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Online suboptimal control of linearized models
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A novel approach to approximately solving the restricted-control linear quadratic regulator problem online is substantiated
and applied in two case studies. The first example is a one-dimensional system whose exact solution is known. The other
one refers to the temperature control of a metallic strip at the exit of a multi-stand rolling mill. The new (online-feedback)
strategy employs a convenient version of the gradient method, where partial derivatives of the cost are taken with respect
to the final penalization matrix coefficients and to the switching times where the control (de)saturates. The calculations are
based on exact algebraic formula, which do not involve trajectory simulations, and so reducing in principle the computational
effort associated with receding horizon or nonlinear programming methods.
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1. Introduction
Linearized models are frequently employed to treat nonlin-
ear systems evolving near an equilibrium point, or when
tracking a reference trajectory. These approximate models
are accepted provided both deviations (of the state from the
given target and of the manipulated variable from the ref-
erence control) are ‘small’. Therefore, restrictions on the
control values appear naturally when working with lin-
earizations. In most cases it is implicitly assumed that the
linear approximation is BIBO stable and controllable as to
guarantee that if the control moves between the imposed
bounds, then the states will depart within tolerances from
the target (and tend asymptotically to it). When the prob-
lem concerning an n-dimensional system and an additive
cost objective is regular, i.e. when the Hamiltonian of the
problem can be uniquely optimized by a control value u0

depending continuously on the remaining variables (t, x, λ),
then a set of 2n ordinary differential equations (ODEs) with
two-point boundary-value conditions, known as Hamil-
ton (or Hamiltonian) canonical equations (HCEs), has to
be solved to obtain the optimal solution. For the linear-
quadratic regulator (LQR) with a finite horizon, there exist
well-known methods (see for instance Costanza & Neu-
man, 2009; Sontag, 1998) to transform the boundary-value
problem into an initial-value one. In the infinite-horizon,
bilinear-quadratic regulator, and change of set-point servo
problems, there also exists an attempt to find the missing ini-
tial condition for the co-state variable from the data of each
particular problem, which allows to integrate the Hamilto-
nian equations online with the underlying control process

∗Corresponding author. Email: tsinoli@santafe-conicet.gov.ar

(Costanza & Neuman, 2006). For nonlinear systems this
line of work is in its beginnings (Costanza & Rivadeneira,
2008, Costanza, Rivadeneira, & Spies, 2009).

Whenever an optimal performance is desired, the
bounded-control context may lead to non-regular optimal
control problems, for whose solution there are not stan-
dard recipes (Athans & Falb, 2006; Qin & Badgwell, 2003;
Sontag, 1998; Speyer & Jacobson, 2010). Since the early
1960s, the Pontryagin’s maximum principle (PMP) has
been at the core of the development of modern optimal
control theory (Pontryagin, Boltyanskii, Gamkrelidze, &
Mishchenko, 1964) to treat non-regular situations. This
paper takes advantage of the relationships between PMP
and the Hamilton–Jacobi approaches to the LQR problem.
The decisive theoretical finding may be phrased as follows:
the optimal solution to a given restricted LQR problem can
be generated by saturating the solution of another unre-
stricted LQR problem, with the same dynamics and cost
objective as the original one, but starting at a different
initial condition and subject to a quadratic final penaliza-
tion with a different matrix coefficient. Offline and online
schemes were developed to detect this new initial condi-
tion and final penalization matrix (Costanza, Rivadeneira,
& González, 2014). An online algorithm in this direction

is the main contribution of this article from the practical
point of view. Since the strategy is intended to work in
feedback form when the control is between bounds, then
the precise knowledge of the initial condition of the subja-
cent unrestricted LQR process is not substantial. In fact, in
such a context what becomes a priority is the location of

© 2014 The Author(s). Published by Taylor & Francis.
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the time instants where the control saturates/desaturates.
Therefore, the proposed scheme updates the final penaliza-
tion matrix and the saturation/desaturation times referred
above, while the total cost is being reduced via a straight-
forward version of the gradient method (Pardalos & Pytlak,
2008). The resulting control will in general be subopti-
mal with respect to the given initial state, since: (i) the
eventual occurrence of state perturbations which deviate
the system from the optimal trajectory of the original
problem and also that (ii) the number of online updat-
ing of the parameters, each consuming some computer
time, may not be sufficient to reach their optimal values
during the available time horizon. The numerical scheme
takes advantage of the online availability of the Riccati
matrices that correspond to a range of final penalty param-
eter values, generated from the solutions to a pair of
first-order partial differential equations (PDE) (Costanza
& Rivadeneira, 2013). For its simplicity and small com-
putational effort, the online algorithm can be considered as
a potential tool to be used in combination with the reced-
ing or shrinking horizon policies (Camacho & Bordons,
2004), in an enlarged MPC context that would contemplate
strict finite-horizon problems, and may be considered as an
alternative to nonlinear programming approaches (Cannon,
Liao, & Kouvaritakis, 2008, Rao et al., 2008), which depend
on the time and space discretization adopted.

The article has the following structure: after the Intro-
duction, the regular LQR results and the auxiliary matrices
that will be used in the sequel are presented. Then the
bounded-control version of the problem is described and
the main theoretical fact used here is stated. Afterwards the
algebraic formulas to be employed in the numerical updat-
ing of the parameters are explicitly given. Two applications
of the numerical scheme to linearized systems are then illus-
trated, one of them arising from an industrial problem. The
usual Conclusions are given at the end.

2. Equations for regular LQR optimal control
problems

The finite-horizon, time-constant formulation of the LQR
problem with free final states and unconstrained controls
attempts to minimize the (quadratic) cost

J (u) =
∫ tf

0
[x′(τ )Qx(τ ) + u′(τ )Ru(τ )] dτ + x′(tf )Sx(tf ),

(1)

with respect to all the admissible (here piecewise-
continuous) control trajectories u : [0, tf ] → R

m of duration
tf , applied to some fixed, finite-dimensional, determin-
istic plant. Then control strategies affect the R

n-valued
states x through some initialized, autonomous, dynamical
constraint

ẋ = Ax + Bu := f (x, u), x(0) = x0 �= 0. (2)

This will be called a (A, B, Q, R, S, tf , Rm, x0)-problem.

The (real, time-constant) matrices in Equations (1) and
(2) will be assumed to have the following properties: Q and
S are positive-semidefinite n × n matrices, R is m × m and
positive-definite, A is n × n, B is n × m, and the pair (A, B)

is controllable. The expression under the integral is usually
known as the ‘Lagrangian’ L of the cost, namely

L(x, u) := x′Qx + u′Ru. (3)

Under these conditions the Hamiltonian of the problem,
namely the R

n × R
n × R

m → R function defined by

H (x, λ, u) := L(x, u) + λ′f (x, u) (4)

is known to be regular, i.e. that H is uniquely minimized
with respect to u, and this occurs when u takes the explicit
control value

u0(x, λ) = − 1
2 R−1B′λ, (5)

(in this case, independently of x), which is usually called
‘the H -minimal control’. The ‘Hamiltonian’ form of the
problem (see, for instance, Sontag, 1998) requires then to
solve the two-point boundary-value problem for the HCEs

ẋ = H 0
λ (x, λ), x(0) = x0, (6)

λ̇ = −H 0
x (x, λ), λ(tf ) = 2Sx(tf ), (7)

where H 0(x, λ), usually called the minimized (or control)
Hamiltonian, stands for

H 0(x, λ) := H (x, λ, u0(x, λ)), (8)

and H 0
λ and H 0

x for the column vectors with i-components
∂H 0/∂λi, ∂H 0/∂xi respectively, i.e. Equations (6) and (7)
here take the form

ẋ = Ax − 1
2 Wλ,

λ̇ = −2Qx − A′λ,
(9)

respectively, with W := BR−1B′. It is well known that the
solution to the unrestricted regular problem, as posed above,
relies in turn on the solution P(·) to the Riccati differential
equation (RDE)

Ṗ = PWP − PA − A′P − Q, P(tf ) = S, (10)

which establishes a useful relationship between the optimal
state x∗(·) and the costate λ∗(·) trajectories, namely

λ∗(t) = 2P(t)x∗(t), (11)

and, based on Equation (5), leads to the optimal control
trajectory

u∗(t) = u0(x∗(t), λ∗(t)) = −R−1B′P(t)x∗(t), (12)

or equivalently to the optimal feedback law

uf (t, x) = −R−1B′P(t)x. (13)

When the control values are restricted, the global reg-
ularity of the Hamiltonian cannot be assured, and there-
fore the search for the optimal control strategy becomes
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more involved, as may be observed in the following sec-
tions. Additional relevant objects from the LQR theory
will be used in the sequel, for instance, the matrices
α(T , S), β(T , S), solutions to the following pair of first-
order, quasilinear PDE (see Costanza & Neuman, 2009 for
details):

αT − αSM = −αN , α(0, S) = I , (14)

βT − βSM = −βN , β(0, S) = 2S, (15)

where the subindices denote partial derivatives and the
matrix coefficients result

M := A′S + SA + Q − SWS, (16)

N := A − WS. (17)

These matrices allow us to calculate, for any unbounded
LQR problem, the solution P(·, tf , S) to its RDE through
the formula

P(t, tf , S) = 1
2β(tf − t, S)[α(tf − t, S)]−1 ∀ t ∈ [0, tf ],

(18)

and in such a case the matrices α and β are also related to
the boundary conditions by the following relations:

x(0) = α(tf , S)x(tf ), λ(0) = β(tf , S)x(tf ). (19)

3. The bounded-control case
The manipulated variable in most of the control systems
appearing in practical applications can assume only a
bounded set of values. The term ‘manipulated’ indicates
that a person or an instrument assigns a value to a sig-
nal generated by physical means, and therefore this value
cannot take more than a physically realizable amount. Com-
monly, the manipulated variable can move inside and on the
boundary of some bounded subset of a metric space, then it
is natural to assume that the admissible set of control val-
ues is a compact subset of R. The qualitative features of
optimal control solutions to bounded problems are signifi-
cantly different from those of unbounded ones (Pontryagin
et al., 1964). But questions about how much they actually
differ, which classes of problems lead to bang–bang con-
trols, and whether their solutions are just saturations of the
optimal trajectories of unbounded problems, are still open.
Linearizations are accepted provided fluctuations are small.
This principle affects state and control deviations. Particu-
larly, the speed variations cannot be allowed to trespass
appropriate bounds, i.e.

u(t) ∈ U := [umin, umax]. (20)

This restriction determines the structure of the optimal
control problem. When U is bounded (and closed, as in
Equation (20)), then the problem tends to lose regularity;
derivatives of the Hamiltonian and the value function are

not even guaranteed to exist. The search for solutions to
restricted problems most frequently falls in the domains
of the Pontryagin’s maximum principle (PMP; Pontryagin
et al., 1964). However, even when solved, PMP is not flexi-
ble enough to treat state perturbations: no optimal feedback
laws arise from the application of PMP equations, but only
open-loop control strategies.

In this paper the following result (Costanza &
Rivadeneira, 2013) will be exploited:

Let us assume that there exists a time instant t ∈ (0, tf )
where u∗

x0
(t) ∈ (umin, umax). Then there exists a time inter-

val I ⊂ (0, tf ) containing t such that the optimal phase
trajectory {x∗

x0
, λ∗

x0
} of the original (A, B, Q, R, S, tf , U, x0)-

problem coincides with the optimal phase trajectory {x̂, λ̂}
corresponding to a (A, B, Q, R, Ŝ, tf , R, x̂0)-problem.

In what follows, it will be assumed that there exists
just one maximal ‘regular’ interval (τ1, τ2) ⊂ (0, tf ) where
the control takes values in (umin, umax). The generation
of a suboptimal control strategy by approximating the
unknown parameters (Ŝ, x̂0) has already been published
in the minimal-control-energy situation (Costanza et al.,
2014), and the extension to the general LQR problem was
announced in Costanza and Rivadeneira (2013), although
there the updating of the unknown parameters still required
the simulation of state trajectories. In this paper, explicit
algebraic formulas are given for parameters updating,
avoiding ODE integrations, and thus reducing the computer
time in the process of decreasing the total cost.

3.1. Algebraic formulas used in the online procedure
3.1.1. Auxiliary objects
The following type of feedback control laws will be fre-
quently used in the sequel leading online to a suboptimal
control:

ũ(t) :=

⎧⎪⎨
⎪⎩

umin, ∀ t ∈ [0, τ1),
−R−1B′P(t, S̃)x(t), ∀ t ∈ [τ1, τ2),
umax, ∀ t ∈ [τ2, tf ],

(21)

where ũ(t) is a short notation for ũS̃,τ1,τ2
(t), which will be

used when it is necessary to indicate that the feedback law is
associated to the parameters (S̃, τ1, τ2). The ‘seed’ strategy
will be adopted to start the online iterative method below,
and has the same structure, namely

useed(t) :=
⎧⎨
⎩

umin if − R−1B′P(t, S)x(t) ≤ umin,
umax if − R−1B′P(t, S)x(t) ≥ umax,
−R−1B′P(t, S)x(t) otherwise.

(22)

The state trajectory corresponding to the control useed and
starting at x0, i.e. xuseed , will be denoted as xseed. Note that
through the seed control and state trajectories, simulated
offline for the nominal final matrix S, the first values for the
saturation times, denoted τ1,0 ≤ τ2,0, are detected if they
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exist. The initial approximation to the unknown penaliza-
tion matrix Ŝ will be denoted S̃0 := S, and consistently
for the control, ũ0 := useed. The Hamiltonian matrix of the
original problem,

H : =
(

A −W
2−2Q −A′

)
, (23)

and the associated fundamental matrix

V(t) := eHt , (24)

will also be employed in devising algebraic formula for the
partial derivatives of the cost. The matrix V(t) is 2n × 2n.
For convenience, its n × n partition is denoted as

(
V1(t) V2(t)
V3(t) V4(t)

)
:= V(t), (25)

which can also be expressed in terms of the auxiliary matri-
ces α, β, and their derivatives since, Costanza and Neuman
(2009)

V = (eHT )−1 =
(

α − αSS αS/2
β − βSS βS/2

)−1

. (26)

In what follows P(t, S̃) will denote the solution to the
RDE (10) for π , with final condition π(tf ) = S̃. When the
value of S̃ is clear in the text, the notation may simplify from
P(t, S̃) to P(t). The following identity will also be used:

∂P(t, S̃)

∂ S̃
= ∂[(1/2)β(tf − t, S̃)[α(tf − t, S̃)]−1]

∂ S̃

= 1
2 [βSα

−1 − βα−1αSα
−1](tf − t, S̃)

= 1
2 [βS − 2P(t, S̃)αS ]α−1. (27)

The ‘saturated’ fundamental matrix:

�(t, τ) :=
∫ t

τ

eA(t−σ) dσ = eAt
∫ t

τ

e−Aσ dσ , (28)

and the related matrices

�̌(t, τ) :=
∫ t

τ

eA′(σ−τ)Q eA(σ−τ) dσ , (29)

�̂(t, τ) :=
∫ t

τ

� ′(σ , τ)Q eA(σ−τ) dσ (30)

will also be needed in the sequel. These matrices are cal-
culated and interpolated offline. So it is assumed that, in
real-time applications, they will be available as functions
of their two variables (t, τ), in the range [0, tf ] × [0, tf ].

Since u(t) ≡ umin in [0, τ1], then the state at time τ1
results

x(τ1) = eAtx0 + �(τ1, 0)Bumin. (31)

Here it is important to note that the state at τ2 may be
calculated in two equivalent ways: (i) either from the

Hamiltonian flow, since for each t ∈ [τ1, τ2) the control
is −R−1B′P(t, S̃)x(t) and the costate (corresponding to
this piece of a regular trajectory), denoted λ̃(t), is λ̃(t) =
2P(t, S̃)x(t), and therefore

(
x(t)
λ̃(t)

)
= V(t−τ1)

(
x(τ1)

λ̃(τ1)

)
, (32)

implying that

x(τ2) = V1(τ2 − τ1)x(τ1) + V2(τ2 − τ1)λ̃(τ1)

= (V1(τ2 − τ1) + 2V2(τ2 − τ1)P(τ1, S̃))x(τ1),
(33)

or (ii) x(t) should also coincide with the state of some pro-
cess having the same final penalization S̃ and starting at
some initial state x̃(0), i.e.

(
x(t)
λ̃(t)

)
= V(t)

(
x̃(0)

2P(0, S̃)x̃(0)

)
, (34)

x(τ2) = (V1(τ2) + 2V2(τ2)P(0, S̃))x̃(0). (35)

In what follows, the arguments t of V(t) will also be omitted
when the context is clear. The state at the final time tf is

x(tf ) = eA(tf −τ2)x(τ2) + �(tf , τ2)Bumax. (36)

3.1.2. The partial derivatives of the cost
It is known (Dhamo & Tröltzsch, 2011) that the total
cost J (ũ) is differentiable as a function of the vari-
ables (S̃, τ1, τ2). The total cost is time-partitioned here for
convenience:

J (S̃, τ1, τ2) := J (ũ) := J1 + J2 + J3 + J4, (37)

J1 :=
∫ τ1

0
L(xũ(t), ũ(t)) dt = Ru2

minτ1 +
∫ τ1

0
x′(t)Qx(t) dt,

(38)

J2 :=
∫ τ2

τ1

L dt = x′(τ1)P(τ1, S̃)x(τ1)

− x′(τ2)P(τ2, S̃)x(τ2), (39)

J3 :=
∫ tf

τ2

L dt = Ru2
max(tf − τ2) +

∫ tf

τ2

x′(t)Qx(t) dt,

(40)

J4 := x′(tf )Sx(tf ). (41)

Based on the preliminary formulas, the partial deriva-
tives of each partial cost can be expressed as

Dτ1 J1 = Ru2
min + x′(τ1)Qx(τ1), (42)

where x(τ1) and x′(τ1) should be replaced by their cor-
responding expressions from Equation (31), as in all
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succeeding partial derivatives. Next,

Dτ1 J2 = 2x′(τ1)P(τ1, S̃)ẋ(τ1) + x′(τ1)Ṗ(τ1, S̃)x(τ1)

− · · · − ∂

∂τ1
(x′(τ2)P(τ2, S̃)x(τ2)) (43)

= 2x′(τ1)P(τ1)[Ax(τ1) + Bumin] + · · · + x′(τ1)

[P(τ1)WP(τ1) − P(τ1)A − A′P(τ1) − Q]x(τ1),
(44)

since (∂/∂τ1)[x′(τ2)P(τ2)x(τ2)] = 2x′(τ2)P(τ2)(∂x(τ2)/

∂τ1), and, from Equation (35), ∂x(τ2)/∂τ1 = 0 .

Dτ1 J3 = Dτ1

∫ tf

τ2

x′(t)Qx(t) dt =
∫ tf

τ2

2x′(t)Q
∂x(t)
∂τ1

dt = 0,

(45)

since inside the integral of the state x(t) = eA(t−τ2)x(τ2) +
�(tf , τ2)Bumax, ∂x(t)/∂τ1 = eA(t−τ2) ∂x(τ2)/∂τ1, and
∂x(τ2)/∂τ1 = 0 .

Dτ1 J4 = 2x′(tf )S
∂x(tf )
∂τ1

= 2x′(tf )S eA(tf −τ2)
∂x(τ2)

∂τ1
= 0.

(46)

Similarly, the derivatives with respect to τ2 are

Dτ2 J1 = 0, (47)

Dτ2 J2 = −[2x′(τ2)P(τ2, S̃)ẋ(τ2) + x′(τ2)Ṗ(τ2)x(τ2)]
= −{2x′(τ2)P(τ2)(Ax(τ2) + Bumax) + · · · + x′(τ2)

P(τ2)WP(τ2) − P(τ2)A − A′P(τ2) − Q)x(τ2)},
(48)

where Equations (33) and (31) should be used to replace
x(τ2), as in the next partial derivative:

Dτ2 J3 = −[Ru2
max + x′(τ2)Qx(τ2)], (49)

Dτ2 J4 = 2x′(tf )S
∂x(tf )
∂τ2

= −2x′(tf )S eA(tf −τ2)

[WP(τ2, S̃)x(τ2) + Bumax], (50)

since, from Equation (36) ∂x(tf )/∂τ2 = −A eA(tf −τ2)x(τ2) +
eA(tf −τ2)ẋ(τ2) − eA(tf −τ2)Bumax, and ẋ(τ2) = (A − WP
(τ2, S̃))x(τ2). The derivatives with respect to the elements
S̃ij of S̃, globally denoted as DS̃ , are

DS̃J1 = 0, (51)

DS̃J2 = x′(τ1)

[
∂P(τ1)

∂ S̃
− 4(V1 + 2V2P(τ1))

′P(τ2)

V2
∂P(τ1)

∂ S̃
− · · · − (V1 + 2V2P(τ1))

′ ∂P(τ2)

∂ S̃
(V1 + 2V2P(τ1))] x(τ1), (52)

DS̃J3 =
∫ tf

τ2

2x′(t)Q
∂x(t)

∂ S̃
dt

= 4[x′(τ2)�̌(tf , τ2) + umaxB′�̂(tf , τ2)]

V2(τ2 − τ1)
∂P(τ1, S̃)

∂ S̃
x(τ1), (53)

after replacing x′(t) = x′(τ2) eA′(t−τ2) + B′� ′(t, τ2)umax,
and expanding ∂x(t)/∂ S̃ = eA(t−τ2)(∂x(τ2)/∂ S̃) = eA(t−τ2)

2V2(τ2 − τ1)(∂P(τ1, S̃)/∂ S̃)x(τ1). Finally, after similar
manipulations,

DS̃J4 =2x′(tf )S
∂x(tf )

∂ S̃
= 4x′(tf )S eA(tf −τ2)

V2(τ2 − τ1)
∂P(τ1, S̃)

∂ S̃
x(τ1). (54)

3.1.3. Updating the parameters
First approximations τ1,0 and τ2,0 to the optimal saturation
points τ1 and τ2 become available after (offline) simulating
the state trajectory xseed. A subdivision of the time-horizon
in ‘sampling times’ of the form t0 = 0 < t1 < t2 < · · · <

tN = T is adopted to make possible intermediate calcu-
lations, updating parameters, and deciding changes in the
control strategy. For t ∈ [0, t1] the control is set to

u(t) ≡ useed(t). (55)

Then, during this initial sampling interval (associated with
k = 0) and through, the parameters (S̃, τ1, τ2) are updated to
construct successive control strategies ũk ,j , j = 1, 2, . . .that
decrease the value of the total cost:

J (ũk ,j+1) ≤ J (ũk ,j) ≤ · · · J (useed), j = 1, 2, . . . (56)

according to the prescriptions of the simplest gradient
method:

S̃k ,j := S̃k ,j−1 − γS
∂J

∂ S̃
(S̃k .j−1, τ1,k , τ2,k), j = 1, 2, . . . .

(57)

The last updating of S̃k that can be computed during the
sampling interval is denoted

S̃k+1 ≈ lim
j

S̃k ,j , (58)

and on the same lines,

τi,k+1 ≈ lim
j

(
τi,k − γτi

∂J
∂τi

)
j
, i = 1, 2, (59)

where γS , γτ1 , γτ2 are appropriate constants, tuned by the
user for each experiment. During the next sampling interval
(tk+1, tk+2], the control is set to

u(t) ≡ ũS̃k+1,τ1,k+1,τ2,k+1
(t). (60)
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4. Applications and numerical results
4.1. A one-dimensional example
The first case study of this paper is the optimal control
problem defined by the following objects:

ẋ(t) = u(t), 0 ≤ t ≤ 1,

x(0) = 1 − e,

u(t) ∈ [1.44, 2] ⊂ R,

J (u) =
∫ 1

0
(x2 + u2)dt + 13 [x(1)]2 .

(61)

The optimal solution is given in Costanza and Rivadeneira
(2013). A slightly different version of this problem, aimed
to minimize only the control energy, was presented in
Troutman (1996). For any real constant C, this system can
also be considered as a linearized version of the dynamics

ż(t) = U (t) + C, (62)

with state z(t), control U (t), steady-state zSS(t) ≡ 0,
equilibrium control USS(t) = −C, and deviations x(t) :=
z(t) − zSS(t), u(t) := U (t) − USS(t).

The gradient method was first tried offline (without
discretizing the time-horizon into sampling periods), to
obtain: S̃ = 9.60305, τ1 = 0.09289, τ2 = 0.62095, Joff =
3.73091 ≈ J ∗ = 3.7309 (Costanza & Rivadeneira, 2013).
It was also implemented online, as described above, by
adopting a fixed sampling period �tk = tk+1 − tk = 0.025
and allowing for a maximum of 30 iterations inside each
�tk . The total cost obtained was Jon = 3.73123, slightly
higher than Joff ≈ J ∗. The resulting online control trajec-
tory, and the evolution of the required parameters τ1, τ2, S̃,
updated at each sampling-time, are depicted in Figures 1
and 2, respectively.

Figure 1. Control strategy resulting from the online application
of the gradient method to the one-dimensional example.

4.2. A typical linearized model situation: the rolling
mill

4.2.1. The nonlinear first-order PDE setup
The second case study models a rolling mill described
in Hearns and Grimble (2010), whose (infinite dimen-
sional) dynamics (from a standard energy balance) obeys
the following first-order PDE

∂θ

∂t
= −V

∂θ

∂z
+ a(θa − θ) + b(θ4

a − θ4), (63)

where θ(t, z) is the temperature of the metallic strip at time
t and location z in the trend, V (t) is the linear speed of the
strip, and θa is the ambient temperature (assumed constant
in this set up). The coefficients a, b weigh the rate of heating
due to conduction and radiation, respectively. The system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

11

12

13

s

0.1

0.105

0.11

0.115

τ 1

0.62

0.64

0.66

0.68

Time t

τ 2

Figure 2. Evolution of the parameters S̃, τ1, τ2, during the online application of the gradient method.
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is simplified by neglecting radiation (small b), and by sup-
posing that the temperature will stay around the equilibrium
profile

θSS(z) = θa + (θ0 − θa) exp
(

− az
V0

)
, (64)

which is the solution to Equation (63) with b = 0, ∂θ/∂t =
0, V (t) ≡ V0, and θ0 := θSS(0), some appropriate con-
stant characterizing each physical set up. The following
definitions

�θ(t, z) := θ(t, z) − θSS(z), u(t) := V (t) − V0 (65)

allow one to approximately express the dynamics of
the fluctuations through the ‘linearized’ version of
Equation (63), namely

∂�θ

∂t
= −V0

∂�θ

∂z
− a�θ

+
[

a
V0

(θ0 − θa) exp
(

− az
V0

)]
u, (66)

after neglecting the term u∂�θ/∂z, on the argument that it
is the product of two ‘small’ quantities.

Remark 1 The linear approximation of the original prob-
lem implicitly supposes not only that deviations �θ(t, z)
from the steady-state temperature θSS(z) are small, but also
that the manipulated variable V (t) will also be near the
steady-state velocity V0. These assumptions imply, espe-
cially, that the control variable u(t) should not be allowed
to take unbounded values, even if their physical realization
are possible, because the linearized model will risk to depart
too much from the original dynamics.

4.2.2. The z-discretization approach leading to a
finite-dimensional linear control system

From the control theory perspective, the state in
Equation (66) is at each time t the z-function �θ(t, ·).
This, in principle, makes the system under study infinite-
dimensional, whose treatment is out of the scope of this
paper. An n-dimensional approximation has then been
constructed by discretizing the z-variable in the form:

zi := (i − 1)h, i = 1, . . . , n, (67)

next by defining n state variables xi (or equivalently a vector
state variable x(·) with values x(t) in R

n),

xi(t) := �θ(t, zi), i = 1, . . . , n, (68)

x(t) := (x1(t), x2(t), . . . , xn(t))′, (69)

and finally by approximating the z-partial derivative
by some appropriate linear combination of the function

�θ(t, ·) evaluated at the discretized values zi, for instance,

∂�θ

∂z
(t, zi) ≈ xi+1(t) − xi(t)

h
, i = 1, . . . , n − 1, (70)

∂�θ

∂z
(t, zn) ≈ xn(t) − xn−1(t)

h
. (71)

After such manipulations the following structure of a
linear control system is obtained

ẋ = Ax + Bu, (72)

where the n × n matrix A and the column n-vector B take
the form:

A = (aij) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aii = V0

h
− a, ai,i+1 = −V0

h
,

i = 1, . . . , n − 1,

an,n−1 = V0

h
, ann = −

(
a + V0

h

)
,

all remaining
elements equal to 0,

(73)

B = (bi) = a
V0

(θ0 − θa) exp
(

−azi

V0

)
, i = 1, . . . , n.

(74)

The eigenvalues of the matrix A are dominated by
the relation between the heat gained at each position by
convection versus the heat extracted at that point by the
environment, implicit in the term V0/h − a which appears in
the main diagonal, except in its last element. Now, from one
side, the free evolution has to be stable to keep any physical
meaning in the equations (the temperature cannot grow for-
ever). But, if control has to be relevant to increase stability, it
is appropriate to explore those situations near where the sys-
tem might lose stability (for instance, due to environmental
perturbations). With this contradictory objectives in mind,
the following values for the parameters were investigated

V0 = h = 1, a = 1.001. (75)

The discretized, ODE version (72) of Equation (66) was
numerically confirmed to be an acceptable approximation.

4.2.3. Numerical simulation of the online strategy
The initial state x0 = x(0) used for simulation of the system
defined by Equations (72)–(74) was

xi(0) = 100 sin
(

2πzi

10

)
, i = 1, . . . , n, (76)

with the following values for the reference temperatures (in
◦C)

θa = 20, θ0 = 700. (77)
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Figure 3. Evolution of the states under the online control strategy, after a sinusoidal initial profile.

Figure 4. Unbounded optimal control, restricted seed control, and the resulting suboptimal control after applying the gradient method.

Figure 5. Evolution of some updated parameters and their corresponding total costs.

D
ow

nl
oa

de
d 

by
 [

V
ic

en
te

 C
os

ta
nz

a]
 a

t 1
4:

21
 1

9 
M

ay
 2

01
4 



Systems Science & Control Engineering: An Open Access Journal 387

The cost objective of the LQR problem was given the
following parameters:

tf = 1, Q = 0.1I10, R = 500, S = 50I10, (78)

and the bounds imposed on control values were

[umin, umax] = [−0.04, 0.04]. (79)

After simulating the seed control and state trajectories,
it was found that

τ1,0 = 0.2487, τ2,0 = 0.3615, Jseed = 721. (80)

Results are shown in Figures 3–5. In Figure 3 the evolu-
tion of the states under control is shown. All the components
of the state tend to equilibrium, as expected. The unbounded
optimal control is shown in Figure 4, together with the
seed control trajectory and the suboptimal bounded control
resulting from applying the online strategy with fixed sam-
pling intervals �t = 0.1. The updating of the parameters
τ1 and τ2, together with S̃10,8 = S̃8,10 (just one non-diagonal
coefficient of S̃ for illustration), and the evolution of the
total cost associated with those parameters, are depicted in
Figure 5. The relevant final values for the parameters were

τ1 = 0.2590, τ2 = 0.3623, Jon = 601,

diag(S̃) = (50.0, . . . , 49.9944, 53.5244, 68.3213),

subdiag(S̃) = (0, . . . , −0.7454, 0.1887),

subsubdiag(S̃) = (0, . . . , −10.5406).
(81)

The reduction in the total cost Jon with respect to the cost of
the seed strategy Jseed was 16.78%, mostly due to the high
values assigned to R and S in the original cost objective
formulation.

5. Conclusions
An efficient online scheme to calculate suboptimal con-
trol strategies for linearized models has been presented.
Linearized models are thought as approximate versions of
real-life nonlinear systems. Linearizations are accurate pro-
vided deviations from equilibrium values are small. This
context imposes restrictions on the control values, and
then normally the Pontryagin approach is required to solve
the bounded LQR problem, instead of the more agreeable
Hamilton–Jacobi theory. Although feedback laws may be
preferred in practice, when perturbations are expected to
appear, a closed-loop control is in general suboptimal when
there exist constraints in the manipulated variable. With
these limitations in mind, an efficient online algorithm is
devised to approximate the open-loop optimal control via
feedback, based on recent theoretical results, and its features
are illustrated when applied to two case-studies. The result-
ing strategies are quite different from the saturated form of

the optimal control corresponding to the unrestricted prob-
lem with same parameters and initial condition, which is
used here just as a first approximation, and so labelled as
a ‘seed’ strategy. Such a seed feedback is often naively
adopted in Engineering practice during the whole optimiza-
tion period, although it has been shown that it is far from
optimal. Reductions in total cost, in both examples, validate
this assertion. It should be acknowledged that the alterna-
tive procedure proposed here will also be suboptimal. This
is because the application of PMP to obtain the optimal
solution is essentially an offline calculation leading to an
open-loop recipe, and if any deviation from the optimal
solution occurs (by mistake or by ignorance), then opti-
mality will immediately be lost, no matter the subsequent
effort. However, when the PMP solution was not previously
found, or when only the ‘seed’ strategy is available, or when
state perturbations appear in a real process-control situa-
tion; then no more than a suboptimal performance better
than the seed’s one can be expected. The online updating of
the parameter S̃ and the saturation times τi, as long as the
total cost is reduced (guaranteed by the gradient method),
will clearly improve the seed strategy as time evolves. This
new scheme will result in the optimal strategy only when:
(i) the right (optimal) S̃ value is reached before the Riccati
gain P(S̃) has to be applied, and (ii) no state perturbations
occur. As a consequence, the stability of the method is guar-
anteed since the cost is not allowed to increase, and it is
bounded from below. Some positive features of the new
online proposed strategy are as follows:

• The method is based on theoretical results ensuring
that the hidden final penalization Ŝ and the appropri-
ate (two at the most) saturation times τ1 and τ2 are
the critical objects to be ascertained.

• It takes advantage of the availability of α and β

as functions of (T − t, S), and consequently on the
possibility of generating Riccati matrices P(t, T , S̃)

online by simple algebraic manipulations, as S̃ is
updated; i.e. the RDE does not need to be solved for
any value of S̃, not even offline.

• The control in Equation (21) is given in feedback
form, and therefore the algorithm is unaffected by
state perturbations due to fluctuations in environmen-
tal conditions.

• The updating of parameters (S̃, τ1, τ2) is performed
via the gradient of the cost of the process, and this cost
is calculated by simple algebraic formulas instead
of by predicting state, control, and cost trajectories
by ODE integrations, as in most ‘predictive control’
techniques. This reduces the computational effort and
allows for updating in shorter sampling intervals.

• Another conceptual difference with currently avail-
able approaches is that there exists a unique matrix
Ŝ to look for in treating each LQR problem. This
allows for further reduction on the computing effort,
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since there is no need for updating Riccati equations
through receding horizon schemes.

• It is under exploration the online generation of the
matrices α and β involved in the calculation of the
optimal feedback gain at each sampling time. This
step will improve the applicability of the algorithm
to large-dimensional processes, especially to those
governed by PDE.
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