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Summary

1. Species community composition is known to alter the network of interactions between two tro-
phic levels, potentially affecting its functioning (e.g. plant pollination success) and the stability of
communities. Phylogenies vary in shape with regard to the rate of evolutionary change across a tree
(influencing tree balance) and variation in the timing of branching events (affecting the distribution
of node ages in trees), both of which may influence the structure of species interaction networks.
Because related species are likely to share many of the traits that regulate interactions, the shape of
phylogenetic trees may provide some insights into the distribution of traits within communities, and
hence the likelihood of interaction among species. However, little attention has been paid to the
potential effects of changes in phylogenetic diversity (PD) on interaction networks.
2. Phylogenetic diversity is influenced by species diversity within a community, but also how dis-
tantly-related the constituent species are from one another. Here, we evaluate the relationship between
two important measures of phylogenetic diversity (tree shape and age of nodes) and the structure of
plant–pollinator interaction networks using empirical and simulated data. Whereas the former allows
us to evaluate patterns in real communities, the latter allows us to evaluate more systematically the
relationship between tree shape and network structure under three different models of trait evolution.
3. In empirical networks, less balanced plant phylogenies were associated with lower connectance in
interaction networks indicating that communities with the descendants of recent radiations are more
diverged and specialized in their partnerships. In simulations, tree balance and the distribution of
nodes through time were included in the best models for modularity, and the second best models for
connectance and nestedness. In models assuming random evolutionary change through time (i.e.
Brownian motion), less balanced trees and trees with nodes near the tips exhibited greater modular-
ity, whereas in models with an early burst of radiation followed by relative stasis (i.e. early-burst
models) more balanced trees and trees with nodes near roots had greater modularity.
4. Synthesis. Overall, these results suggest that the shape of phylogenies can influence the structure
of plant–pollinator interaction networks. However, the mismatch between simulations and empirical
data indicate that no simple model of trait evolution mimics that observed in real communities.

Key-words: connectance, diversity, modularity, nestedness, network structure, phylogeny imbal-
ance, plant population and community dynamics, plant–pollinator interactions

Introduction

Species in ecological communities form networks of interac-
tions. Interactions can be shaped by multiple factors includ-
ing species abundances, phenology, spatial distribution and

phenotypes (Hooper, Chapin & Ewel 2005; Stang, Klinkh-
amer & Van Der Meijden 2006; Memmott et al. 2007; Stang
et al. 2009; V�azquez, Chacoff & Cagnolo 2009). These fac-
tors are in part determined by the evolutionary history, and
trait adaptation, of the interacting species. Morphological
traits can be a particularly important predictor of the struc-
ture of mutualistic networks, and some of these traits show a*Correspondence author: E-mail: myrmecocystus@gmail.com
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strong phylogenetic signal (Rezende et al. 2009; Rohr et al.
2010). Phylogenetic history may influence species interac-
tions, underlying any analysis of network structure (Maherali
& Klironomos 2007; Cadotte et al. 2009). However, little is
known about how phylogenetic relationships of species
within a community (which are reflected by the variation in
the distribution of branching events upon a phylogenetic tree)
shape the structure of interaction networks (Davies & Buck-
ley 2012).
Two aspects are crucial in the evolution of a given commu-

nity: variation in evolutionary rates among clades within a
phylogeny, which determine tree balance and the timing of
speciation events, which determine the distribution of node
ages (Mooers & Heard 1997). These two simple phylogeny
attributes reflect the evolutionary history of an ecological
community (Mooers & Heard 1997). Balanced phylogenies
exhibit high evenness in the distribution of diversification
events among clades, and of phylogenetic distance among
species. Trees with ancient speciation events have branching
events largely clustered deeper in the tree, hence older aver-
age node age. In such trees, species have had more time to
diverge, and hence should have lower trait similarity among
species than trees with more recent speciation events (Davies
et al. 2011).
Trait similarity within trophic levels can have an important

influence on network metrics. With higher trait similarity,
there is a higher probability of species sharing interaction
partners (Gibson et al. 2011; Junker et al. 2013). Communi-
ties with imbalanced phylogenies and with older node ages
should have low trait similarity among coexisting species
(Davies et al. 2012), leading to low similarity in the identi-
ties of interaction partners of different species. However,
there is evidence for the opposite – balanced phylogenies
with young nodes on average have low trait similarity and
thus low similarity in the identity of interaction partners
(Davies et al. 2012). Such effects due to similarities of inter-
action partners should be reflected in the structure of interac-
tion networks. Given that there is contrasting evidence for
the relationship between traits and phylogenies, we predict
two alternative scenarios. If trait similarity increases with
increasing node age and tree imbalance, greater average node
age and more imbalanced trees could result in higher connec-
tance (the proportion of realized connections of those possi-
ble), higher nestedness (the tendency for specialist species to
interact with a subset of generalist species that interact
among each other and with specialists) and less modularity
(a network pattern in which groups of species are more con-
nected to each other than with other groups, forming mod-
ules). Alternatively, if trait similarity decreases with
decreasing node age and tree imbalance (more balanced
trees), greater average node age and more imbalanced trees
could result in lower connectance, lower nestedness and
greater modularity.
Tree shape is affected by the evolutionary process under

which species have diverged. Thus, it is useful to consider
various evolutionary models that make contrasting assump-
tions about how evolution occurs. Here, we consider three

such models: Brownian motion (BM), which assumes trait
evolution is a random walk and cumulative trait change pro-
portional to time (Cavalli-Sforza & Edwards 1967); Early-
burst (EB) which assumes evolution occurs at an accelerat-
ing–decelerating rate, with an early-burst of diversification
early in time, followed by relative stasis (Harmon et al.
2010); and Ornstein-Uhlenbeck (OU), which assumes that
traits evolve towards one to many optima imposed by, for
example, convergent selection (Hansen 1997; Butler & King
2004). These three evolutionary models will have varying
effects on the phylogenetic signal of a trait; thus, if species
traits determine species interactions, the above evolutionary
models should lead to contrasting patterns in network struc-
ture. Specifically, we predict that the EB model will cause the
greatest phylogenetic signal, BM less so, and the OU model
the least signal (Harmon et al. 2010). Given this prediction,
the EB model should lead to networks with lower connec-
tance, lower nestedness and greater modularity, whereas the
OU model will lead to networks with greater connectance,
greater nestedness and lower modularity, with the BM model
leading to intermediate patterns.
Here, we evaluate the relationship between phylogenetic

tree shape and mutualistic network structure. We ask the two
following questions: (i) Does phylogenetic tree shape (tree
balance and node age) affect the structure of empirical mutu-
alistic networks? and (ii) Does the effect of phylogenetic tree
shape on the structure of simulated mutualistic networks
depend on the evolutionary model under which traits have
evolved?

Materials and methods

EMPIRICAL NETWORKS

Published networks

We included a total of 65 empirical networks in our analysis. All net-
works were binary, with cells with ones indicating occurrence of an
interspecific interaction and zeros indicating no interaction. Fifty-five
interaction matrices were retrieved from the data base of mutualistic
interaction networks compiled in Rezende et al. (2007). Rezende
et al. (2007) considered 59 networks consisting of many different
study organisms and methods of construction. As our study asks what
effect phylogenetic tree shape has on network structures, a biased
choice towards any particular taxonomic group may bias our results.
Thus, we excluded data sets limited to a particular taxonomic group
(see Appendix SA in Supporting Information), and excluded studies
where we could not discover their collection method confidently, after
which we were left with 50 networks.

Unpublished networks

An additional 15 mutualistic plant–pollinator networks were included
in our analysis from studies in four regions of western Canada. Thus,
we used a total of 65 networks. The details of these networks, includ-
ing methods, are in a paper in preparation (Chamberlain et al., in
review; see Appendix SF). As the sampling method (transects and
timed observations) used to construct the networks could bias the
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data, we included sampling method as a predictor variable in our
analyses (see below).

EMPIR ICAL PHYLOGENETIC TREES

Plants

Plant phylogenies were built using Phylomatic (see http://phylodiver-
sity.net/phylomatic; Webb & Donoghue 2004). Phylomatic is an
online interface to retrieve a phylogeny based on a user-defined set of
plant species taxonomic names. Branch lengths were estimated for the
master plant phylogeny using the branch length adjustment algorithm
(BLADJ) in the software PHYLOCOM (Webb, Ackerly & Kembel
2008), which fixes a set of nodes in the tree to specified ages and
evenly distributes the ages of the remaining nodes. We used node age
estimates from Wikstrom, Savolainen & Chase (2001) as incorporated
in the ‘ages’ file in the Phylocom installation. The tree file we used
to run the bladj command in Phylocom is provided in multiple
formats in Appendix SB. See the master plant phylogeny in
Appendix SB, on Figshare.org (http://figshare.com/articles/Ani-
mal_and_Plant_Phylogenies/1015787), and in Dryad (see Data acces-
sibility section). We pruned the master phylogeny for each network.

Pollinators

For pollinator phylogenies for the unpublished Canadian networks we
built a master phylogeny of all animal pollinators across all networks
in the study in Mesquite v.2.75 (Maddison & Maddison 2011), based
on a variety of published phylogenies. We then pruned the master
phylogeny for each network. Pollinator phylogenies from Rezende
et al. (2007) were built using a variety of sources (see Rezende et al.
2007 for details). No information on branch lengths was available for
pollinator phylogenies, so we assumed all branch lengths equalled
one time unit. See the master plant phylogeny in Appendix SB, on
Figshare.org (http://figshare.com/articles/Animal_and_Plant_Phyloge-
nies/1015787), and in Dryad (see Data accessibility section).

NETWORK STRUCTURES

We calculated three measures of network structure for each of the
mutualistic networks: connectance, nestedness and modularity. Con-
nectance is the proportion of possible interspecific interactions that
are realized. Nestedness quantifies the degree to which specialists tend
to interact with a subset of the species with which generalists interact.
Nestedness was calculated using NODF, a robust algorithm, insensi-
tive to network shape and size. Nestedness values range between 0
and 100; greater values indicate greater nestedness. Modularity (M)
measures the extent to which a network is organized into clearly
delimited modules. We used a modularity-detecting algorithm, which
maximized modularity using simulated annealing (SA) implemented
in the command line function netcarto_cl in the C program Rgraph
(Guimera & Amaral 2005a,b).

TREE SHAPE METRICS

There is a large suite of metrics used to quantify phylogenetic diver-
sity of trees (Cadotte et al. 2010). We chose to go with metrics that
are traditionally used to quantify tree shape (sensu Mooers & Heard
1997), that quantify complementary aspects of tree shape, and quickly
convey information about a phylogeny. One of the most widely used

metrics to quantify tree balance is Colless’ index (Ic), as it often has
the highest statistical power (Mooers & Heard 1997). A smaller value
of Ic suggests that speciation is balanced across the clades, while a
higher value of Ic suggests speciation differs among clades (trees are
more unbalanced; Fig. 1). Values of Ic can range between �∞ and
+∞. For the distribution of nodes in time, the gamma index (c) is
widely used and considered the most reliable. c describes the distribu-
tion of internode distances from the root to the tips. c values equal to
zero indicate that speciation events occur more or less midway
through the evolution of the tree; values greater than zero indicate
that nodes are closer to tips than expected (indicating recent specia-
tion events), while values smaller than zero indicate that nodes are
closer to the root than expected (indicating ancient speciation events;
under a pure birth process, in which births are constant and there are
no deaths). As we did not have branch length data for animal phylog-
enies, we only calculated Ic of shape for animal data, while we calcu-
lated both Ic and c for empirical plant data and simulation data
(below).

SIMULATED TREES AND NETWORKS

Although empirical data are crucial in examining real-world relation-
ships between tree shape and interaction network structure, the
explanatory variables (our two tree shape metrics) cannot be manipu-
lated. That is, the relationship based on empirical networks can only
be assumed to be correlational, leaving open the possibility that other
variables correlated with tree shape are responsible for the

Colless’ tree balance - Ic

DistribuƟon of node ages - γ

Values < 0
Ancient speciaƟon

Values > 0
Recent speciaƟon 

Smaller values
More balanced

Larger values
More unbalanced

Fig. 1. Two measures of tree shape. Tree balance is quantified using
Colless’ tree balance metric (Ic), while the distribution of node ages is
quantified using gamma (c). Smaller values of Ic represent more bal-
anced trees, while larger values represent more imbalanced trees.
Smaller values of c represent trees with nodes on average closer to
the root, while larger values represent more trees with nodes on aver-
age closer to the tips.
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relationship with network structure. Thus, we performed a simulation
analysis, asking if tree shape could be a mechanism contributing to
interaction network structure.

First, we simulated phylogenetic trees. As network asymmetry (i.e.
the ratio between number of plant to animal species) is a common
property of mutualistic networks, we simulated trees with realistic net-
work asymmetry values. From our empirical set of 65 mutualistic net-
works (described above), the average ratio of animals to plants was
2.47. We used 21 community size levels (n = 30, 40, 50, 60, 70, 80,
90, 100, 110, 120, 130, 140, 150, 175, 200, 240, 280, 350, 425, 500
and 600), where animals are 2.47 times more diverse than plants in
each community size level. Within each community size level we
simulated phylogenetic trees for plants and animals separately. We
simulated pure-birth (aka Yule process) phylogenies of n species for
each of plants and animals, with all lineages having an equal proba-
bility of diversifying and the death rate = 0, using function pbtree in
the package phytools. Note that simulation runs did not differ for
plant and animal phylogenies, so there is no reason to expect that the
trees that were created are any different, on average.

Second, within each set of trees at each level of community size,
we calculated balance (Ic) and node age (c). For each measure, we
defined a threshold to distinguish between balanced and unbalanced
trees, determined by simulating 1000 trees and examining the distri-
bution of the resulting Ic and c values. A cut-off was set at 15–17%
of trees in each the left and right tails of the distribution of each met-
ric (see Appendix SB). If the tree shape metric fell below the lower
threshold or above the upper threshold for each metric, we kept the
phylogeny, but if not, we discarded the phylogeny and created a new
one (we were in essence manipulating phylogeny shape, so we dis-
carded those that did not fit the cut-off values). New phylogenies
were created until 200 trees were created below the lower threshold
and 200 above the upper threshold for each metric. This process
resulted in two sets of trees: (i) a set of ‘balanced’ and ‘unbalanced’
trees based on Ic, and (ii) a set of trees with very recent nodes and
very old nodes based on c (see Fig. 1).

Colless’ metric values for empirical phylogenetic trees in this study
were mostly above zero, or mostly unbalanced phylogenies. Thus,
most of the empirical phylogenies align closely with the unbalanced
set of trees for each simulation. For Gamma, most values for empiri-
cal are less than zero, or mostly phylogenies with nodes near the root.
Thus, most of the empirical phylogenies align closely with the set of
trees for each simulation that have nodes close to the root.

We chose to simulate a set of balanced and unbalanced trees and a
set of trees with shallow and deep nodes instead of trees with a gradi-
ent of Colless and Gamma values because we the first task that
needed to be done was determine if network structure changed at all
with changes in phylogenetic tree shape. It should be noted that this
simulation process does not lead by default to trees that are biased in
one direction on the Ic or c axis (see https://gist.github.com/sckott/
9698127). Our tree selection process is what created a set of trees that
were biased towards more or less balanced, and with nodes deeper or
more shallower.

Third, we simulated a trait on each tree, under each of three mod-
els of evolution: (i) ‘Brownian motion’ (BM), (ii) ‘Ornstein-Uhlen-
beck’ (OU) and (iii) ‘Early-burst’ (EB). In the BM model, traits
evolved randomly on the phylogeny. In the EB model, traits followed
an accelerating–decelerating model of trait evolution (ACDC model,
with parameter g = 1.05, where g is the rate at which character
change declines). In the OU model, traits evolved towards an opti-
mum, rather than with constant rates without an optimum (BM) or
bursts of evolution (EB).

Fourth, we simulated interaction networks among plants and ani-
mals with a model for species interactions based on matching of their
trait values. We used a combined complementarity/barrier model fol-
lowing Santamar�ıa & Rodr�ıguez-Giron�es (2007). Under this model,
an interaction occurs only between the plant and animal if their trait
values are similar enough, and the animal trait value is larger than the
plant trait value. The resulting matrices are binary, with 0 for lack of
an interaction, and 1 for an interaction. Next, we calculated network
structural metrics on each matrix: connectance, nestedness and modu-
larity (see Network structures above). Last, we calculated means and
95% confidence intervals across replicates for each model of trait evo-
lution, each network structural metric, each level of number of species
and each level of tree balance (balanced and unbalanced). Simulations
were done under R v.2.15.3 (R Development Core Team 2012), using
packages phytools, geiger, ape, apTreeshape, bipartite and picante
(Paradis, Claude & Strimmer 2004; Harmon et al. 2008, 2009; Kem-
bel et al. 2010; Dormann 2011; Revell 2012). An R package called
treeshape is available (https://github.com/sckott/treeshape) to repro-
duce the simulations done in this study.

DATA ANALYSES

Empirical data

We analysed to what extent tree shape (Ic and c) was related to net-
work structural properties (connectance, nestedness and modularity)
by conducting general linear mixed effects models using lme function
from the package nlme in R v.2.15.3 (R Development Core Team
2012). Three separate models were run for each network structural
property: connectance, modularity and nestedness. For each property,
we tested the effect of network size, Ic and c, considering also all
possible interactions among these variables. Moreover, collection
method (transects vs. timed observations) was included as a fixed fac-
tor to account for any bias due to collection method. To account for
the nested structure of the data study was included as a random fac-
tor. For animals c could not be measured as their phylogenies did not
have branch lengths. All response variables, and network size, were
linearized by log10 transforming them to improve normality and
homoscedasticity. However, we present the results in figures using
raw data to allow easier interpretation. A significant main effect of Ic
or c, or their interactions with network size, suggests a significant
effect of phylogenetic tree shape on network structure.

Simulated data

We analysed if tree shape influenced network structural properties
using general linear models. We considered network size, network
shape and type of evolutionary model (BM, EB or OU) as fixed vari-
ables, also considering any interaction between them. Shape is a fac-
tor of tree balance (unbalanced vs. balanced) or average node age
(recent or old). We ran separate models for each network structural
property (connectance, nestedness, modularity) and for each tree
shape metric (balance, node age), resulting in six sets of models. We
linearized (using log10 transformation to improve normality and
homoscedasticity) the response network structures and network size to
meet assumptions. We then compared models with all possible com-
binations of the terms described above and selected the most parsimo-
nious model (best model) based on the Bayesian Information
Criterion (BIC). The inclusion of a main effect of shape (balanced vs.
unbalanced, or recent vs. old node age), two-way interaction with
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community size, or three-way interaction with community size and
evolutionary model in the best model suggests an effect of tree shape
on network structural properties. Analyses were done using the func-
tion lm in R v.2.15.3 (R Development Core Team 2012). As before,
we present the results in figures using untransformed data for ease of
interpretation.

As we manipulated only one tree shape metric in each simulation
run (either node age or tree balance), the other measure of tree shape
is free to vary. We checked for this issue with a separate simulation
run following the same simulation protocol as above. We simulated
300 trees each for each run. In the run manipulating balance, we mea-
sured node age, and in the simulation manipulating node age we mea-
sured balance. Results show that there is no significant pattern to one
tree shape metric when the other is manipulated (Appendix SE). That
is, there is no reason to expect that, for example, in a simulation
manipulating tree shape, node age may be heavily influencing the
result.

Results

EMPIRICAL DATA

For the plant phylogenies, connectance was not related to
node age (c), but was, as expected, significantly negatively
related to tree balance (Ic). That is, connectance decreased
with increasing Ic (Fig. 2). In addition, there was a

significantly negative relationship between connectance and
network size; that is, small networks had higher connectance
than larger networks. The negative effect of Ic depended on
network size (i.e. there was a significant interaction between
Ic and size). There was a significant positive effect of Ic on
modularity. That is, modularity increased with larger Ic val-
ues, or more unbalanced trees. There was no significant effect
of c on any of the three network structures. Web asymmetry
was important for nestedness only – there was a positive rela-
tionship between web asymmetry and nestedness such that
networks with more plant species were more nested. Collec-
tion method significantly affected connectance and nestedness,
but did not affect modularity (Table 1).
For the animal phylogenies, we could not examine c

because we did not have branch length data, so we present
results based only on the relationship between network struc-
ture and Ic. There was no effect of Ic on connectance, nested-
ness, or modularity (Table 1). There was a significant
negative relationship between connectance and network size,
with larger networks less connected. In addition, connectance
was negatively related to web asymmetry such that networks
that had more plant species (and fewer pollinator species)
were less connected. There was a significant negative relation-
ship between modularity and network size, such that larger
networks were less modular.

Dist. of nodes Tree balance

● ●

●

●●●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●

● ●

●

●

●

●
●

●●●●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●
●●●

●
● ●

● ●
●

●

●
●●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●
● ●

●

●
●

●●

●

●
●

●

●

●●

●

●
● ●

●

●

●
●

●
●

●●

●
● ●

●

●

●

●

●
●●●

●

● ●
●

●●

●

●
●

● ●

●

● ●
●

●

● ●●
●

●

●

●●

●

● ●●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

● ●

●

●

●

●
●

● ● ●●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●
● ● ●

●
● ●

●●
●

●

●
●●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●

●
●

● ●

●

●
●

●

●

● ●

●

●
● ●

●

●

●
●

●
●

●●

●
● ●

●

●

●

●

●
● ● ●

●

● ●
●

● ●

●

●
●

● ●

●

●●
●

●

● ●●
●

●

●

0.12

0.16

0.20

0.24

1.00

1.25

1.50

1.75

0.04

0.08

0.12

0.16

M
odularity

N
estedness

C
onnectance

–4 –2 0 0 1 2 3 4

Shape metric

N
et

w
or

k 
st

ru
ct

ur
al

 p
ro

pe
rt

y

Network size
●

●

●
10
100
700

Ic

S,Ic,S × Ic

Fig. 2. Empirical results examining the effect
of phylogenetic tree shape (balance and
distribution of nodes; see Materials and
methods for details) on network structural
properties (connectance, modularity and
nestedness), using plant phylogenies. Letters
in each panel indicate which factors were
significant (see Table 1): S = network size;
Ic = tree balance; c = distribution of nodes.
The size of the dots is proportional to network
size.
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SIMULATED DATA

In the simulations, we were able to manipulate phylogenetic
tree shape, both in tree balance (Ic) and node age (c) (Fig. 3;
Appendix SC).
For modularity analyses, tree balance (Ic) was included in

the best model (Appendix SC). For nestedness and connec-
tance analyses, although Ic was not included in the best
model, it was included in the second best model for each met-
ric (nestedness DBIC = 4.7, connectance DBIC = 3.8; see
Appendix SC). Node age had an effect on modularity, being
included in the best model. For nestedness and connectance
analyses, node age was only included in the second best
model (DBIC = 4.8 in both cases; see Appendix SC). The
effect sizes of both Ic and c were not large (Fig. 3; Appendix
Table C2). However, it is common sense that over evolution-
ary time very small effect sizes can have large consequences.
The type of evolutionary model also explained a substantial

part of the variance of the data, being always included in the
best model of all network metrics. This suggests that the evo-
lutionary process behind phylogenetic patterns can also influ-
ence the structure of species interactions. We predicted that, if
trait similarity increases with increasing tree imbalance, more
balanced trees would be less modular, and this is what we

found with Brownian motion (Fig. 3); however, we found the
opposite for early-burst (greater modularity in unbalanced
trees), and no effect of tree balance on modularity under the
Ornstein-Uhlenbeck model. For distribution of nodes, we pre-
dicted lower modularity in trees with younger nodes, and this
is what we found with early-burst, but not with Brownian
motion, for which we found greater modularity in trees with
younger nodes (Fig. 3). There was no effect of Ic on modular-
ity under the Ornstein-Uhlenbeck model.
Although network size was in many of the top models for

all network structures (Appendix SC), for both measures of
tree shape (Ic and c), the effect of tree shape on network
structure did not greatly vary with network size alone
(Fig. 3), in contrast to empirical data. Moreover, the effect of
network size depended on the evolutionary model used (i.e.
the interaction between evolutionary model and network size
was selected in the best model). For example, for both mea-
sures of tree shape, modularity increased with increasing net-
work size to an asymptote at relatively small network size
(~150 species) in the Brownian motion model, but decreased
for the other two evolutionary models (Fig. 3). Note that the
effect of tree balance and node age on network metrics are
somewhat correlated (see Fig. 3).

Discussion

In analyses using empirical data, we found that after taking
into account the effect of network size and data collection
method, network properties were affected by phylogenetic
history of plants and pollinators. The results of the effect of
plant phylogeny demonstrated that network properties were
more correlated with tree balance than the distribution of
nodes in time. Importantly, we manipulated tree shape in sim-
ulations, showing that at least under some evolutionary mod-
els, there is a causal link between tree shape and network
structure. In addition, the effect of phylogenetic history on
network structure (modularity) depended on the trait evolution
model. Although previous studies have shown a relationship
between network structure and some measure of phylogenetic
signal (Rezende et al. 2007, 2009; Verd�u & Valiente-Banuet
2011), the finding that tree shape matters to network architec-
ture begs explanation. We discuss the biological relevance of
these main findings below.

EMPIRICAL DATA – TREE BALANCE

Tree balance represents the extent to which clades within a
tree differ in diversification rates, and associated richness as
well as the assembly processes that might reflect habitat filter-
ing or competition (Webb 2000). Plant species within com-
munities with more balanced phylogenies may have higher
trait similarity, leading to more interactions due to trait over-
laps; our simulations show that trait similarity across phyloge-
nies is greater in imbalanced phylogenies under the Brownian
motion model, but greater in balanced phylogenies under the
Early Burst (EB) model (Appendix SD). When phylogenies
are very imbalanced (evolutionary rates vary among clades),

Table 1. Effect of phylogeny (tree balance, Ic, and node age, c), net-
work size (S), web asymmetry (WA) and collection method (CM) on
the structure of empirical networks. Three metrics of network struc-
ture were considered: connectance, nestedness, modularity. Models
for plants followed the equation: network metric ~ S * Ic * c + web
asymmetry + CM + study. Models for animals followed the equation:
network structure ~ S * Ic + WA + CM + study. In all models, CM
was a fixed factor (transect or timed observation method), and study
was a random factor. Values given are regression (linear) slope esti-
mates

Plants

Connectance Nestedness Modularity

Est. P Est. P Est. P

Network size (S) �0.09 <0.001 �0.32 0.169 0.04 0.409
Balance (Ic) �0.04 0.032 �0.64 0.019 0.14 0.014
Distribution of
nodes (c)

0.02 0.083 0.35 0.069 �0.07 0.078

Web asymmetry �0.01 0.149 0.22 0.022 �0.02 0.179
Coll. Method 0.02 0.043 0.20 0.034 �0.03 0.051
S 9 Ic 0.02 0.037 0.30 0.028 �0.07 0.019
S 9 c �0.01 0.096 �0.18 0.084 0.03 0.102
Ic 9 c �0.01 0.239 �0.19 0.047 0.04 0.039
S 9 Ic 9 c 0.00 0.216 0.10 0.037 �0.02 0.036
Animals
Network
size (S)

�0.05 <0.001 0.05 0.638 �0.04 0.037

Balance (Ic) �0.01 0.422 0.12 0.334 �0.01 0.537
Web
asymmetry

�0.02 0.002 0.01 0.917 0.01 0.507

Coll. Method 0.02 0.084 0.17 0.079 �0.03 0.111
S 9 Ic 0.00 0.416 �0.05 0.395 0.01 0.619

Significance (P < 0.05) is indicated by bold type. Ic: larger values
indicate more imbalanced trees; c: values increase as nodes get closer
to tips.
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the community plant phylogeny is likely to have few basal
angiosperm species and many members of derived clades
(e.g. many species of Asteraceae), which may interact with a
greater subset of the animal community. Basal angiosperms
are pollinated largely by flies and beetles more than derived
families of flowering plants are (Thien et al. 2009) and flies
and beetles are potentially more generalized than bees in their
floral visiting patterns (Willmer 2011; but see Vamosi et al.
2014). These general tendencies could bring about the overall
patterns between increasing imbalance and decreasing connec-
tance. Whether specialization has been increasing over evolu-
tionary time scales through coevolutionary processes is a
question we are only now beginning to answer (Guimar~aes,
Jordano & Thompson 2011). Of course additional factors not
accounted for such as abundance could play a role (Verd�u &
Valiente-Banuet 2011).

EMPIRICAL DATA – DIFFERENCES BETWEEN PLANT

AND POLL INATOR RESULTS

Selection pressures from major clades of pollinators have
produced convergence of floral characters towards pollination

syndromes (Fenster et al. 2004), consistent with the Orn-
stein-Uhlenbeck model, and likely a weakened phylogenetic
signal for floral traits when a broad sampling of angiosperms
is examined. For example, even basal clades of angiosperms
(e.g. Ranunculaceae) include all pollinator syndromes within
them, as do more derived clades. This process could produce
community plant phylogenies with nodes concentrated at the
tips having members with floral forms that attract all func-
tional groups of pollinators, producing weak patterns with
modularity. However, we detected no significant effect of
the distribution of nodes on network structures. Connectance
was greater with more balanced plant phylogenies, but the
effect was not significant for animals. If we assume this
means there is in fact no relationship for animals (and not a
result of lack of statistical power), then this suggests a role
for balance in plant phylogenies with respect to conserva-
tion. That is, we know high connectance can make a net-
work robust to perturbations (Dunne, Williams & Martinez
2002), so plant communities with increasingly imbalanced
phylogenies can be highly susceptible to loss of network
robustness. Note that we did not have branch length infor-
mation for pollinators, while we did for plants. We do not
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Fig. 3. Simulation results examining the
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based on Ic; see Materials and methods) and
distribution of nodes (d–f; based on c, see
Materials and methods) on network
modularity, under three models of evolution
[Brownian Motion (a,d), Early-Burst (b,e)
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know for sure how this affects results and our conclusions
drawn on them.

SIMULATIONS

Simulations allowed us to do two things beyond what
could be done with empirical data: manipulate tree shape
to determine if there is a causal link between tree shape
and network structures, and determine whether the choice
of an evolutionary model changes the relationship between
tree shape and network structure. First, we did find that
both manipulated Ic and c can alter modularity, though the
direction of the effect depends on the evolutionary model.
For modularity, tree shape had a significant effect on net-
work structures only for BM (random diversification at con-
stant rate through time) and EB models (early burst of
diversification followed by relative stasis). It is trait similar-
ity within clades that leads to closely related species within
a phylogeny (e.g. plants) interacting with similar species in
another phylogeny (e.g. pollinators), which explains the
lack of effect under the OU model, which leads to greater
trait similarity among clades relative to BM and EB
models.
Interestingly, BM and EB models lead to opposite pat-

terns of modularity for both Ic and c. That is, BM models
lead to greater modularity in unbalanced trees, while EB
models lead to greater modularity in balanced trees. Like-
wise, BM models lead to greater modularity when nodes
are nearer to tips, while EB models lead to greater modu-
larity when nodes are closer to the root. The differences
between BM and EB trait evolution models could be related
with the fact that while for BM trait variation between spe-
cies is greater when nodes are near the tips of the phyloge-
netic tree; for EB we found greater trait variation when
nodes are near the root (Appendix SD). Such differences
could play a role in determining modularity. When trait
evolution followed an OU model, trait variation did not
greatly differ due to node age (Appendix SD), and modular-
ity was not significantly affected by node age (Fig. 3). The
trait variation in the EB model is likely due to earlier
branching on average in a phylogeny leading to greater trait
variation; whereas when nodes are nearer tips on average,
trait variation is less. It is important to note that we did
not model the possibility that network properties could alter
the tempo of evolution. Previous studies have found that
super-generalists can apply selection pressures that increase
the rate of trait convergence (Guimar~aes, Jordano &
Thompson 2011) and thus may be the root cause of associ-
ations observed between network properties, trait variation
and tree shape.
Nonetheless, Harmon et al. (2010) found that EB models

were rarely supported in real phylogenies, whereas OU mod-
els were supported more often, suggesting that effects of tree
shape on network structure should in most cases match either
BM or OU evolution processes. Future studies are needed to
explore why different evolutionary processes lead to opposing
effects on modularity.

COMPARISON BETWEEN EMPIRICAL RESULTS AND

SIMULATIONS

While in empirical networks we found a correlation between
the shape of the phylogenetic trees and two of three network
structure properties, with simulations we found only a signifi-
cant effect of phylogeny on modularity. A major difference
between real networks and simulated ones is that our simu-
lated networks were based solely on interaction rules and trait
values, whereas real networks are generated from more com-
plicated rules. In real communities pollinators visit only a
fraction of available plants because of optimal foraging, floral
constancy and time constraints/sampling effort (Chittka,
Thomson & Waser 1999; Spaethe, Tautz & Chittka 2001).
Additionally, we did not explore species abundances, which
often partly explain network structure (V�azquez, Chacoff &
Cagnolo 2009; Verd�u & Valiente-Banuet 2011).
In our simulations, modularity varied with tree balance and

distribution of nodes, while in the empirical networks modu-
larity was affected only by tree balance. The direction of the
effect of tree balance on modularity was the same for simula-
tion and empirical data only if simulations followed the BM
model. This result suggests that trait evolution within the
empirical networks used in this study is more likely to have
followed a BM model. Indeed, Harmon et al. (2010) found
that EB models were rarely supported in real phylogenies.
Further studies involving careful trait evaluations in empirical
networks would help clarify these results.
Olesen et al. (2007) found that modularity tended to

increase with network size in real networks. Intriguingly,
our empirical networks do not tend to show this effect, per-
haps because the effects of tree shape override the effects of
network size. The strong effects of tree shape (and the
resulting trait distributions) on network structure in our
empirical dataset indicate that community composition of
one trophic level can heavily influence whether members of
the other trophic level are incorporated into the community
(Sargent & Ackerly 2008). Intriguingly, this sets the stage
for populations of any given species to be in different eco-
logical contexts in terms of mutualists and competitors,
which may provide an additional source of divergent selec-
tion pressures that could in turn affect the rates of evolution
(Thompson 2005). When adaptations in interacting clades
co-evolve (e.g. ‘pollination syndromes’), we may also
observe increased trait matching between trophic levels. For
example, it is often observed that bee abundance and
diversity declines with elevation (Arnold, Savolainen &
Chittka 2009; Hoiss et al. 2012), leaving flies as more pre-
dominant pollinators. The prevalence of flies presents a
potential constraint on the establishment of species with
zygomorphic flowers into high elevation sites (Vamosi et al.
2014). The ultimate constraint on these dynamics is the rate
of evolution of tolerance of high elevation environments in
bees and the loss of zygomorphic flowers in plants, and
unravelling the genetics of these transitions presents the next
frontier that will link the patterns we observe between trait
evolution, community assembly and network structure.
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Conclusion

As related species are more likely to share traits through com-
mon ancestry, the extent to which history affects the structure
of plant-pollinator mutualistic networks is dependent on the
model of trait evolution as well as the tempo and distribution
of lineage splitting along the course of a lineage’s evolution-
ary history. Our findings suggest that variation in phylogeny
balance, or variation in the number of lineages among sister
taxa, and the distribution of nodes in time in phylogenies, are
associated with variation in network metrics. In addition, our
simulations revealed that there is a potential causal link
between both tree shape measures and network metrics under
some evolutionary models, assuming that interactions between
species do not affect the evolution of the trait involved in
those interactions. Future studies should explore the mecha-
nisms behind the relationship between tree shape and network
structures.

Acknowledgements

We thank Enrico Rezende for kindly sharing phylogenies reconstructed for the
interaction networks used in his 2007 paper in Nature. L.G.C. was funded by
the EU FP7 project ‘Status and Trends of European Pollinators’ (244 090,
www.STEP-project.net). D.P.V. was funded through grants from FONCYT
(PITC-2010-2779) and CONICET (PIP 2781). S.C., E.E. and J.C.V. were
funded by NSERC-CANPOLIN; this is publication number 94 from NSERC-
CANPOLIN.

Data accessibility

All phylogenies are in Figshare (http://figshare.com/articles/Ani-
mal_and_Plant_Phylogenies/1015787) as well as Dryad. Networks
and phylogenies are in Dryad, and will be embargoed for a period of
one year (and will also be deposited in Figshare upon the end of the
embargo period). Data deposited in the Dryad repository: http:/
/datadryad.org/resource/doi:10.5061/dryad.gm7p3 (Chamberlain et al.
2014).

References

Arnold, S.E., Savolainen, V. & Chittka, L. (2009) Flower colours along an
alpine altitude gradient, seen through the eyes of fly and bee pollinators.
Arthropod-Plant Interactions, 3, 27–43.

Butler, M.A. & King, A.A. (2004) Phylogenetic comparative analysis: a model-
ing approach for adaptive evolution. The American Naturalist, 164, 683–695.

Cadotte, M.W., Cavender-Bares, J., Tilman, D. & Oakley, T.H. (2009) Using
phylogenetic, functional and trait diversity to understand patterns of plant
community productivity. PLoS ONE, 4, e5695.

Cadotte, M.W., Jonathan Davies, T., Regetz, J., Kembel, S.W., Cleland, E. &
Oakley, T.H. (2010) Phylogenetic diversity metrics for ecological communi-
ties: integrating species richness, abundance and evolutionary history. Ecol-
ogy Letters, 13, 96–105.

Cavalli-Sforza, L.L. & Edwards, A.W. (1967) Phylogenetic analysis. Models
and estimation procedures. American Journal of Human Genetics, 19, 233.

Chamberlain, S., V�azquez, D.P., Carvalheiro, L., Elle, E. & Vamosi, J.C.
(2014) Data from: Phylogenetic tree shape and the structure of mutualistic
networks. Dryad Digital Repository, http://datadryad.org/resource/doi:10.
5061/dryad.gm7p3.

Chittka, L., Thomson, J.D. & Waser, N.M. (1999) Flower constancy, insect
psychology, and plant evolution. Naturwissenschaften, 86, 361–377.

Davies, T.J. & Buckley, L.B. (2012) Exploring the phylogenetic history of
mammal species richness. Global Ecology and Biogeography, 21, 1096–
1105.

Davies, T.J., Allen, A.P., Borda-de-�Agua, L., Regetz, J. & Meli�an, C.J. (2011)
Neutral biodiversity theory can explain the imbalance of phylogenetic trees
but not the tempo of their diversification. Evolution, 65, 1841–1850.

Davies, T.J., Cooper, N., Diniz-Filho, J.A.F., Thomas, G.H. & Meiri, S. (2012)
Using phylogenetic trees to test for character displacement: a model and an
example from a desert mammal community. Ecology, 93, S44–S51.

Dormann, C.F. (2011) How to be a specialist? Quantifying specialisation in
pollination networks. Network Biology, 1, 1–20.

Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002) Network structure and
biodiversity loss in food webs: robustness increases with connectance. Ecol-
ogy Letters, 5, 558–567.

Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R. & Thomson, J.D.
(2004) Pollination syndromes and floral specialization. Annual Review of
Ecology, Evolution, and Systematics, 35, 375–403.

Gibson, R.H., Knott, B., Eberlein, T. & Memmott, J. (2011) Sampling method
influences the structure of plant–pollinator networks. Oikos, 120, 822–831.

Guimar~aes, P.R. Jr, Jordano, P. & Thompson, J.N. (2011) Evolution and coevo-
lution in mutualistic networks. Ecology Letters, 14, 877–885.

Guimera, R. & Amaral, L.A.N. (2005a) Cartography of complex networks:
modules and universal roles. Journal of Statistical Mechanics: Theory and
Experiment, 2005, P02001.

Guimera, R. & Amaral, L.A.N. (2005b) Functional cartography of complex
metabolic networks. Nature, 433, 895–900.

Hansen, T.F. (1997) Stabilizing selection and the comparative analysis of adap-
tation. Evolution, 51, 1341–1351.

Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & Challenger, W. (2008)
GEIGER: investigating evolutionary radiations. Bioinformatics, 24, 129–131.

Harmon, L., Weir, J., Brock, C., Glor, R., Challenger, W. & Hunt, G. (2009)
Geiger: Analysis of Evolutionary Diversification. R Package Version 1.3-1.
http://CRAN.R-Project.org/package=geiger.

Harmon, L.J., Losos, J.B., Jonathan Davies, T., Gillespie, R.G., Gittleman, J.L.,
Bryan Jennings, W., Kozak, K.H., McPeek, M.A., Moreno-Roark, F. & Near,
T.J. (2010) Early bursts of body size and shape evolution are rare in compar-
ative data. Evolution, 64, 2385–2396.

Hoiss, B., Krauss, J., Potts, S.G., Roberts, S. & Steffan-Dewenter, I. (2012)
Altitude acts as an environmental filter on phylogenetic composition, traits
and diversity in bee communities. Proceedings of the Royal Society B: Bio-
logical Sciences, 279, 4447–4456.

Hooper, D.U., Chapin, F.S. & Ewel, J.J. (2005) Effects of biodiversity on eco-
system functioning: a consensus of current knowledge. Ecological Mono-
graphs, 75, 3–35.

Junker, R.R., Bl€uthgen, N., Brehm, T., Binkenstein, J., Paulus, J., Martin
Schaefer, H. & Stang, M. (2013) Specialization on traits as basis for the
niche-breadth of flower visitors and as structuring mechanism of ecological
networks. Functional Ecology, 27, 329–341.

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ack-
erly, D.D., Blomberg, S.P. & Webb, C.O. (2010) Picante: R tools for inte-
grating phylogenies and ecology. Bioinformatics, 26, 1463–1464.

Maddison, W.P. & Maddison, D.R. (2011) Mesquite: a modular system for
evolutionary analysis. Version 2.75 http://mesquiteproject.org.

Maherali, H. & Klironomos, J.N. (2007) Influence of phylogeny on fungal
community assembly and ecosystem functioning. Science, 316, 1746–1748.

Memmott, J., Craze, P.G., Waser, N.M. & Price, M.V. (2007) Global warming
and the disruption of plant–pollinator interactions. Ecology Letters, 10, 710–
717.

Mooers, A.O. & Heard, S.B. (1997) Inferring evolutionary process from phylo-
genetic tree shape. Quarterly Review of Biology, 72, 31–54.

Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007) The modular-
ity of pollination networks. Proceedings of the National Academy of Sci-
ences, 104, 19891–19896.

Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics
and evolution in R language. Bioinformatics, 20, 289–290.

R Development Core Team (2012) R: A Language and Environment for Statis-
tical Computing, v.2.15.1.

Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biol-
ogy (and other things). Methods in Ecology and Evolution, 3, 217–223.

Rezende, E.L., Lavabre, J.E., Guimar~aes, P.R., Jordano, P. & Bascompte, J.
(2007) Non-random coextinctions in phylogenetically structured mutualistic
networks. Nature, 448, 925–928.

Rezende, E.L., Albert, E.M., Fortuna, M.A. & Bascompte, J. (2009) Compart-
ments in a marine food web associated with phylogeny, body mass, and hab-
itat structure. Ecology Letters, 12, 779–788.

Rohr, P.R., Scherer, H., Kehrli, P., Mazza, C. & Bersier, L.-F. (2010) Modeling
food webs: exporing unexplained structure using latent traits. The American
Naturalist, 176, 170–177.

© 2014 The Authors. Journal of Ecology © 2014 British Ecological Society, Journal of Ecology, 102, 1234–1243

1242 S. Chamberlain et al.



Santamar�ıa, L. & Rodr�ıguez-Giron�es, M.A. (2007) Linkage rules for plant-polli-
nator networks: trait complementarity or exploitation barriers? PLoS Biology,
5, e31.

Sargent, R.D. & Ackerly, D.D. (2008) Plant–pollinator interactions and the
assembly of plant communities. Trends in Ecology & Evolution, 23, 123–
130.

Spaethe, J., Tautz, J. & Chittka, L. (2001) Visual constraints in foraging bum-
blebees: flower size and color affect search time and flight behavior. Pro-
ceedings of the National Academy of Sciences, 98, 3898–3903.

Stang, M., Klinkhamer, P.G. & Van Der Meijden, E. (2006) Size constraints
and flower abundance determine the number of interactions in a plant–flower
visitor web. Oikos, 112, 111–121.

Stang, M., Klinkhamer, P.G.L., Waser, N.M., Stang, I. & Van Der Meijden, E.
(2009) Size-specific interaction patterns and size matching in a plant–pollina-
tor interaction web. Annals of Botany, 103, 1459–1469.

Thien, L.B., Bernhardt, P., Devall, M.S., Chen, Z., Luo, Y., Fan, J.-H., Yuan,
L.-C. & Williams, J.H. (2009) Pollination biology of basal angiosperms
(ANITA grade). American Journal of Botany, 96, 166–182.

Thompson, J.N. (2005) The Geographic Mosaic of Coevolution. University of
Chicago Press, Chicago, IL.

Vamosi, J.C., Moray, C.M., Garcha, N., Chamberlain, S.A. & Mooers, A.O.
(2014) Pollinators visit related plant species across 29 plant-pollinator net-
works. Ecology and Evolution, 4, 2303–2315.

V�azquez, D.P., Chacoff, N.P. & Cagnolo, L. (2009) Evaluating multiple deter-
minants of the structure of plant-animal mutualistic networks. Ecology, 90,
2039–2046.

Verd�u, M. & Valiente-Banuet, A. (2011) The relative contribution of abun-
dance and phylogeny to the structure of plant facilitation networks. Oikos,
120, 1351–1356.

Webb, C.O. (2000) Exploring the phylogenetic structure of ecological commu-
nities: an example for rain forest trees. The American Naturalist, 156, 145–
155.

Webb, C.O., Ackerly, D.D. & Kembel, S.W. (2008) Phylocom: software for
the analysis of phylogenetic community structure and trait evolution. Bioin-
formatics, 24, 2098–2100.

Webb, C.O. & Donoghue, M.J. (2004) Phylomatic: tree assembly for applied
phylogenetics. Molecular Ecology Notes, 5, 181–183.

Wikstrom, N., Savolainen, V. & Chase, M.W. (2001) Evolution of the angio-
sperms: calibrating the family tree. Proceedings of the Royal Society B: Bio-
logical Sciences, 268, 2211–2220.

Willmer, P. (2011) Pollination and Floral Ecology. Princeton University Press,
Princeton, NJ.

Received 15 January 2014; accepted 24 June 2014
Handling Editor: Ignasi Bartomeus

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article:

Appendix SA. Overview of networks used in the study, and why
some were not used.

Appendix SB. Visual demonstrating how phylogenies were selected
in the simulation part of this study.

Figure B1. Colless.

Figure B2. Gamma.

Appendix SC. Simulation model fitting results.

Table C1. Summary of results from simulations of the effect of phy-
logenetic treeshape on network structural properties.

Table C2. Model averaged parameter coefficients with confidence
intervals, and importance values.

Appendix SD. Phylogenetic signal and trait variance from simula-
tions.

Figure D1. Phylogenetic signal in the simulations of trees manipulat-
ing the gamma metric, the distribution of node ages.

Figure D2. Phylogenetic signal in the simulations of trees manipulat-
ing colless’ metric, tree balance.

Figure D3. Trait variance in the simulations of trees manipulating the
gamma metric, the distribution of node ages.

Figure D4. Trait variance in the simulations of trees manipulating
colless’ metric, tree balance.

Appendix SE. Simulations to test if manipulating tree balance sys-
tematically influences node age, and vice versa.

Figure E1. Tree balance (colless’ metric) in a simulation run manipu-
lating node age.

Figure E2. Node age (gamma metric) in a simulation run manipulat-
ing tree balance.

Appendix SF. Summary of Chamberlain et al. (In Review at Oecolo-
gia).
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