATE based on the ith sample and �̂τ the mean of
τ̂ 1; ⋯τ̂Nboot . The bootstrap estimator of the standard error of each estimator τ̂ was computed by

ŜE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nboot−1

∑
Nboot

i¼1
τ̂ i−�̂τ Þ2;
�s

(22)

and the 95% bootstrap confidence interval based on τ̂ was computed as

τ̂−1:96 ŜE ; τ̂ þ 1:96 ŜE �:�
(23)

In Table 5, we report the estimates, together with their corresponding standard errors and 95% bootstrap confidence
intervals for the ATE. The estimated values for both estimators based on SPPS model are smaller than those based on
the classical one. However, the bootstrap confidence intervals show that the ATE is not significant. The conclusion is
the same for all the estimators considered, except for the estimator based on the CHIMmethod. However, it is important
to emphasize that this method is not really estimating the ATE, since it is not consistent for it, as explained in the
introduction. As a consequence, the obtained that interval is for a different parameter and it is not possible to compare
it with those based on the other estimators. We remark that the standard error of our proposed estimator τ̂P is slightly
smaller than the standard errors of the classical ones.

The proposed SPPS model is an improvement over the classical model because it can tolerate unbounded covariates.
In practice, finite samples can only consist of bounded covariates. However, covariates with a large variance, can bring
about problems in estimations because they may behave as realizations of random vectors with unbounded support. To
illustrate this phenomenon, we add 4 artificially generated data to the FEV data set, in order to increase the variance of
the covariates. Two of the added observations correspond to very tall 18‐year‐old teenagers, and the other two
correspond to very small 9‐year‐old children. Three of them are smokers, and 3 of them are males. The chosen FEV
is a typical value for the given height and sex. The specific added points are given in Table 6. The estimates and 95%
bootstrap confidence intervals are reported in Table 7.
7 | DISCUSSION

When estimating the mean of a sample with missing values or the ATE in a nonrandomized study, the propensity score
is widely used in order to construct IPW estimators. These estimators are basically weighted means in which the weights
are the inverse of the estimated values of the propensity score. For estimating the propensity score, several methods can
be used being generalized liner models the most usual ones. However, GLM methods can produce estimated propensity
TABLE 5 Estimates for the ATE of smoking in children, their standard errors, and 95% bootstrap confidence intervals

Estimator Standard Error Confidence Interval

τ̂O −0.2993 0.3601 (−1.0051 to 0.4065 )

τ̂P −0.2655 0.1806 (−0.7685 to 0.2374 )

τ̂LD −0.1919 0.2566 (−0.5458 to 0.1619 )

τ̂LDP −0.2637 0.1927 (−0.6414 to 0.1140 )

τ̂CHIM −0.2691 0.1364 (−0.5364 to −0.0018 )

Abbreviations: ATE, average treatment effect.



TABLE 6 Artificially generated data for the ATE of smoking in children

Age FEV Height Male Smoke

18 5.00 76 1 0

18 5.12 76 1 1

9 1.50 52 0 1

9 1.62 54 1 1

Abbreviation: ATE, average treatment effect.

TABLE 7 Estimates for the ATE of smoking in children, their standard errors, and 95% bootstrap confidence intervals, for the

modified data

Estimator Standard Error Confidence Interval

τ̂O −0.2106 0.3064 (−0.8111 to 0.3899)

τ̂P −0.3026 0.1266 (−0.5791 to −0.0261)

τ̂LD −0.2477 0.1411 (−0.4959 to 0.0004)

τ̂LDP −0.2986 0.1365 (−0.5661 to −0.0311)

τ̂CHIM −0.4219 0.1510 (−0.7179 to −0.1260)

Abbreviation: ATE, average treatment effect.
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scores that are very near 0 or 1, especially if the covariates have a large variance. When the estimated propensity score
takes on extreme values (near 0 or 1), the resulting estimators become very unstable. Some authors, such as Lunceford
and Davidian,7 and Crump et al,8 have proposed estimators that are more stable than the classical IPW estimators. We
show that the method proposed by the former can be combined with the SPPS model to yield even more stable and still
consistent estimators. The latter, in an attempt to decrease the variance of the estimations, change the object of the
estimation, giving rise to a nonconsistent method.

In this work, we have proposed to estimate the propensity score using a modified GLM, which we call SPPS model,
that includes 2 extra parameters, intended to bound the propensity score away from 0 and 1. The proposed method is
attractive because of its simplicity, which allowed us to establish theoretical properties, such as consistency and
asymptotic normality. Moreover, it can be combined with other methods that use GLMs for the propensity score, by
replacing the GLM by a SPPS model, that is to say, by simply including 2 extra parameters. Finally, its excellent
performance in finite samples has been shown by means of a Monte Carlo study and real data examples.

So far, we have analyzed data sets with a small number of covariates. When the number of covariates is very large,
machine learning techniques can be used to estimate the propensity score; see Lee et al16 and Kang et al.17 Among
these, the ridge, lasso, and elastic net methods for GLMs, as developed in Friedman et al,34 are interesting possibilities.
The SPPS model can be combined with these regularization techniques in order to get a bounded propensity score and,
as a consequence, stable final estimators. The asymptotic properties and finite sample performance of these estimators
are the subject of further work.
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APPENDIX A
Proof of Lemma 1. Since EðY Þ ¼ E AY=πðXÞf g, we have
1
n
∑
n

i¼1

AiY i

π̂nðXiÞ−E Yð Þ
���� ����≤ 1

n
∑
n

i¼1

AiY i

π̂nðXiÞ−
1
n
∑
n

i¼1

AiY i

πðXiÞ
���� ����þ 1

n
∑
n

i¼1

AiY i

πðXiÞ−E
AY
πðXÞ
� ����� ����: (A1)
By the law of large numbers, the second term in the right‐hand side of display (A1) converges to zero. We first prove
that the first term in the sum above converges to zero. To deal with the first term note that, by C.2, there exists n0 such
that the following inequalities hold for n≥n0=no(ω), a.s.:

1
n
∑
n

i¼1

AiY i

π̂nðXiÞ−
AiY i

πðXiÞ
� �

<
1
n

1
η20

∑
n

i¼1
Yij j πðXiÞ−π̂nðXiÞj j

<
1
n

1
η20

∑
n

i¼1
Yij j πðXiÞ−π̂nðXiÞj jI Xij j≤mð Þ þ 1

n
1
η20

∑
n

i¼1
Yij j πðXiÞ−π̂nðXiÞj jI Xij j>mð Þ

<
1
η20

sup
Xj j≤m

πðXÞ−π̂nðXÞj j∑
n

i¼1

Yij j
n

þ 2
η20

∑
n

i¼1

Yij j
n

I Xij j>mð Þ:

The first term in the above sum converges to zero because of C.1. By the law of large numbers, for each m∈N, there
exists Ωm ⊆ Ω such that P(Ωm)=1 and

∑
n

i¼1

Yij j
n

I Xij j>mð Þ→E Yj jI Xj j>mð Þf g inΩm:

Therefore,

lim sup
n→∞

1
n

∑
n

i¼1

AiY i

π̂nðXiÞ−
AiY i

π∞ðXiÞ
� �

≤ E Yj jI Xj j>mð Þf ga:s: for all m∈N :

Taking limits when m→∞ , we get that

lim
n→∞

1
n

∑
n

i¼1

AiY i

π̂nðXiÞ−
AiY i

πðXiÞ
� �

¼ 0 a:s:

From this, the result follows.
Proof of Lemma 2. Suppose that π(X,θ)=π(X,θ ) with probability one, for some θ=(ε,β) with θ≠θ . This implies
0 0

that A|X∼A|βTX and Pfð1−εÞϕðβTXÞ þ ε ¼ ð1−ε0ÞϕðβT0XÞ þ ε0g ¼ 1: (A2)

Now, since ϕ(u) converges to zero as u goes to minus infinity, given h>0, there exists Mh>0 such that (1− ε)ϕ(u)
+ ε≤ ε+h, for u≤−Mh. Invoking A3, on a set Ωh with positive probability, we get that π(θ, X)=π(θ0, X) and
βTX<−Mh.
Thus, on Ωh, we get that

ε0≤πðβ0;XÞ ¼ πðβ;XÞ≤ε þ h;

and therefore, ε0≤ ε. Symmetrically, we get the opposite inequality and deduce that ε= ε0. Appealing now to A1 to
A2, we deduce that β=β0, following standard arguments related to identifiability in GLMs. Thus, we have proved
the validity of (6).
^ ^
Proof of Theorem 1. (i) Consistency: We will show that C.1 and C.2 are satisfied with πnðXÞ ¼ πðX:θnÞ. Then, the
result follows from Lemma 1. Let Cδ ¼∪n0∈N∩n≥n0 infX∈RpπðX; θ̂nÞ>δ

n o
.
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Since ε̂n converges a.s. to ε0>0ϵ̂n>ϵ0=2 a.s. if n is large enough. On the other hand, πðX; θ̂nÞ>ϵ̂n. It follows that

bθn→θ0
n o

⊂ bϵn→ϵ0g⊂ ∪
n0∈N

∩
n≥n0

inf
X∈Rp

πðX; bθnÞ>ε0=2
� �

:

�
This implies C.1, with η0= ε0/2. To prove C.2, we write

πðX; θ̂nÞ−πðX; θ0Þ
��� ���≤ _πðX; ξnÞT θ̂n−θ0Þ

� ���≤ _πðX; ξnÞk k θ̂n−θ0
 :���

Therefore, since π has a continuous derivative with respect to θ, we have that, for every compact set K⊂Rp, there exists
a constant M such that

sup
X∈K

πðX; θ̂nÞ−πðX; θ0Þ
��� ���≤M θ̂n−θ0

 ;
which converges to zero a.s. because of the assumed consistency of θ̂n. (ii) Asymptotic normality: Consider the follow-
ing expansion:

ffiffiffi
n

p ðμ̂n−μ0Þ ¼ n−1=2∑
n

i¼1
AiY i πðXi; θ̂nÞ−1−πðXi; θ0Þ−1

n o
þ n−1=2∑

n

i¼1

AiY i

πðXi; θ0Þ−μ0
� �

: (A3)

Performing a Taylor expansion and invoking the asymptotic linear representation for
ffiffiffi
n

p ðθ̂n−θ0Þ presented in (8), we
get that

n−1=2∑
n

i¼1
AiY i πðXi; θ̂nÞ−1−πðXi; θ0Þ−1

n o
¼ n−1=2∑

n

i¼1
−

AiY i

πðXi; ξ̂ nÞ2
_πðXi; ξ̂ nÞðθ̂n−θ0Þ ¼ (A4)

n−1=2∑
n

i¼1
−CTIFθ0ðXi;AiÞ þ oPð1Þ; (A5)

C ¼ E AY _πðX; θ0Þ=πðX; θ0Þ2g
�

, which is equal to the vector defined in (10) by MAR. Thus,

ffiffiffi
n

p ðμ̂n−μ0Þ ¼
1ffiffiffi
n

p ∑
n

i¼1
AiY i=πðXi; θ0Þ−μ0−CTIFθ0ðXi;AiÞ
� �þ oPð1Þ; (A6)

and from this linear expansion, the asymptotic normality follows from the central limit theorem.


