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Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of 

the brain, causing gradual disability and suffering that results in a complete inability of patients 

to perform daily functions. Amyloid aggregation of specific proteins is the most common 

biological event that is responsible for neuronal death and neurodegeneration in various 

neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal 

aggregation are required, but traditional drug discovery has fallen short. The exploration of new 

uses for approved drugs provides a useful alternative to fill the gap between the increasing 

incidence of neurodegenerative diseases and the long-term assessment of classical drug 

discovery technologies. Drug re-profiling is currently the quickest possible transition from bench 

to bedside. In this way, experimental evidence shows that some antibiotic compounds exert 

neuroprotective action through anti-aggregating activity on disease-associated proteins. The 

finding that many antibiotics can cross the blood-brain barrier and have been used for several 

decades without serious toxic effects makes them excellent candidates for therapeutic switching 

towards neurological disorders. The present review is, to our knowledge, the first extensive 

evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known 

disease-associated proteins. In addition, we propose a common structural signature derived from 

the antiaggregant antibiotic molecules that could be relevant to rational drug discovery. 

 

Abbreviations 

Aβ, amyloid β peptide 

AD, Alzheimerʹs Disease 

ALS, amyotrophic lateral sclerosis 

Amb, Amphotericin B 
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BBB, blood-brain barrier 

CJD, Creutzfeld Jakob disease 

CSF, cerebral spinal fluid 

DCS, D-Cycloserine 

DOX, Doxorubicin 

GA, Geldanamycin 

GAPDH, glyceraldehyde-3-phosphate dehydrogenase 

GS, Gramicidin S 

HD, Huntington’s diseases 

LB, Lewis bodies 

LPS, lipopolysaccharide 

MCS, minimal common structure 

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

NFT, Neurofibrillary tangles 

PD, Parkinsonʹs Disease 

PrP, Prion protein 

SNpc, substantia nigra pars compacta 

SOD1, superoxide dismutase 

ThT, thioflavin T 

TSEs transmissible spongiform encephalopathies 
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1.1 The structural fingerprint of neurodegeneration 

Neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), prion, amyotrophic 

lateral sclerosis (ALS) and Huntington’s diseases (HD), among others, are currently being 

classified under a similar molecular and cellular mechanism whereby protein aggregation 

appears to be involved in triggering and spreading neuronal death in specific brain regions (Soto 

et al., 2003; Takalo et al., 2013). In fact, twenty-six years ago, the aggregation of a peptide called 

β-amyloid (or Aβ) became the dominant model to explain the molecular basis of AD. This model 

was coined the “amyloid cascade”, and this concept was used to explain the deposition of 

different proteins associated with more than 60 disorders (Beyreuther and Masters, 1991; Hardy 

and Higgins, 1992; Selkoe, 1991). Over the years, this hypothesis has been modified to implicate 

soluble prefibrillar intermediates as the neurotoxic species. Nevertheless, the process of protein 

amyloid aggregation remains the main feature of neurodegenerative diseases until today 

(Beyreuther and Masters, 1991; Hardy and Allsop, 1991; Hardy and Higgins, 1992; Karran et al., 

2011; Sami et al., 2017; Selkoe, 1991 Selkoe et al., 2016).  

Amyloid aggregates include a structural superfamily of highly organized supramolecular 

structures that share a unique array of sheets; strands are stacked perpendicularly to the fibril 

growth axis and compose a novel quaternary structure referred to as cross-β. This amyloid 

specific structure was found in postmortem biopsies from patients with most neurodegenerative 

diseases and thus became the histopathological hallmark of these pathologies (Kayed et al., 

2003). The cross-β arrangement is irrespective of the nature of the precursor proteins, and the 

formation of amyloid structures is not an exceptional phenomenon associated with a small 

number of polypeptides, but it reveals a well-defined structural state of any protein when its 
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metastable native status is perturbed (Chiti and Dobson, 2006; Dobson, 2003; Eisenberg and 

Jucker, 2012). Moreover, this fibrillar architecture can be adopted not only by globular cytosolic 

proteins but also by membrane proteins (Stroobants et al., 2017), which reinforces the theory that 

amyloid aggregates are a generic state of proteins.  

The similarity between cross-β arrangements is highlighted by the finding that ex vivo and 

synthetic fibrils made of different proteins have similar high-resolution X-ray diffraction patterns 

even when proteins are heterologously expressed (Sunde et al., 1997a; Sunde et al., 1997b). 

Therefore, exceptional in vitro models for the study of the amyloid aggregation process are 

available.  

Of note, a similarly kind of aggregation-associated disease resulting from the formation of 

intermolecular linkages is the familial encephalopathy with neuroserpin inclusion bodies 

(FENIB). Serpins, a superfamily of protease inhibitors, present an elegant and unique mechanism 

of action based in profound conformational transitions and translocations (Belorgey et al 2007; 

Lomas et al 2002; Takehara et al 2010). Unfortunately, their structural flexibility makes them 

highly susceptible to mutation and prone to aggregate by forming abnormal intermolecular 

linkages (Belorgey et al 2007; Lomas et al 2002; Takehara et al 2010). The progressive 

accumulation within the endoplasmic reticulum of these aggregates cause cell dysfunction 

resulting in several diseases that share a common mechanism of polymerization, actually known 

as serpinopathies (Belorgey et al 2007; Lomas et al 2002). 

Wild type serpins have a metastable conformation made-up by 3 β‑sheets (A to C), 9 α‑helices 

and an exposed mobile reactive centre loop (RCL) which carries a pseudosubstrate involved in 

the docking of the target proteinase. However, point mutations can destabilize β-sheet A 

allowing the insertion of the RCL of another serpin molecule. Thereby, polymers result from 
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sequential reactive-loop insertion through an intermediate with an destabilized β-sheet (Belorgey 

et al., 2007; Lomas et al., 2002; Takehara et al., 2010).  

In the FENIB pathology the progressive accumulation of polymers of mutant neuroserpin in the 

form of inclusion or Collinʼs bodies in the cerebral cortex leads to cognitive deficits and 

presenile dementia (Belorgey et al., 2007; Bradshaw et al., 2001; Lomas et al., 2002). Likewise, 

although the mechanism and the kinetic of formation differ between amyloids and neuroserin-

polymers their associated dementias share conformational features being protein aggregation the 

injurious consequence of the formation of intermolecular linkages (Lomas et al., 2002). 

 

1.2 Molecular pathway of neurodegeneration 

The amyloid aggregation pathway is a sequential multistep reaction in which a protein in its 

soluble native state undergoes a self-association process that ends in a fibrillar state after moving 

through different soluble and insoluble intermediates (Fig 1). It is characterized by an initial lag 

phase that reflects a nucleation process, a growth or elongation phase, and a steady state (Wood 

et al., 1999) (Fig 1). The intermediate species of the amyloid reaction constitute a dynamic and 

heterogeneous population of particles with different sizes, structures, morphologies and 

biophysical and functional properties. Moreover, depending on the context, the amyloid reaction 

may follow alternative pathways that lead to the formation of either toxic (on-pathway) or non-

toxic (off-pathway) species (Ehrnhoefer et al., 2008) (Fig 1). 

From a kinetic point of view, the rate-limiting step of this process is the nucleus formation. The 

nuclei can grow from their ends and can behave as “seeds” to hasten the aggregation of other 

native monomers (Fig. 1). The seeds are thought to be produced during the lag phase (Soto et al., ACCEPTED M
ANUSCRIP
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2006), while the recruitment of monomeric proteins around the nucleus is produced in the second 

step or elongation phase.  

The nuclei, as well as higher aggregates such as protofibrils, can diminish the length of the lag 

phase when added to a native protein solution (Fig. 1B). This seeding property has a crucial 

impact on the degenerative process in cell cultures, tissues, and the brain (Brundin et al., 2008).  

Figure 1 

 

1.3 Identity of the toxic species. Shifting between the fibril and its precursors 

The presence of amyloid deposits, the most obvious pathognomonic characteristic of 

neurodegenerative disease, supported for many years the idea that amyloid fibrils are the primary 

inducers of pathogenesis. However, another hypothesis has recently emerged from evidence that 

demonstrates that the extent of fibrillar amyloid plaque deposition does not correlate with 

Alzheimer’s disease pathogenesis (Terry, 1996). Moreover, a significant number of non-

demented individuals have similar amounts of amyloid plaques as diseased patients (Terry, 

1996). These findings appeared to relegate the amyloid theory. Nonetheless, in vitro evidence 

suggests that pre-fibrillar species, rather than mature amyloid fibrils, are likely to be the primary 

pathogenic agents in neurodegenerative diseases; this evidence reinforced the relevance of the 

amyloid theory in neurodegenerative processes (Haass and Selkoe. 2007). In this sense, the 

structural characteristics, which resemble the typical membrane pore-forming protein 

arrangements on pathway intermediates of the aggregation process, have gained attention due to 

their capacity for disrupting membranes and inducing mitochondrial dysfunction or oxidative 

damage (Avila et al., 2014; Bennet et al., 2005; Conway et al., 2000; Cremades et al., 2012; 

Danzer et al., 2007; Huang et al., 2015; Takahashi et al., 2008; Winner et al., 2011). Notably, 
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some mature insoluble amyloid aggregates may not be fully devoid of toxicity, since it has been 

recently reported that they are responsible for triggering inflammation in PD (Gustot et al., 

2015). Moreover, methods commonly used to separate oligomeric species are not efficient 

enough, and a significant number of short fibrils may remain with oligomeric species; therefore, 

the nature of the primary toxic species is still not well known. Furthermore, Melki (2017) 

proposes that the toxicity between fibrils and oligomeric species be compared considering the 

identical number of particles and not polypeptide concentration. In this comparison, fibrillar 

assemblies were found to be more toxic than oligomers (Pieri L. et al., 2012; 2016). Moreover, 

fibrils might also be able to recruit the soluble forms of analogue proteins in vitro and in vivo 

(El-Agnaf et al., 1998; Hansen et al., 2011; Luk et al., 2009; Melki 2015; Nekooki-Machida et 

al., 2009; Novitskaya et al., 2006; Sanders et al., 2014; Yang W. et al., 2002). 

In addition, growing evidence shows that oligomeric species may be transferred from cell to cell 

(Emmanouilidou et al., 2010; Jang et al 2010; Lee et al., 2005). Furthermore, in recipient cells, 

transferred species behave as seeds and trigger the formation of small aggregates made from 

intracellular native protein (Chai et al., 2013; Desplats et al., 2009; Volpicelli-Daley et al., 2011). 

 

1.4 Biological usefulness of aggregation: Pushing the system to alternative ways  

Amyloid fibril formation from soluble proteins is not an exclusive event of neurodegenerative 

conditions, since nature has exploited the extraordinary physical properties of cross-β 

arrangements in many contexts. The physiological forms of amyloids, known as “functional 

amyloids”, play protective and adaptive roles across the phylogenetic tree (Bian et al., 2000; 

Chapman et al., 2002; Claessen et al., 2003; Hammer et al., 2008; Kenney et al., 2002; Wickner, 

1994).  
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In humans, amyloid fibrils composed of the pigment cell-specific premelanosome protein 

(PMEL) are extensively spread in skin, hair and eyes, and form the scaffold for melanin in 

melanocytes (Watt et al., 2013). Human functional amyloids were also described in the factor 

XII activation process, which specifically impacts on the kallikrein-kinin system that regulates 

inflammation, blood pressure, and pain without inducing coagulation (Maas et al., 2008). 

Additionally, a specific sugar from the extracellular matrix triggers glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) amyloid aggregation, and some intermediate species from this reaction 

kidnap in vitro toxic species related to neuronal death, which suggests that these aggregates may 

exert a protective role in vivo (Avila et al., 2014). 

Both sides of amyloid aggregation, from essential roles of functional amyloids to their 

implication in neurodegeneration and systemic amyloidosis, suggest that the protein aggregation 

process must be strictly regulated in order to avoid deleterious effects (Hammer et al., 2008).  

A naturally occurring mechanism for the regulation of amyloid toxicity via structural tuning was 

elegantly illustrated in the biology of Microcin E492 (Mcc), an amyloid-forming antimicrobial 

peptide (Shahnawaz and Soto, 2012). Depending on the environmental condition, this peptide 

can be found in two interconvertible forms: i) toxic active soluble oligomers capable of altering 

the membrane integrity of susceptible bacteria, and ii) non-toxic insoluble amyloid fibrils. 

During growth, Mcc-producing bacteria synthesize soluble toxic oligomers that target competing 

microorganisms, ultimately causing their demise. Once the competitors have been eliminated, 

pore-forming Mcc oligomers reversibly assemble into non-toxic amyloid fibrils that remain a 

reservoir of the toxic species (Shahnawaz and Soto, 2012).  ACCEPTED M
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One unanswered question in this model refers to the specific conditions or cofactors that “track 

the road” in the protein aggregation pathway toward the production of either protective or 

harmful amyloid species.  

 

1.5 Neurodegenerative diseases in the 21st century. Novel strategies for therapy 

In the brain specifically, the protheostatic mechanisms that regulate amyloid aggregation 

pathways are probably very tightly regulated since any imbalance might involve the onset of a 

neurodegenerative process. Although factors known to alter this balance are well studied, the 

complete landscape of this process remains unknown. 

On the other hand, the increase in longevity in the human population situates neurodegenerative 

diseases as a critical challenge to health care systems throughout developed countries. In fact, 

according to a systematic study only on Alzheimer’s disease, 7.7 million people are affected in 

the US alone, and this number is estimated to rise to 13.5 million by 2050. 

(http://www.alz.org/documents_custom/trajectory.pdf). Additionally, the actual expenditure of 

dementia care in the UK almost matches the combined cost of cancer, heart disease and stroke 

(http://www.alz.co.uk/research/files/WorldAlzheimerReport.pdf). Regarding PD, the situation is 

analogous to AD, since approximately 4.6 million Western European patients were diagnosed in 

2005, and that number is expected to increase to approximately 9 million in 2030 (Dorsey et al., 

2007). These data highlight the urgent need for the identification of effective neuroprotective 

therapies in order to avoid the collapse of the healthcare system. Therefore, treatments must 

directly target the underlying disease pathogeneses as the primary method of altering the 

inexorably progressive clinical course of these diseases. Likewise, the inhibition of abnormal 

protein aggregation should be the main target of therapies for amyloid-associated diseases. 
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Unfortunately, despite the significant investment in research and drug development, to date, all 

attempts have failed. 

Although promising compounds have demonstrated an ability to stop or revert protein 

aggregation in vitro or in animal models, unfortunately, most of them fail in preclinical or 

clinical trials because preclinical assays cannot always account for all physiological differences 

between animal models and humans (Pardridge et al., 2005). Moreover, most drugs currently 

described as neuroprotective in clinical trial registration databases that reach phase three are 

mainly aimed at neurotransmitter release regulation or metabolism instead of the inhibition of the 

abnormal protein aggregation process (https://clinicaltrials.gov/). Therefore, available therapeutic 

approaches are more palliative than curative.  

In this context and from a neurological point of view, any compound that is capable of 

interfering with the amyloid aggregation process, either by preventing the production or 

promoting the clearance of the pathogenic species, would be a valuable candidate for the 

development of an effective therapy against neurodegenerative diseases. In this sense, an 

encouraging alternative strategy could be drug repurposing. This method encompasses the use of 

a drug that has already passed a significant number of toxicity and safety tests. Therefore, the 

time required to reach clinical trial status is expected to be dramatically decreased. Likewise, the 

identification of an old, well-known medicine with novel antiaggregating activity on proteins 

associated with neurodegenerative disorders would be groundbreaking.  

Since pioneer studies showed that leprosy patients who received chronic treatment with 

antibiotics displayed significantly decreased prevalence of dementia (Chui et al., 1994), great 

expectations regarding the role of antibiotics as neuroprotective agents have arisen. Aside from 

their anti-bacterial activity, compelling experimental evidence currently shows that many other 
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features of antibiotics, including anti-inflammatory, anti-aggregating, and antioxidant properties, 

can be beneficial for the treatment of neurological disorders (Forloni et al., 2009; Gonzalez 

Lizarraga et al., 2017; Noble et al., 2009; Santa-Cecilia et al., 2016; Stoilova et al., 2013; Sultan 

et al., 2013).  

In the present review, evidence regarding the impact of antibiotics on the pathological 

aggregation of disease-associated proteins is extensively examined. In addition, due to the 

chronicity of neurodegenerative diseases, we discuss the risk of adverse events during long-term 

exposure to different antibiotics and analyze the feasibility of repurposing them for human 

clinical therapy. 

 

2.1 Alzheimer’s Disease: a tale of two proteins finally connected in one road 

AD, the major cause of age-related dementia worldwide, is currently considered a proteopathy or 

protein misfolding disease since two brain proteins are involved in neuronal death. 

Neurofibrillary tangles composed of amyloid aggregates of hyperphosphorylated microtubule-

associated protein tau (MAPT) are currently considered pathological hallmarks of AD. 

Moreover, since the concentration of tau in the cerebral spinal fluid (CSF) and the neurofibrillary 

tangle (NTF) load in the brain strongly correlate with the clinical progression of the disease, they 

have been proposed as biomarkers for AD (Tapiola et al., 1997). Extracellular deposits of 

amyloid β peptides (Aβ) known as senile plaques have also been implicated in the pathogenesis 

of AD. The most accepted amyloid hypothesis of AD links the aggregation pathway of both 

proteins and suggests that Aβ is the primary cause of dementia due to its ability to induce NFT 

formation, which occurs downstream of Aβ aggregation (Hardy et al., 2002; Ittner et al., 2010; 

Kosik, 2006). Nevertheless, growing evidence indicates that oligomeric species, which precede 
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the appearance of fibrillar aggregates, are more involved in neuronal loss than NFT or senile 

plaques themselves (Iqbal et al., 2010; Maeda et al., 2006; Sepulveda-Diaz et al., 2015; 

Takashima, 2013).  

 Clinically, AD is characterized by a progressive deterioration of memory and cognitive 

functions that finally leads to complete incapacity and death (Querfurth et al., 2010; Zhao et al., 

2013). Despite tremendous advances in our knowledge of the disease, its accurate causes and 

pathogenesis are not entirely understood, and unfortunately, there are no effective therapies for 

halting or slowing the neuronal damage associated with the disease. Thus, the need for the 

development of novel therapeutic agents capable of preventing or halting the progression of the 

amyloid cascade of tau, Aβ peptide, or both, is crucial. Below, we will discuss the 

neuroprotective properties of antibiotics (Chessell et al., 1991; Forloni et al., 2001; Namba et al., 

1992) in an attempt to elucidate their ability to interfere with the proteopathic process of AD. 

2.1.1 Tetracyclines 

The interest in the anti-amyloidogenic activity of tetracyclines arises from the observation that 

these widely prescribed, blood-brain barrier (BBB)-crossing and well-tolerated antibiotics (Klein 

et al., 1995) could abolish the toxic effects of Aβ in a transgenic Caenorhabditis elegans model 

of AD (Diomede et al., 2010). In this model, the expression of the Aβ peptide leads to the 

formation of β-sheet enriched structures, the intracellular accumulation of which induces a 

paralysis phenotype (Diomede et al., 2010). However, feeding transgenic Caenorhabditis 

elegans with either tetracycline, doxycycline or minocycline triggered a disassembling of the β-

sheet enriched structures of Aβ and significantly decreased the accumulation of the oligomeric 

species (Diomede et al., 2010). This finding is in agreement with previous observations from 

Forloni and co-workers (2001) indicating that tetracyclines, such as doxycycline and 
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minocycline, can inhibit the aggregation pathway of Aβ1-42 and disassemble mature amyloid 

fibrils of the peptide. Furthermore, these antibiotics strongly increased the susceptibility of Aβ1-

42 amyloid fibrils to trypsin digestion (Forloni et al., 2001; Sirangelo et al., 2010), which 

suggests a different supramolecular arrangement in the presence of the antibiotic. In this way, 

Airoldi and colleagues (2011) demonstrated that the presence of tetracycline induced the 

formation of novel disordered and non-homogeneous aggregates of Aβ1-42 with significantly 

less toxicity in N2a cell lines. These tetracycline-induced aggregates belong to off-pathway 

species since they cannot achieve the final product of the amyloid aggregation reaction, i.e., 

mature fibrils (Airoldi et al., 2011) (Fig. 4). Furthermore, tetracycline interacts with early 

oligomers of Aβ1-42, changes their supramolecular organization and pushes the aggregation 

reaction to the amorphous way, generating large non-fibrillar aggregates that lack toxicity 

(Airoldi et al., 2011) (Fig. 4). 

Regarding doxycycline, Costa and colleagues (2011) demonstrated that in the presence of this 

antibiotic, Aβ peptide follows the same aggregation pathway and leads to the formation of non-

toxic, cross beta lacking, amorphous aggregates that remain in a soluble state. These authors also 

demonstrated that doxycycline has no effect on the neurotoxicity of pre-aggregated β-sheet 

enriched oligomers in a cell model of AD. This indicates that although the antibiotic could be 

useful for the prevention of the formation of toxic oligomers of Aβ, once those species are 

assembled, it is incapable of counteracting their deleterious effects (Costa et al., 2011).  

Concerning the role of tau protein in AD, Noble and colleagues (2009) found that minocycline 

can reduce the formation of tau aggregates in primary cortical neurons and enhance cell survival. 

In this respect, minocycline treatment diminished caspase-3 activation and the level of 

aggregation-prone caspase-3-cleaved tau fragments (Noble et al., 2009). Moreover, when treated 
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with minocycline, the tangle-forming transgenic mice displayed significantly diminished levels 

of phosphorylated tau and tau aggregates (Noble et al., 2009). 

Notably, concerning the potential use of tetracyclines in neurology, a clinical trial that 

encompassed more than one hundred patients with probable AD and mild to moderate dementia 

showed that co-treatment with daily doses of doxycycline and rifampicin (also known as 

rifampin) for three months significantly diminished cognitive decline and dysfunctional behavior 

(Loeb et al., 2004). However, these encouraging results were later challenged by a multicenter, 

blinded, randomized, factorial controlled trial, the DARAD trial, which indicated that neither 

doxycycline nor rifampicin were effective in significantly slowing the progression of 

degeneration in AD patients over a twelve-month treatment period (Molloy et al., 2013). 

Nevertheless, these trials were performed with patients diagnosed with AD; therefore, amyloid 

oligomeric species were probably already formed before antibiotic treatment. 

2.1.2 Gramicidin S 

In addition to tetracyclines, a few other antibiotics have been shown to possess neuroprotective 

properties. In this regard, Luo and co-workers (2013) demonstrated that Gramicidin S (GS), a 

cyclic, wide-spectrum, peptide antibiotic with potent antimicrobial activity against Gram-

positive and Gram-negative bacteria and some fungi (Kondejewski et al., 1996; Luo et al., 2013), 

can block the aggregation pathway of Aβ in vitro. Furthermore, it can disassemble pre-formed 

amyloid fibrils. By using in silico docking studies, Luo and colleagues (2013) proposed a novel 

interaction between the cyclic decapeptide structure of the antibiotic and the Aβ peptide; in this 

model, GS assumes a β-sheet conformation that interacts with those from the Aβ oligomers, 

enables the binding of the antibiotic to the growing Aβ-protofilaments, and blocks amyloid fibril 

formation (Fig. 2). 
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Figure 2.  

 

Unfortunately, Gramicidin S is highly toxic to red blood cells. It causes hemolysis in humans; 

therefore, its applications have been restricted to topical uses (Finch et al., 2010). For this reason, 

Gramicidin S-derivatives that display reduced hemolytic activity but conserving antimicrobial 

action as well as antiaggregating action have been developed (Kapoerchan et al., 2010; Luo et 

al., 2013). Despite the finding that Gramicidin S and its analogues are not ready-to-use drugs, 

they provide new strategies for the development of inhibitors against Aβ fibril formation. The 

finding that some derivatives are still capable of inhibiting the aggregation pathway of Aβ1-40 

indicates that the structural determinants within the molecule of GS responsible for the anti-

aggregating properties are different from those that cause the hemolytic activity of the antibiotic 

(Luo et al., 2013). It is important to notice that the ability of Gramicidin S and gramicidin-like 

compounds to disassemble preformed amyloid fibrils should be tested in terms of toxicity since 

the disruption of fibrils could produce new oligomeric species. Therefore, more toxicological 

assays regarding the safety of these derivatives are required before their application in humans. 

2.1.3 D-Cycloserine 

D-Cycloserine (DCS) is an antibiotic widely prescribed for the treatment of multidrug-resistant 

Mycobacterium tuberculosis infections and has been shown to exert beneficial effects in patients 

with neurological disorders. Moreover, compelling evidence indicates that DCS exerts 

neuroprotective activity and may act as a cognitive enhancer in AD (Billard et al., 2007; Chessell 

et al., 1991; Schneider et al., 2000). Additionally, Chaturvedi and co-workers (2015) showed that 

when the Aβ-42 peptide was subjected to aggregating conditions in the presence of DCS, the 

antibiotic significantly attenuated the toxicity of the peptide and increased cell viability.  
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Molecular docking studies showed that DCS interacts with residues Phe19, Phe20 and Asp23 of 

the Aβ-42 peptide, leading to the formation of DCS/Aβ-42 complexes with low cross-β-sheet 

conformation content and stabilized by hydrophobic interactions and hydrogen bonding. These 

complexes block the progression of the amyloid pathway and thus prevent the formation of toxic 

Aβ species (Chaturvedi et al., 2015). 

2.1.4 Amphotericin B 

Amphotericin B (AmB) is an antifungal antibiotic that kills yeast by binding to the essential lipid 

ergosterol, leading to the formation of ion channels with concomitant membrane 

permeabilization (Gray et al., 2012). AmB is one of the few compounds known to delay the 

progression of prion disease in animals (Hartsel et al., 2003), and thus, its activity as an 

antiamyloidogenic compound was also tested with Aβ peptides. By using Congo Red as a 

specific dye for the detection of amyloid structures, Hartsel and colleagues (2003) demonstrated 

that AmB can bind to the aggregation-prone region Gly25-Met35 from Aβ-42 and inhibit its 

fibrillization. However, Smith and co-workers (2009) reported that although AmB effectively 

binds to β-sheet enriched soluble oligomers of Aβ-42, it does not have any effect on the 

aggregation kinetics of fibril formation. These controversial results may be explained by taking 

into account that a potential inhibitor molecule and the amyloid specific dye used may compete 

for the same binding site within the growing aggregates, and thus, the binding of one of them 

may interfere with the binding of the other (Smith et al., 2009). 

Consequently, a lower signal from the amyloid specific dye does not necessarily imply an 

inhibition of the fibrillization process, but it could indicate the binding of a compound to the 

amyloid aggregates and the displacement of the dye from them, although the cross-β structure of 

the particles may not be affected. Therefore, to appropriately characterize the anti-aggregating 
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property of any compound, several complementary techniques, including circular dichroism, 

infrared spectroscopy, dynamic light scattering and thioflavin T (ThT) and Congo red 

spectroscopies, should be performed (Smith et al., 2009). These considerations clearly show that 

more experimental data regarding the effects of Amphotericin B on Aβ-42 are required in order 

to clarify its potential as an anti-aggregation agent against Aβ misfolding. In any case, since 

AmB exerts dose-dependent nephrotoxicity (Goldman et al., 2007; Soler et al. 2008), harmless 

derivatives are required to avoid injurious secondary effects on patient health during chronic 

treatment. Notably, as we will subsequently discuss, Soler and colleagues (2008) developed 

AmB derivatives that lack toxicity and antimicrobial activity but retain the anti-aggregating 

action on Prion protein (PrP). If this anti-aggregation activity is extensible to Aβ, then these 

AmB derivatives could be suitable molecules for the treatment of AD. However, at least to our 

knowledge, no study on this subject has been performed. Although AmB is not currently a ready-

to-use drug, knowledge derived from the AmB:Aβ peptide interaction could prove essential for 

intelligent drug design.  

2.1.5 Anthracycline 

Anthracycline antibiotics were discovered in the late 1930ʼs and were found to exert potent 

activity against Gram-positive microorganisms (Rabbani et al., 2005). Nonetheless, the detection 

of their antitumor activity in 1963 redirected their application as valuable molecules in cancer 

therapy (Booser et al., 1994). Later, in the 1990ʼs, the observation that a derivative of the 

anthracycline antibiotic doxorubicin (DOX) induced amyloid resorption led Merlini and 

colleagues (1995) to study the effects of this molecule on amyloidosis. In this respect, it was 

found that it binds tightly to several natural amyloid fibrils, including those purified from the AD 

brain, mainly through hydrophobic interactions (Merlini et al., 1995; Tagliavini et al., 1997). 
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Moreover, the binding of the DOX derivative to the growing amyloid fibril decelerates the 

fibrillization process, and it was hypothesized that the antibiotic could enhance the clearance of 

amyloid structures by increasing their solubility (Merlini et al., 1995). However, no experimental 

data to support this hypothesis have been reported. On the other hand, taking into account 

compelling evidence that indicates that the most toxic species are the soluble β-sheet-enriched 

oligomers, the disassembly of amyloid fibrils may not be, from the clinical point of view, a 

valuable alternative unless the soluble species that were formed lacked toxicity. In addition, 

clinical evidence demonstrated that doxorubicin as a chemotherapeutic agent entails an increased 

risk for cardiomyopathy due to cumulative dose-dependent cardiotoxicity (Volkova et al., 2011).   

Overall, the cumulative dose of doxorubicin, its intrinsic toxicity and its associated risk for 

developing heart failure has restricted its clinical application in human health and, at least to our 

knowledge, the development of DOX derivatives that lack toxicity has not yet been achieved. 

2.1.6 Rifampicin 

Rifampicin is a BBB-crossing semi-synthetic macrocyclic antibiotic, and it is probably the most 

studied antibiotic regarding neurodegenerative disorders. It exerts strong antiaggregating 

activity, which significantly decreases the accumulation and toxicity of intracellular Aβ 

oligomers in cultured cells (Tomiyama et al., 1997; Yulug et al., 2014). Moreover, in cell-free 

conditions, rifampicin inhibits the toxic oligomer formation of Aβ, tau, and α-synuclein, which 

suggests that the formation of noxious species from these proteins involves a similar mechanism 

and a common structural determinant (Umeda et al., 2016). This inhibition of the oligomerization 

process is also supported by the observation that a rifampicin-treated group of leprosy patients 

showed a decreased incidence of AD and a reduction in amyloid plaque formation (Chui et al., 

1994; Namba et al., 1992). However, Umeda and colleagues (2016) observed no significant 
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decrease in amyloid deposition in aged Tg2576 mice in the presence of rifampicin, which 

suggests that the antibiotic does not affect preformed fibrils in amyloid plaques. Nonetheless, 

rifampicin did significantly diminish the accumulation and toxicity of intracellular Aβ oligomers 

in cell models and in in vitro assays, improve cognitive function, and decrease the accumulation 

of Aβ and tau oligomers in mouse models of AD (Umeda et al., 2016). 

From a structural point of view, several mechanisms were proposed to explain the 

neuroprotective effect of rifampicin. The primary effect is the inhibition of protein 

oligomerization. In this sense, Tomiyama and co-workers (1994) showed that rifampicin inhibits 

the aggregation process of Aβ1-40 in vitro and prevents the formation of toxic species. 

Subsequently, it was found that rifampicin also abolished Aβ-related neurotoxicity in a cell 

model of AD (Tomiyama et al., 1996). By binding to oligomers, rifampicin would avoid a 

potential oligomer–membrane interaction and prevent membrane disruption by pore formation, 

which is considered one of the potential toxic mechanisms of these species (Demuro et al., 2005; 

Quist et al., 2005). The oligomer-induced membrane impairment allows Ca2+ influx into the 

cells, causing mitochondrial dysfunction and reactive oxygen species (ROS) generation 

(Mancuso et al., 2006; de Moura et al., 2010). On the other hand, since it was demonstrated that 

the oxidation of Aβ by free radicals induces peptide fibrillization (Dyrks et al., 1992), 

antioxidant agents may exert anti-aggregating effects on the Aβ peptide. Alike, the radical-

scavenging activity of rifampicin has been shown to play key roles in the inhibition of the 

amyloid cascade, which leads to neurotoxicity, and in induced neuronal death in cell models of 

AD (Tomiyama et al., 1996; Tomiyama et al., 1997). Therefore, on one hand, the radical-

scavenging function of rifampicin prevents Aβ oxidation and diminishes its aggregation rate; on 

the other hand, rifampicin protects cells against Aβ-induced intracellular ROS production and 
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increases neuronal survival (Tomiyama et al., 1994; Tomiyama et al., 1996; Tomiyama et al., 

1997).  

The evidence described above, together with the ability of this antibiotic to suppress microglial 

activation in different models, strongly indicates that rifampicin is a promising, quite ready-to-

use drug (Bi et al., 2011; Umeda et al., 2016). However, the main side effect of this antibiotic, 

the hepatotoxicity (No authors, 2008), might limit its long-term use. Moreover, rifampicin leads 

to a decrease in the efficiency of drugs that are concomitantly prescribed with it. Thus, 

considering that elderly people, who are usually polymedicated, are the main population affected 

by neurodegenerative disorders, this side effect must be taken into account. An alternative that 

could be explored is an alteration in the administration from oral to intranasal to improve the 

safety and efficiency of this neuroprotective drug. Likewise, models for the intranasal 

administration of drugs to deliver neuroprotective molecules straight to the brain have recently 

been described (Prediger et al., 2011)  

2.1.7 Anisomycin 

Anisomycin (a.k.a. flagecidin) is a potent protein synthesis inhibitor that can induce apoptosis. 

Wang and colleagues (2008) found that anisomycin exerts strong effects on tau, promotes the 

conversion from native to pathological forms, and consequently increases the level of 

aggregation-prone pathogenic hyperphosphorylated tau in mouse neuroblastoma cells (N2a). 

Moreover, MAPK and GSK-3 kinases were also significantly activated by anisomycin (Wang et 

al., 2008). GSK-3 is a well-known kinase involved in the phosphorylation of tau (Liu et al., 

2002). In this respect, the increase in the tau phosphorylation level was fully abolished by 

lithium chloride, a specific inhibitor of GSK-3, without affecting MAPK activity, which 

indicates that anisomycin induced the hyperphosphorylation of tau through the activation of the 
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GSK-3 kinase (Wang et al., 2008). Interestingly, the effects of anisomycin on memory and 

behavior are closely related with those distinctive for AD and dementia, i.e., anisomycin 

impaired social-recognition memory when administered in the olfactory bulb and dorsal 

hippocampus in Swiss adult mice (Penna et al., 2014). Furthermore, anisomycin can also induce 

amnesia and impair short-term and long-term memory formation when injected in the 

hippocampus (Qi et al., 2009; Remaud et al., 2014). However, these notable effects of 

anisomycin have been attributed to its inhibitory activity on protein synthesis, which is required 

for the consolidation of reactivated memory (Remaud et al., 2014; Sharma et al., 2012), rather 

than to its action on tau. However, more overwhelming evidence to support this hypothesis is 

required; i.e., it would be valuable to test whether a derivative compound that lacks anti-

translational activity exerts the same effects on memory and behavior as anisomycin. 

Interestingly, the anisomycin-induced apoptotic cascade was found to take place before a 

significant reduction in protein synthesis was observed (Iordanov et al., 1997; Rudy et al., 2006). 

Notably, an anisomycin concentration that reduces the protein synthesis rate only by 10% can 

enhance the activation of the stress-activated pro-apoptotic protein kinases (SAPKs) and cJun 

NH2-terminal kinases (JNKs) at 50% of their maximum in cell culture, which indicates that 

anisomycin may exert other effects on cells that are independent of its translational inhibitory 

action (Iordanov et al., 1997; Rudy et al., 2006). As previously suggested by Rudy and 

colleagues (2006), if these apoptotic effects take place in neurons that support memory, then the 

anisomycin-induced amnesia could not be exclusively attributed to its inhibitory action on 

protein synthesis. Be that as it may, more experimental evidence is required to clarify the role 

and action of anisomycin on memory and behavior.  
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2.2 Synucleinopathies: A tale of a single protein involved in multiple disorders 

Synucleinopathies are progressive neurodegenerative disorders with no current treatment, 

including pathologies with an overwhelming clinical prognosis such as PD, dementia with Lewy 

bodies, and multiple system atrophy (Spillantini et al., 1997; Spillantini et al., 1998; Tong et al., 

2009). Notably, the common event among these neurodegenerative disorders is the abnormal 

accumulation of α-synuclein in the form of amyloid aggregates in neural or glial cells (Duda et 

al., 2000). 

PD is the synucleinopathy disorder with the highest prevalence and represents a major challenge 

to health care systems (Reglodi et al., 2017). Histopathologically, PD is characterized by the loss 

of dopaminergic neurons in the midbrain region known as the substantia nigra pars compacta 

(SNpc) and by the presence of cytoplasmic inclusions in surviving neurons called Lewis bodies 

(LB). These inclusions are predominantly formed by α-synuclein in a misfolded fibrillary stage 

(Bennett et al., 2005; Nussbaum et al., 2003; Ruzza et al., 2014; Spillantini et al., 1998). Since 

this abnormal aggregation has been suggested to be one of the earliest and key steps during the 

development of the disease (Avila et al., 2014; Bennett et al., 2005; Ruzza et al., 2014), there is a 

continuous search for compounds that exert an anti-aggregating action on α-synuclein. Currently, 

a growing body of evidence suggests that the neurodegenerative process observed in PD is not 

only caused by protein aggregation but also by mitochondrial dysfunction and 

neuroinflammation. Nonetheless, α-synuclein aggregation appears to be the primary event that 

triggers all other injurious processes. Furthermore, neuroinflammatory processes and 

mitochondrial impairment can promote protein aggregation. As a result, the deleterious effects of 

neuronal toxins such as oligomeric species, ROS, and proinflammatory factors are continuously 

amplified and generate an endless, noxious circle (Bennett et al., 2005; Dutta et al., 2008; Gustot 
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et al., 2015; Jiang et al., 2013; Nakamura et al., 2013; Onyango et al., 2008; Plotegher et al., 

2014; Pukass et al., 2014; Ruzza et al., 2014; Zhang et al., 2000). In this context, antibiotics and 

their surprising neuroprotective features, including anti-inflammatory, anti-aggregating and 

antioxidant properties (Gonzalez-Lizarraga et al., 2017; Santa-Cecilia et al., 2016), have gained 

the attention of the scientific community. Moreover, accumulating evidence suggests that 

antibiotics may constitute the starting point for the development of an efficient treatment for PD 

(Egeberg et al., 2016; Ruzza et al., 2014). We have currently identified five antibiotics that exert 

antiamyloidogenic activity against α-synuclein that are described and discussed below. 

2.2.1 Geldanamycin  

Geldanamycin (GA), a benzoquinone ansamycin antibiotic, has been shown to abolish 

neurotoxicity in a fly model of PD mainly by decreasing the aggregation of α-synuclein (Auluck 

et al., 2002). Furthermore, it has been demonstrated that GA selectively affects molecular 

chaperones, inhibits Hsp90 and up-regulates Hsp70 (Sittler et al., 2001). Interestingly, 

compelling evidence indicates that Hsp70 modulates protein misfolding and aggregation and 

confers protection against the degenerative processes observed in many neurological diseases, 

including HD, PD and spinocerebellar ataxias (Auluck et al., 2002; Chan et al., 2000; McLean et 

al., 2004; Sittler et al., 2001). In this respect, McLean and co-workers (2004) found that the up-

regulation of Hsp70 by GA significantly decreased the misfolding of α-synuclein and diminished 

its aggregation rate in human H4 neuroglioma cells. Nevertheless, the treatment of diseased cells 

with GA has no effect on pre-formed α-synuclein inclusions, which indicates that the antibiotic 

blocks the initial steps of the amyloid pathway but cannot disassemble mature fibrils (McLean et 

al., 2004). Interestingly, similar effects of GA on other amyloidogenic disease-causing proteins 

were reported. i.e,. Sittler and colleagues (2001) found that GA treatment induces a heat shock 
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response activation that leads to an increased expression of Hsp70 and consequently to the 

inhibition of the self-assembly of the huntingtin exon 1 protein. This finding is in agreement with 

previous data from Chan and co-workers (2000) that indicate that the overexpression of Hsp70 

and Hsp40 counteracts polyglutamine-induced toxicity in a Drosophila melanogaster model 

system for Machado-Joseph disease (MJD/SCA3). Taken together, experimental data supports a 

protective role of GA in neurodegenerative disorders, including PD and HD, by preventing the 

formation of toxic oligomers and thus enhancing neuron survival (McLean et al., 2004). 

Despite the finding that GA diminishes α-synuclein aggregation through heat shock proteins and 

could be administered in combination therapies with other molecules that target the cross-β 

structure of amyloid aggregates, its toxicity hinders its clinical development. However, structural 

analogues such as 17N-allylamino-17-demethoxygeldanamycin (17-AAG, KOS-953, or 

tanespimycin), 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG, or 

alvespimycin), IPI-493, and retaspimycin (IPI-504) are now being evaluated in clinical trials, and 

these results are forthcoming. 

2.2.2 Ceftriaxone 

Ruzza and co-workers (2014) found that ceftriaxone, a BBB-crossing, widely prescribed, well 

tolerated β-lactam antibiotic, exhibits surprising neuroprotective properties in an in vitro model 

of PD, mainly through the inhibition of the aggregation pathway of α-synuclein. Moreover, 

computational docking studies indicate that ceftriaxone binds with high affinity to monomeric α-

synuclein, and its binding site is located at the C-terminal region of the protein (Ruzza et al., 

2014). Furthermore, the ceftriaxone/α-synuclein interaction leads to an increased compactness of 

the monomeric form of the protein that negatively affects its kinetics of aggregation, thus 

blocking the formation of toxic amyloid aggregates. Notably, Ruzza and co-workers (2014) also 
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found that ceftriaxone might diminish the 6-OHDA-induced up-regulation of α-synuclein 

expression. In this regard, working together, the protective effects of ceftriaxone at different 

levels enhance neuron survival in the 6-OHDA cell model of PD (Ruzza et al., 2014).  

From a functional point of view, α-synuclein is not only a pathological protein but may also exert 

a physiological role. Likewise, it was recently reported that monomeric α-synuclein interacts 

with brain ATP synthase and increases its efficiency, which suggests that in non-pathological 

conditions this protein would be a regulator of mitochondrial bioenergetics (Ludtmann et al., 

2016). However, considering the putative function of native monomeric α-synuclein, the binding 

of the antibiotic to the physiological form of the protein suggests that ceftriaxone may interfere 

with its role in cellular metabolism. The application of ceftriaxone in therapy must be carefully 

examined despite its capacity to increase neuronal survival in PD models. 

2.2.3 Rifampicin 

Interestingly, in addition to its protective properties against Aβ-induced toxicity, rifampicin has 

also been shown to counteract key pathological features of PD. In this sense, Li and co-workers 

(2004) found that rifampicin exerts a potent anti-aggregating action on native α-synuclein in 

vitro by stabilizing the monomeric form of the protein. Moreover, rifampicin is also capable of 

disassembling the pre-formed fibrils of α-synuclein to yield a heterogeneous mixture of soluble 

oligomers and monomers (Li et al., 2004). Nonetheless, the toxicity of the species formed from 

the rifampicin-induced disassembly of mature fibrils was not analyzed in the study by Li and co-

workers (2004). Additionally, Xu and colleagues (2007) demonstrated that rifampicin blocks the 

deleterious effects of the neurotoxin 1-Methyl-4-phenyl pyridinium (MPP+) in a PC12 cell 

model of PD. MPP+ treatment induces the formation of aggregated species of α-synuclein within 

neurons and leads to decreased viability. Nevertheless, these multimeric species of α-synuclein 
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were not observed in the presence of rifampicin. Moreover, neuron survival was significantly 

enhanced by rifampicin, which suggests that its neuroprotective properties are probably 

associated with its anti-aggregating action on α-synuclein (Xu et al., 2007). This is in agreement 

with a previous study by Kilic and colleagues (2004) that showed that rifampicin treatment 

increased the survival of dopaminergic neurons after MPP+ intoxication in a cell model of PD. 

On the other hand, Jing and colleagues (2014) found that the expression of glucose-regulated 

protein 78 (GRP78), an essential constituent of the cellular defense system devoted to the 

removal of misfolded proteins, is up-regulated by rifampicin. Interestingly, compelling evidence 

indicates that GRP78 prevents apoptosis in neurons (Goldenberg-Cohen et al., 2012; Jiang et al., 

2012; Reglodi et al., 2017). Therefore, the effect of rifampicin on GRP78 expression and 

consequently on the accumulation of misfolded α-synuclein may explain, at least in part, the 

anti-apoptotic protective properties of the antibiotic (Jing et al., 2014; Reglodi et al., 2017). 

However, as already mentioned in the preceding section (2.1.6), the toxicity of rifampicin must 

be carefully evaluated prior to the selection of this antibiotic for chronic therapy. 

2.2.4 Tetracyclines 

Regarding tetracyclines, a recent report from a 15-year Danish Nationwide Cohort Study 

(Egeberg et al., 2016) found an increased incidence of PD in patients with ocular rosacea. 

However, tetracycline therapy for the treatment of rosacea significantly reduced the risk of PD 

(Egeberg et al., 2016). In addition, the results from our group show that doxycycline interferes 

with the pathologic cycle involved in synucleinopathies at the aggregation level by binding to 

early multimeric α-synuclein species and inducing their reshaping into non-toxic off-pathway 

oligomers that do not evolve into fibrils (Gonzalez-Lizarraga et al., 2017). This reshaping 

mechanism diminishes the hydrophobic surface of the oligomeric species and alters their ability 
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to destabilize biological membranes, cell viability, and seeding capacity (Gonzalez-Lizarraga et 

al., 2017). A non-trivial observation was made regarding the dose of doxycycline necessary to 

interfere with the pathological aggregation of α-synuclein. According to our studies, an 

equimolar concentration of doxycycline to α-synuclein would be suitable to confer a protective 

effect. Therefore, considering that the α-synuclein concentration in cerebrospinal fluid is 

approximately 0.12 nM and that doxycycline at subantibiotic doses (20–40 mg/day) reaches the 

brain at a concentration of approximately 3 µM, the antibiotic level would be high enough to 

confer neuroprotection (Gonzalez-Lizarraga et al., 2017). In addition, previous and 

complementary studies from our group demonstrated that this antibiotic could diminish the 

impairments produced by the intrastriatal administration of 6-OHDA by inhibiting microglial 

and astrocyte expression in a 6-OHDA mouse model of PD (Lazzarini et al., 2013). Furthermore, 

we also demonstrated the efficiency of doxycycline in the modulation of the neuroinflammatory 

response in lipopolysaccharide (LPS)-activated primary microglial cells in culture, as a model of 

neuroinflammation (Santa Cecilia et al., 2016). It is expected that this anti-inflammatory effect 

acts synergistically with the antiamyloidogenic action of doxycycline on α-synuclein 

pathogenesis, which led us to propose its repurposing as a ready-to-use neuroprotector, and a 

multifunctional molecule against synucleinopathies, specially PD (Gonzalez-Lizarraga et al., 

2017). 

Despite the fact that more experimental data are required, compelling evidence suggests that 

tetracyclines, especially doxycycline, may be valuable alternatives as therapeutic agents to 

prevent the formation of toxic aggregates in synucleinopathies. 
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2.2.5 Rapamycin 

A few studies showed that rapamycin, a BBB-crossing antibiotic that is widely used in human 

health to avoid rejection during organ transplantation due to its immunosuppressive activity, 

confers protection and enhances neuron survival in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) mouse model of PD (Liu et al., 2013). Interestingly, these protective 

properties of rapamycin depend, at least partially, on its capability to decrease α-synuclein 

aggregation and to promote oligomers clearance trough increased autophagy (Liu et al., 2013; 

Reglodi et al., 2017).  

The adverse effects of this antibiotic in long-term treatments are well known since it is 

commonly used in the medical clinic as a modulator of the immune system in transplants. 

Rapamycin decreases glucose tolerance and induces insensitivity to insulin (Lamming et al., 

2012), and it could increase the risk of type 2 diabetes (Johnston et al., 2008). Moreover, lung 

toxicity is a well-reported complication associated with rapamycin therapy (Chhajed et al., 2006; 

Filippone et al., 2011). On the other hand, according to FDA prescribing information, due to its 

immunosuppressive activity, rapamycin increases the susceptibility for the development of skin 

cancers and lymphoma 

(https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021083s058,021110s075lbl.pdf).  

Considering the number of adverse effects, a balance between the efficacy and toxicity of 

rapamycin led us not to consider it as a ready-to-use drug for chronic treatment against 

neurodegenerative disorders. However, the rapamycin molecule is an encouraging starting point 

for the development of safer structural analogues with neuroprotective properties. 
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2.3 PrP-Related Diseases 

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of 

progressive and lethal neurodegenerative disorders pathologically linked to the Prion protein 

(PrP a.k.a. PrPC), and include Creutzfeld Jakob disease (CJD), Gerstmann-Sträussler-Sheinken 

(GSS) diseases, Kuru, and fatal insomnia (FI) (Collins et al., 2004; Corato et al., 2009; Forloni et 

al., 2009). Pathologically, these diseases are characterized by massive neuronal death and by the 

formation of vacuoles that cause a “sponge-like” appearance in the brain (De Luigi et al., 2008; 

Soler et al., 2008). Within these pathologies, the most common human disorder is CJD, which 

represents 90% of PrP-related diseases (De Luigi et al., 2008). Despite the finding that the causes 

include sporadic, infectious, or genetic origins and may vary between these fatal disorders, in all 

of them, the conversion from native PrPC into the pathogenic PrPSc form plays a central role 

during the development of the pathologies. In this respect, the misfolding and subsequent 

aggregation of the protease resistant PrPSc form leads to the formation of toxic oligomers, which 

dramatically affects cellular function and induces extensive neuronal death (De Luigi et al., 

2008). Moreover, it was found that diverse prion strains with distinct biological properties can 

propagate themselves within the same host, leading to the formation of strain-specific PrPSc 

oligomers that conserve the biological features of each particular strain (Bruce et al., 2003; 

Cronier et al., 2007; Safar et al., 1998). Unfortunately, despite extensive research and the 

tremendous advances achieved in this field, an effective therapeutic agent has not yet been 

developed. Nonetheless, the neuroprotective properties of antibiotics provide hope for the 

development of therapies to fight these disabling and fatal disorders. 

 

2.3.1 Amphotericin B 
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Pioneer studies from Xi and co-workers (1992) showed that the antifungal polyene antibiotic 

AmB diminished the accumulation of pathological PrPSc in the brains of scrapie-infected 

hamsters and delayed the appearance of clinical signs of the disease, which increased the 

survival time after infection. Moreover, it was found that the neuroprotective properties of AmB 

depend on its capability to inhibit the conversion of the cellular PrPC precursor to the pathologic 

form, PrPSc (Cronier et al., 2007; Mangé et al., 2000a; Mangé et al., 2000b; Xi et al., 1992). In 

addition, PrP molecules have been shown to be attached through a glycosyl phosphatidylinositol 

(GPI) molecule to the plasma membrane and are concentrated in diverse detergent-resistant 

microdomains (DRM), where the conversion of PrPC into PrPSc is thought to take place 

(Gorodinsky et al., 1995; Mangé et al., 2000b). Interestingly, it was found that AmB can also 

modify the properties of the DRM to prevent the transition from PrPC to the pathological form of 

the protein (Mangé et al., 2000b). In addition, through structure-function studies of AmB 

derivatives, the key determinants within the antibiotic molecule required for its diverse effects 

were identified. In this respect, the polyene structure of the antibiotic appears to be crucial for 

cellular toxicity and for the antiprion and antifungal activities (Soler et al., 2008). Moreover, the 

double bond C28-29 in the AmB molecule has been shown to be essential for the antiprion action 

since its removal drastically decreased the antiprion activity of the antibiotic (Soler et al., 2008). 

Conversely, AmB derivatives that lack exocyclic carboxyl groups can inhibit the conversion 

from PrPC into PrPSc in cell culture, which indicates that those groups within the antibiotic 

molecule are dispensable for the antiprion effect. Interestingly, Soler and colleagues (2008) were 

able to isolate an AmB derivative, 16-descarboxyl-16-methyl-19-O-(6-deoxyhexosyl)-19-O-

desmycosaminyl-amphotericin (16-19B), which displays reduced toxicity in cell culture and 

lacks antifungal activity but exerts increased antiprion action. These observations suggest that 
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those properties are not intrinsically related and highlight the potential of antiprion AmB-based 

drugs in the development of an effective therapy for PrP-related diseases.  

2.3.2 Tetracyclines  

Concerning tetracyclines, Forloni and co-workers (2013) demonstrated that, in addition to its 

anti-aggregating action on Aβ and α-synuclein, doxycycline can also inhibit the conversion of 

PrPC to the pathological form PrPSc. Moreover, the pretreatment of homogenates from prion-

infected brains with doxycycline diminished their infectivity, delayed the development of the 

pathology in the recipient animal after intracranial inoculation and increased the survival time 

(Forloni et al., 2013; Forloni et al., 2009). Furthermore, it was reported that tetracycline, 

doxycycline, and minocycline significantly prolonged the survival of hamsters infected with the 

263K scrapie strain either intracerebrally, subcutaneously or intramuscularly, and these 

antibiotics still exert protective properties even if they are administered after the infection when 

the first symptoms appear (De Luigi et al., 2008; Forloni et al., 2009). 

Regarding the mechanism of action of tetracyclines on TSEs, Tagliavini and colleagues (2000) 

found that tetracyclines can bind to synthetic PrP peptides and PrpSc in vitro, inhibit the self-

assembly of the protein and consequently block amyloid fibril formation. Furthermore, 

tetracyclines can also interact with PrP aggregates and trigger their disassembly (Forloni et al., 

2002; Tagliavini et al., 2000). Moreover, it was also found that tetracycline (tetracycline 

hydrochloride - doxycycline hyclate) treatment counteracts the protease resistance of PrPSc 

extracted from sporadic CJD brains and abolishes the deleterious effects of synthetic PrP 

peptides on cell survival and astrocyte proliferation (Forloni et al., 2002; Tagliavini et al., 2000). 

Nevertheless, a phase 2, randomized, double-blind, placebo-controlled trial (Haik et al., 2014) 

found no significant effect of doxycycline on CJD patients. However, this study recruited 
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patients who had definitive or probable sporadic CJD or genetic forms of the disease; therefore, 

the accurate starting point for doxycycline therapy may have passed. 

2.3.3 Anthracyclines 

Finally, concerning the potential of antibiotics for the treatment of TSEs, it has been shown that 

the antibiotic DOX inhibits the amyloid pathway of PrP peptides, diminishes the infectivity of 

PrPSc from prion-infected brains and enhances survival in a Syrian hamster model of Prion 

disease (Forloni et al., 2009; Tagliavini et al., 1997). This finding is in good agreement with 

results from Corato and co-workers (2009) that indicate that the treatment of homogenates made 

from scrapie-infected brains with doxorubicin decreased its infectivity approximately ten 

thousand-fold, which indicates that the infective PrPSc form restrained within the homogenate is 

dramatically affected by the antibiotic.  

 

2.4 Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) is a fatal and devastating neurodegenerative disorder that 

ultimately leads to the death of motor neurons; there is currently no cure (Hortle et al., 2016). 

This adult-onset disorder is characterized by progressive motor weakness with a focal beginning, 

which propagates across the body and inflicts paralysis and death usually within 2 to 5 years 

after diagnosis (Bunton-Stasyshyn et al., 2015; Hortle et al., 2016). Riluzole, a drug that blocks 

glutamatergic neurotransmission, is the only medication approved by the Food and Drug 

Administration for ALS. However, riluzole does not halt or prevent the disease but only slightly 

extends survival.  

Despite the finding that the origin of ALS is usually sporadic, mutations in the gene that encodes 

for the enzyme superoxide dismutase (SOD1) have been linked to the disease (Bunton-Stasyshyn 
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et al., 2015). Furthermore, compelling evidence indicates that mutations in SOD1 induce the gain 

of toxic properties by the protein (Bunton-Stasyshyn et al., 2015; Kiernan et al., 2012; Saccon et 

al., 2013). Notably, it was found that SOD1 exhibits prion-like behavior in vitro and in cellular 

and animal models (Bunton-Stasyshyn et al., 2015; Chia et al., 2010). Moreover, SOD1 is 

capable of self-seeding and can undergo the amyloid fibrillization pathway (Bunton-Stasyshyn et 

al., 2015; Chia et al., 2010). Furthermore, it was found that spinal cord tissue homogenate from 

mice that carried the SOD1G93A mutation efficiently seed the amyloid aggregation of both wild 

type and mutant SOD1 in vitro (Bunton-Stasyshyn et al., 2015; Chia et al., 2010). 

Interestingly, a few studies have reported the beneficial effects of antibiotics in models of ALS. 

In this sense, Kriz and co-workers (2002) found that minocycline retarded the motor-neuron 

degeneration and decelerated the progression of the disease in the mutant SODG37R mouse model 

of ALS when the antibiotic treatment began at a late presymptomatic stage. This finding is in 

agreement with results from Keller and colleagues (2011) that indicate that minocycline could 

slow the course of the disease in the GFAP-luc/SOD1G93A mouse model when administered 

during the presymptomatic stage. Conversely, when the medication was administered at a late 

stage of the disease, minocycline had no effect on the survival of animals, (Keller et al., 2011). 

Moreover, when minocycline was administered after the onset of the disease when microglia had 

been chronically activated, treated animals showed increased neuroinflammation and disturbed 

astrocyte reactivity (Orsucci et al., 2012). 

Nonetheless, a randomized placebo-controlled phase III trial (ClinicalTrials.gov, number 

NCT00047723) could not replicate the effect observed in mouse models (Gordon et al., 2007). 

Instead, it was found that minocycline was ineffective in delaying or ameliorating the 

progression of the disease (Gordon et al., 2007). Furthermore, this study suggests that 
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minocycline may have a noxious effect on ALS patients, which may be due to an interaction 

with riluzole, as it appears to occur in the mouse model (Gordon et al., 2007; Orsucci et al., 

2012). Notably, the concentration of minocycline used in this study was higher than that 

prescribed in current clinical therapy (Gordon et al., 2007). 

On the other hand, evidence has arisen from many reports that suggests that altered autophagy 

may play a central role in ALS (de Paula et al., 2015; Hetz et al., 2009; Li et al., 2008), and 

several autophagy-enhancing compounds have been tested in ALS models (de Paula et al., 2015; 

Staats et al., 2013). For instance, the dietary administration of rapamycin, a well-known enhancer 

of autophagy, increased the expression of autophagy markers in a mutant SOD1 mouse model of 

ALS without extending their life span (Staats et al., 2013). However, when administered to 

mutant SOD1G93A mice that lacked mature lymphocytes, rapamycin triggered a mild increase in 

the survival of those animals, indicating that rapamycin may exert a dual action on disease 

progression. On one hand, it increases autophagy and the clearance of aggregates; on the other 

hand, rapamycin represses beneficial immune responses due to its immune suppressor activity 

(Staats et al., 2013). Nonetheless, Zhang and colleagues (2011) reported that in the mutant 

SOD1G93A mouse model, rapamycin mildly enhanced the aggregation rate of SOD1 in motor 

neurons and concomitantly accelerated the degeneration of those neurons. These dual and 

opposing effects highlight the need to develop rapamycin derivatives that lack immune-

modulating effects while preserving the protective autophagy-inducer activity 

Regarding ceftriaxone, it was found that the administration of this drug in a mouse model of 

ALS protects motors neurons from excitotoxicity and extends survival while retarding the 

decline of muscle strength and neuronal death (Rothstein et al., 2005). These effects were 

attributed to an up-regulation of the glutamate transporter GLT1 gene induced by the drug 
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(Cudkowicz et al., 2014; Melzer et al., 2008; Rothstein et al., 2005). However, in a combined 

phase 1, 2 and 3 clinical trial (ClinicalTrials.gov, number NCT00349622) to evaluate the 

efficacy of ceftriaxone in ALS, no significant differences in survival among the treated and 

control groups were found (Cudkowicz et al., 2014). The disappointing outcome from these 

clinical trials may again highlight the requirement of the accurate timing of drug administration 

in the course of the disease in order to maximize the benefits and reduce undesired effects. 

Although a few reports suggest a protective role of certain antibiotics in ALS, most studies 

attributed the beneficial effects to actions on different processes during the course of the disease 

and did not study in detail the amyloid component of the disorder. Therefore, it would be worthy 

to analyze the action of all kinds of antibiotics that possess antiaggregating activity in ALS with 

a focus on SOD1. 

To this end, we found that de novo amyloid fibers made from recombinant human α-synuclein 

could trigger the aggregation of native SOD1 in a cell-free extract of SH-SY5Y cells 

(unpublished data, not shown); these data agree with previous results (Koch et al., 2016). 

Interestingly, in this experimental paradigm, rifampicin could reduce the aggregation of SOD1 

induced by α-synuclein fibers (unpublished data, not shown), which indicates a potential cross-

talk between two proteins involved in different neurodegenerative diseases and demonstrates that 

rifampicin may be a valuable alternative for ALS. 

 

2.5 A common structural feature against aggregation? 

As described above, anti-aggregation activity has been demonstrated for small molecules that 

exhibit a wide variation in chemical formulas. Indeed, the structural diversity of the molecules 

described in this review is depicted in Figure 3. Moreover, it has been suggested that some of 
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these small molecules would target a common structural arrangement among proteins as diverse 

as PrP, tau, α-synuclein, and Aβ (Giorgetti et al., 2011). Considering these reports, one can infer 

that a common feature of small molecules could target amyloid aggregation. To search for a 

minimal common structure (MCS) among the antibiotics, we performed a pairwise comparison 

of the structures listed on the figure with the Similarity Toolbox in ChemMine (Backman et al., 

2011). Surprisingly, all the structures contain the motif O=CCCOH or O=CCNH (highlighted in 

Fig. 3). This structural motif constitutes a proton donor/acceptor pair arrangement that is 

reminiscent of the motif present in the protein backbone. Since this motif is attached to a closed 

ring, it is arranged in an almost planar configuration at an average distance of 2.6 Å, similar to 

the one adopted by the protein backbone in the beta structure (Jahn et al 2010; Sunde et al., 

1997a; Sunde et al., 1997b). We propose that this configuration might interfere with the 

formation of the cross-beta structure common to amyloid fibrils. 

In the case of rifampicin, the presence of this structural motif is not clear. Rifampicin has been 

shown to acquire a zwitterionic form in solution as a consequence of proton transfer from an 

O(8)-H phenolic group to a secondary amine (Pyta et al., 2012). As a consequence, this oxygen 

could act as a proton acceptor. Moreover, Li and co-workers (2004) showed that the most active 

species responsible for the inhibition of -synuclein fibrillation is an oxidation product of 

rifampicin rather than the antibiotic itself. Indeed, upon oxidation, the O(8)-H phenolic group is 

oxidized to a cetonic group, giving rise to the donor-acceptor pair as shown in figure 3. 

The importance of this structural motif for the activity of tetracyclines against aggregation has 

also been suggested by Cosentino and colleagues (2008). Through a 3D-QSAR analysis on the 

effect of modified tetracyclines on PrP amyloidogenesis, they found that switching the keto-

enolic group results in a decrease of activity. Moreover, the addition of hydroxyl groups on the 
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rings increases activity, presumably by providing donor sites for H-bond interactions with the 

protein.  

Other structural features related to anti-amyloidogenic activity have been identified in other 

molecules, such as the presence of aromatic rings for stacking interactions (Cosentino et al., 

2008; Pyta et al., 2012). This study does not rule out other structural features; on the contrary, we 

think that they could be related to other interactions within the aggregates that could offer some 

specificity. However, interference with the formation of the hydrogen bond on cross-beta 

structures should be essential in compounds that target aggregation.   

   

Figure 3  

 

3. Conclusions 

Despite the evidence analyzed herein, some central questions remain unanswered, such as 

whether one compound could interfere an analogous process in related diseases, whether 

antibiotics with protein antiaggregating properties fulfill the requirements to be safely used in 

neurodegenerative diseases, and whether neuroprotective antibiotic therapy could increase the 

risk of dissemination of antibiotic-resistant pathogenic strains. According to data revised herein, 

we can try to answer these questions.  

 

3.1 Canonical signature of neurodegeneration and the opportunity for multiple disorders 

intervention with antibiotics 

Considering that the canonical signature and one of the first steps of the cascade of events 

leading to neurodegeneration is protein amyloid aggregation, it is currently accepted that toxicity 
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arises from soluble intermediates and from the end-point aggregates  that elude proteasomal and 

autophagic routes (Gustot et al., 2015). Furthermore, neuronal impairment propagation is also 

caused by this abnormal protein aggregation, which is spread to neighbor neurons in a prion-like 

manner (Luk et al., 2012; Nath et al., 2012). In this scenario, a reduction in the toxicity of 

abnormal protein aggregation would be essential in the fight against neuronal death. 

Notably, while the misfolded protein differs between AD, PD, and PrP-related disorders, the 

protein aggregation process appears to be mechanistically similar and appears to involve the 

same kinds of steps and interactions during the development of the pathological states. 

Therefore, it could be expected that one compound interfering a process, analogous between 

these disorders, would be capable of affecting those mechanistically related diseases. 

Interestingly, experimental proof indicates that antibiotics are suitable candidates for that 

mission. In fact, encouraging evidence suggests that the anti-aggregating action of some 

antibiotics is not restricted to one specific protein (Fig 4; Table 1). Tetracyclines, especially 

doxycycline, exert anti-aggregating activity on Aβ, α-synuclein, and PrP. Rifampicin, DOX and 

AmB exert anti-aggregating effects on different polypeptides that share as a common feature the 

ability to form amyloid aggregates. Moreover, in the present work, through a pairwise 

comparison of the structures of antibiotics with antiaggregating activity, we found a common 

structural signature in their molecules that could be of high relevance in rational drug design. In 

this regard, and according to Table 1, these antibiotics have been shown to confer 

neuroprotection against more than one disease, including AD, PD, and TSEs. Fig. 4 and Table 1 

summarize the different steps in the protein aggregation process in which antibiotic interventions 

have been reported.  
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Figure 4  

Table 1 

 

3.2 Antibiotics as pleiotropic agents against common features of neurodegeneration 

Compelling evidence indicates that most, if not all, neurodegenerative disorders involve 

oxidative and a neuroinflammatory processes which may contribute to degeneration and 

neuronal death (Chen et al., 2016; Gonzalez-Lizarraga et al., 2017). 

An acute inflammatory response mediated by microglia, such as those observed in response to 

tissue damage or pathogen invasion, induces a self-limiting process through the immune system 

and promote tissue repair (Chen et al., 2016; Wyss-Coray and Mucke, 2002). However, when the 

inflammatory process became chronic dysregulated microglia activation leads to the release of 

proinflammatory mediators and neurotoxic factors which enhance neural damage (Edan et al., 

2013; Roqué et al., 2016; Santa Cecilia et al., 2016). In this context, microglia, the resident 

macrophages of the central nervous system, has a dual behavior. On one hand it keeps brain 

homeostasis; on the other, it may strongly contribute to neuronal damage (Amor et al., 2010). 

Thereby, neuroinflammation plays a central role in the pathogenesis and progression of 

neurodegenerative disorders (Santa Cecilia et al., 2016). Interestingly, as mentioned above, 

aggregated proteins may induce a microglia mediated inflammatory response as well as oxidative 

damage. Moreover, evidence indicates that all these processes might be interrelated in a vicious 

circle in which protein aggregation induces neuroinflammation and oxidative stress and vice 

versa (Gonzalez-Lizárraga et al., 2017; Gustot et al., 2015; Zhang et al., 2000).   

Notably, many antibiotics including b-lactams, tetracyclines and rifampicin, aside their 

antimicrobial activity showed antioxidant properties as well as a strong anti-inflammatory action 
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being capable of suppressing microglia activation, in both in vitro and in vivo models of 

neurodegenerative disorders (Bi et al., 2011; Lazzarini et al., 2013; Reglodi et al., 2017; Santa 

Cecilia et al., 2016; Wei et al., 2012). i.e.,minocycline and doxycycline block microglia 

activation through p38 MAPK signaling pathways, preventing the release of neurotoxic factors 

and pro-inflammatory mediators from activated microglia (Reglodi et al., 2017; Santa Cecilia et 

al., 2016).  

Overall, neuroprotective therapy with antibiotics as multitarget pleitropic molecules capable of 

suppressing oxidative stress, microglia activation and protein aggregation, constitutes a 

promising therapeutic approach for halting the noxious cycle of degeneration at several levels.  

 

3.3 Antibiotic therapy, human microbiota and the risk of resistance emergence 

When used as antimicrobial agents, antibiotics may exert a selective pressure against bacterial 

species normally found in the human intestinal microbiota perturbing the symbiotic interaction 

microbia/human and therefore, affecting the physiologic processes that they are involved in 

(Jernberg et al., 2010). Morgun and colleagues (2015) found that antibiotics at antimicrobial 

doses may alter the gut through microbiome-dependent and independent processes. On one hand, 

normal microbiota depletion leads to local immunodeficiency; On the other, antibioticʼs direct 

effects on host tissues as well as the colonization of the gut by remaining antibiotic-resistant 

microbes and opportunistic pathogens i.e. Clostridium difficile, result in epithelial cell death 

(Morgun et al., 2015; Langdon et al., 2016). Conversely, many reports indicate that treatments 

with antibiotics at low doses, below the minimal inhibitory concentration (MIC), do not perturb 

the microbia/human interaction neither kill the native commensal bacterial communities (Gu et 

al., 2012; Walker et al., 2005). Likewise, several clinical studies, some up to two years of 
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treatment, demonstrated the efficacy and safety of subantimicrobial-dose of doxycyline (SSD) 

(20 mg/day) in human patients suffering pathologies such as rheumatoid arthritis, type II 

diabetes, oral inflammatory and cardiovascular diseases (Gu et al., 2012; Walker et al., 2005). 

Moreover, concerning the risk of resistance development during treatment with subantibiotic-

dose of doxycycline several clinical trials found no differences between placebo and SSD 

treatment regarding the native human microbiota, the emergence of antibiotic-resistant strains 

and colonization by opportunistic pathogens (Gu et al., 2012; Walker et al., 2005). Furthermore, 

compelling experimental evidence plainly show that long-term SDD treatment does not affect the 

normal human microbiota regardless whether it is in the colon, the vagina, subgingival or the 

skin (Ashley et al., 1999; Barnett et al., 2007; Giannobile et al., 2008; Gu et al., 2012). In 

addition, it is important to note that human microflora normally exists as bacterial biofilms 

whose antibiotic tolerance is significantly higher than those observed when microorganisms 

grow planktonically (Gu et al., 2012). 

Overall, although more evidence is required, when used at subantibiotic concentrations antibiotic 

therapy appears to be safe without perturbing human microbiota communities. Interestingly, the 

US FDA has already approved two SSD formulations for human long-term therapy: Periostat, a 

systematically administered drug for the treatment of periodontal pathologies and Oracea, a 

novel sustained-release SDD formulation for the systemic treatment of rosacea, a chronic 

inflammatory skin disease (Gu et al., 2012) 

 

3.4 Feasibility of antibiotic therapy against neurodegeneration 
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Regarding the feasibility of the use of antibiotic therapy in neurodegeneration, it is important to 

consider that, because of the BBB, neuronal disorders pose additional challenges; the 

pharmacologic approach may be particularly difficult and hinder the treatment. Therefore, a 

candidate molecule for drug therapy must be able to freely cross the BBB, or at least at a 

concentration high enough to exert its action. This is a crucial requirement since many potential 

drugs with established efficacy in vitro cannot efficiently cross the BBB, and they are unsuitable 

for in vivo therapy (Pardridge et al., 2005). Although alternative strategies for drug delivery are 

currently under study, and some of them exhibit relative success (Freese et al., 2014; Roney et 

al., 2005), it is desirable that the therapeutic agent reach the brain by itself without any 

requirement for additional compounds or delivery systems. In this sense, the fewer compounds 

involved in therapy, the lowest risk for patients.  

Interestingly, many antibiotics with proven antiaggregating action are not only capable of 

efficiently crossing the BBB but also have a good safety record since they have been employed 

in human health for decades without serious secondary effects.  

On the other hand, compelling evidence strongly suggest that many neurodegenerative disorders 

may share a common intestinal origin (Braak et al., 2006; Davies et al., 2006; Natale et al., 2011; 

Pan-Montojo et al., 2012; Shannon et al., 2012). Moreover, it has been reported that many 

disorders progress from the enteric nervous system through the vagus nerve by retrograde axonal 

transport of the pathogenic amyloid species, to finally reach the CNS (Natale et al., 2011; Pan-

Montojo et al., 2012). In this context, oral antibiotic doses capable of reaching the brain at 

protective level but low enough to avoid microbiota disturbance may be also valuable in order to 

halt the formation and dissemination of toxic amyloid species within the intestine itself.   ACCEPTED M
ANUSCRIP
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Notably, recent data suggest that Gram-negative bacterial molecules are associated with 

neurodegenerative pathologies, since LPS and E coli K99 pili protein levels are increased in the 

brains of AD patients compared to healthy individuals (Zhan et al., 2016). Thereby, although the 

antibacterial effect per se is not analyzed in this review, this concept strongly reinforces the idea 

that antibiotics are multifunctional and safe molecules that are ready to be tested in clinical trials 

to fight against neurodegenerative diseases.  

Additionally, one essential point that should be carefully considered is the ratio between 

antibiotics and the aggregating protein concentrations. Most in vitro studies were performed with 

the molar ratio of 1:1 (antibiotic:protein) (Gonzalez Lizarraga et al., 2017; Tomiyama et al., 

1994). Moreover, Umeda and colleagues (2016) found in a mouse model that lower 

concentrations of rifampicin are required for cognitive improvement in younger animals 

compared with older animals. Of note, antibiotics such as rifampicin and doxycycline reach the 

mammalian brain at concentrations in the order of µg/ml, as measured in the CSF, whereas the 

levels of amyloidogenic proteins are much lower, in the range of ng/ml (Dorey et al., 2015; 

Mindermann et al., 1993; Mollenhauer et al., 2011; Tomiyama et al., 1994; Yim et al., 1985). 

Therefore, considering the level achieved in the brain, doxycycline and rifampicin might exert 

antiaggregating action at sub-antibiotic doses in vivo without imposing selective pressure on 

human microbial populations. 

Overall, the capacity of behaving as pleiotropic molecules targeting multiple features of 

neurodegeneration, the lack of serious side effects, and the fact that the concentrations required 

to reach the brain and to exert protective action are subantibiotic and harmless for native 

microbiota led us to propose doxycycline, and in a less extention rifampicin, as ready-to-use 

molecules against neurodegenerative processes.  

ACCEPTED M
ANUSCRIP

T



Finally, concerning the administration time of the drugs, since these disabling disorders involve 

the death of neurons and thus once they are lost the brain damage becomes irreversible, 

therapeutic strategies should mainly be focused in blocking the first steps of the cascade of 

events leading to neurodegeneration. Likewise, since protein aggregation is one of the first 

events of that deleterious cascade, antibiotics that block the amyloid pathway would be more 

adequate for the early stage of the diseases although they may also be beneficial at later stages. 

Nevertheless, it should be noted that the difficulty for early accurate diagnosis may interfere with 

the efficacy of therapy, and unfortunately, the appropriate starting points for treatment may have 

passed. In this regards, not only effective drugs but also trustworthy diagnosis methods are 

strongly required in order to eradicate or at least slowing down the incidence of disabling 

disorders such as AD, PD and TSEs. 

Be that it may, despite the long history of antibiotic in human health, they have arisen as a new 

encouraging alternative against amyloid-associated diseases, expected to play a central role in 

the fight against neurodegenerative disorders, the most challenging epidemic of the 21st century. 
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Figure 1. Schematic representation of the aggregation pathways. (A) Upper-panel: Within a 

neuron, native proteins undergo structural modifications and become prone to aggregation. 

Depending on environmental conditions, aggregation leads to the formation of either off-

pathway or on-pathway species. Off-pathway species do not evolve into fibrils. Conversely, on-

pathway intermediates undergo the amyloid process to finally form insoluble fibrils. Lower-

panel: On-pathway species released from diseased cells reach neighbor neurons and trigger the 

conversion of native protein into more on-pathway pathological species. (B) Aggregation 

kinetics are markedly affected by seeds made of on-pathway species that significantly accelerate 

the amyloid aggregation process. 

 

Figure 2. (A) Putative structural model of gramicidin S (orange) bound to amyloid beta peptide 

fibrils (cartoon representation in lime). The side chains of Phe19, Asp23 and Lys28 from 

amyloid β-peptide are represented explicitly in licorice, as well as the sidechains of ornithine and 

D-Phe from gramicidin. Gramicidin has been proposed to bind to an amphipathic channel formed 

within the hairpin like structure of the fibril. (B) Licorice representation of the crystallographic 

structure of gramicidin S. Ornithine has been proposed to interact with Asp23, debilitating the 

intermolecular salt bridge formed between Asp23 and Lys28 from adjacent subunits. D-Phe ACCEPTED M
ANUSCRIP
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would form π-stacking interactions with Phe19, while Val and Leu sidechains would interact 

with the hydrophobic surface of the amyloid β-sheet 

 

Figure 3. Chemical structures of the antibiotics with anti-amyloidogenic activity analyzed in this 

review. The blue boxes highlight a common structural motif among them. Oxidation of 

rifampicin to rifampicin quinone leads to the formation of the common structural motif which 

correlates with an increased effect on protein aggregation. 

 

Figure 4. Effects of antibiotics on the amyloid aggregation pathway of different disease-

associated proteins. The actions of antibiotics at several levels on the noxious amyloid pathway 

of a) α-synuclein (Parkinson’s disease, synucleinopathies), b) Aβ (Alzheimer’s disease), c) Tau 

(Alzheimer’s disease) and d) Prpc (Transmissible Spongiform Encephalopathies) are 

schematically represented. 
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Antibiotic  Alzheimerʼs Disease Parkinson′s Disease PrP‐related Diseases References  Clinical Trials 

 
Tetracyclines 
 

 Inhibit the Aβ amyloid fibrillization  pathway 

 Lead  to  the building of non  toxic amorphous 
soluble aggregates 

 Reduce the formation of tau aggregates 
 

 Block  the  α‐synuclein  amyloid  fibrillization  
pathway 

 Lead to the building of non‐toxic amorphous 
soluble aggregates 

 Block  the  seeding  effects  of  amyloid 
aggregates on native α‐synuclein 

 Inhibit  the  conversion  of  PrPC 
into the pathological form PrPSc. 

 Disassemble PrP‐aggregates 

 AD:  Diomede  et  al.  2010; 
Forloni et al. 2001; Airoldi et al. 
2011; Costa et al. 2011 

 PD:  González‐Lizárraga  et  al. 
2017; Ono and Yamada 2006 

 PrP‐rD:  Forloni  et  al.  2002; 
Forloni et al. 2013; Tagliavini et 
al. 2000 

 NCT00715858; 
NCT00692588; 
NCT00439166; 
NCT00355576; 
NCT00063193; 
NCT01463384; 
NCT00029874; 
NCT00047723; 
NCT00277355; 
EudraCT  2006‐
001858‐27  / 
2007‐005553‐34 

Gramicidin S 
 Blocks the Aβ aggregation pathway in vitro 
 Disassembles pre‐formed Aβ amyloid fibrils 

     Luo et al. 2013 
 

D‐Cycloserine   Diminishes Aβ‐42 fibrillization       Chaturvedi et al. 2015 
 

Amphotericin B   Diminishes Aβ‐42 fibrillization   
 Inhibits  the  conversion of PrPC 

into the pathological form PrPSc 

 AD: Hartsel et al. 2003 

 PrP‐rD:  Xi  et  al.  1992; Mangé 
et  al.  2000ab;  Cronier  et  al. 
2007; Soler et al. 2008 

 

DOX   Decelerates the Aβ fibrillization process   

 Inhibits  the  PrP  amyloid 
pathway  

 Diminishes  the  infectivity  of 
PrPSc 

 AD: Merlini et al. 1995 

 PrP‐rD:  Tagliavini  et  al.  1997; 
Forloni  et  al.  2009;  Corato  et 
al. 2009 

 

Anisomycin 
 Increases  the  level  of  the  aggregation‐prone 

pathogenic hyperphosphorylated tau 
     Wang et al. 2008 

 

 
Rifampicin 
 

 Inhibits  the aggregation process of Aβ1‐40  in 
vitro 

 Decreases  the  accumulation  of  Aβ  and  tau 
oligomers  and  reduces  tau 
hyperphosphorylation 

 Inhibits  of  the  aggregation  pathway  of  α‐
synuclein.  

 Disassembles α‐synuclein pre‐formed fibrils 

 Promotes  the  removal  of  misfolded    α‐
synuclein through GRP78 

 

 AD:  Tomiyama  et  al.  1994; 
Tomiyama  et  al.  1996; 
Tomiyama et al. 1997; Umeda 
et al. 2016 

 PD:  Li  et  al.  2004;  Xu  et  al. 
2007; Jing et al. 2014 

 NCT00715858; 
NCT00439166; 
NCT01002079; 
NCT00692588 

Geldanamycin   
 Decreases  α‐synuclein  aggregation  level 

through up‐regulation of Hsp70 
 

 Aulucket  al.  2002; McLean  et 
al. 2004 

 

 
Ceftriaxone 
 

 
 Inhibits  the  α‐synuclein  amyloid  aggregation 

pathway  
   Ruzza et al. 2014 

 NCT00349622; 
NCT00718393 

Rapamycin   
 Diminishes α‐synuclein aggregation 

 Enhances  oligomers  clearance  through 
increased autophagy 

   Liu et al. 2013 

 

Table 1. Effects of antibiotics on the amyloid aggregation pathway of disease‐related proteins 

ACCEPTED M
ANUSCRIP

T


