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Experimental data on thin films of cylinder-forming block copolymers (BC) – free-standing BC
membranes as well as supported BC films – strongly suggest that the local orientation of the BC pat-
terns is coupled to the geometry in which the patterns are embedded. We analyze this phenomenon
using general symmetry considerations and numerical self-consistent field studies of curved BC films
in cylindrical geometry. The stability of the films against curvature-induced dewetting is also ana-
lyzed. In good agreement with experiments, we find that the BC cylinders tend to align along the
direction of curvature at high curvatures. At low curvatures, we identify a transition from perpen-
dicular to parallel alignment in supported films, which is absent in free-standing membranes. Hence
both experiments and theory show that curvature can be used to manipulate and align BC patterns.

Due to their ability to self-assemble into well-defined
periodic nanostructures, block copolymers (BC) are at-
tracting great interest as potential template materials for
cost-effective nanofabrication techniques [1–9]. With BC
systems, one can produce high-resolution patterns with
tunable wavelength using traditional processing tech-
niques. This offers promising perspectives for applica-
tions in scalable nanoscale devices. However, one fre-
quent problem with the self-assembly approach is lack
of long-range order due to pattern undulations and de-
fects, e.g., dislocations, disclinations, or grain bound-
aries [1, 10–13]. Numerous methods to produce patterns
with well-defined orientational and positional order have
been proposed, such as shear alignment [14–16], align-
ment in electric fields [17–19], zone annealing [20, 21],
or grapho-and chemo-epitaxy, where surface interactions
and confinement effects are exploited to order patterns
[6–8, 14, 21–27] or to control defect positions [28].

Here, we analyze another possible source of alignment,
the geometry in which the system is embedded. Experi-
ments and simulations on curved systems have indicated
that the pattern configurations are affected by both in-
trinsic and extrinsic geometry. Even in Euclidean sys-
tems, a strong coupling between patterns and curvature
seems to drive the equilibrium configurations and the
coarsening process [7, 23, 29, 30].

As a first step towards a more quantitative under-
standing of the nature of the coupling between BC thin
films or membranes and curvature, in the present paper,
we study curved monolayers of cylinder-forming BC sys-
tems by complementary experiments, symmetry consid-
erations, and self-consistent field theory (SCFT) calcula-
tions [9, 31]. We consider two types of model systems:
a) free-standing BC membranes and b) BC thin films
deposited onto a curved substrate.

The geometric features of a 2D curved surface can be
characterized in terms of a shape operator S, which has
two Eigenvalues k1,2 = 1/R1,2 corresponding to the in-

verse maximal and minimal radii of curvature Ri [see sup-
plementary material (SM) for more details]. The deter-
minant and the trace of S define the Gaussian curvature
K = k1k2 and twice the mean curvature 2H = k1 + k2,
respectively [32]. The experimental systems studied here
have a non-Euclidean metric (K 6= 0, free-standing mem-
brane) or a Euclidean metric with zero Gaussian curva-
ture (K = 0, curved substrate).

In both systems we employ the same BC system,
a cylinder-forming polystyrene-block-poly(ethylene-alt-
propylene) diblock (PS-PEP 4/13) [33]. The number-
average block molecular weights for the BC are 4.3
kg/mol for PS and 13.2 kg/mol for PEP. In bulk, the
PS blocks arrange in hexagonally packed cylinders em-
bedded in the PEP matrix. In thin films the PS cylin-
ders adopt a configuration parallel to the film surface.
The center-to-center spacing of the cylinders is dsm = 21
nm. Thin films of thickness ∼ 30 nm are prepared by
spin-coating from a 1 wt. % solution in toluene, a good
solvent for both blocks. Order is induced by annealing
at a temperature T , above the glass transition of the PS
block (Tg ∼ 330K) and below the order-disorder transi-
tion temperature TODT = 417K of the BC. Details of the
preparation of the experimental systems are given in SM.
To obtain free-standing membranes, the films are first
annealed on a flat substrate, then further cooled down
below the glass transition temperature of the PS block
and finally lifted off and redeposited on a transmission
electron microscopy (TEM) grid. During this process,
the system retains the symmetry, average inter-cylinder
distance, and structure of defects established during an-
nealing. To obtain supported films, the BCs are directly
spin-coated onto curved substrates and the thermal an-
nealing process is monitored.

Fig. 1 shows an AFM image of a freestanding film
where height and cylinder locations are measured simul-
taneously. The light and dark regions correspond to PS-
rich and PEP-rich regions, respectively. After releasing
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FIG. 1. a) Phase-height AFM image of a free-standing thin
film (image size: 2.6 µm x 2.6 µm). b) Local mean curvature
for the membrane shape. Here the vectors u1,2 indicate the
directions of the principal curvatures and N is the normal
vector to the membrane surface (image size: 1.8 µm x 1.8
µm, region indicated by dashed lines in panel a; Hmax =
−Hmin = 3.84 × 10−3 nm−1). c) Local orientation of the
director field α of the pattern with regard to the x -axis. d)
Histogram showing the local distribution of angles θ = α− β
between α and the local orientation of the membrane wrinkles
β [see also Fig. S2 in SM].

the membrane from the confining substrate, it develops a
non-Euclidean shape to relieve the elastic energy of topo-
logical defects that have survived the thermal annealing.
The shape results from a competition between the strain
field of the defects, the bending energy associated with
the curvature of the membrane, and the membrane ten-
sion [29]. Fig. 1 d) shows the correlation between the
orientation of the underlying pattern and the local ori-
entation of membrane wrinkles. Although the different
defects impose competing out-of-plane deformations, one
clearly notices that wrinkles have a tendency to be ori-
ented either perpendicular (θ = 0) or parallel (θ = ±π/2)
to the underlying cylinders, suggesting that the bending
energy is anisotropic and coupled to the liquid crystalline
order of the BC [see also Figs. S3, S4 in SM].

A similar observation is made for the thin films on
curved substrates. Fig. 2 shows AFM phase and height-
phase images of the BC thin film deposited onto a curved
substrate. Right after the spin coating, the pattern is
characterized by a very small orientational correlation
length (ξ2 ∼ 20 nm) and a high density of defects. Dur-
ing annealing at T=373 K, the system orders via anni-
hilation of dislocations and disclinations. Already at an
early stage of annealing, the thin film becomes unsta-
ble and dewets at the regions with the highest curvature
(Fig. 2). Upon further annealing, the order in the system

FIG. 2. Top panels: 3D AFM phase-height images of the BC
thin film on a curved substrate after annealing at T=373K.
Panels a) and b) show the pattern configuration after 90 min
(image size: 2.0 µm x 1.5 µm) and 3.5 h of thermal annealing
(image size: 1.0 µm x 1.25 µm), respectively. Height scale: 80
nm from crest to valley, H2

max = 6.25µ m−2). The presence
of a dislocation and +1/2 disclinations has been emphasized
with a rectangle and circles, respectively. Bottom panels: c)
Local orientation of the smectic pattern (color map indicated
at the bottom). d) Histograms showing the distribution of
local orientations at two different annealing times.

increases and the pattern develops a clear preferential
orientation with regard to the substrate. Fig. 2 shows
that the PS cylinders tend to align perpendicular to the
crest of the substrate. Thus the topography of the sub-
strate seems to act as an external field that breaks the
azimuthal symmetry [see also Fig. S5 in SM]. Note that
the equilibrium configuration obtained here is opposite
to that predicted in previous theories for curved colum-
nar phases [34, 35], where it was assumed that bending
along the cylinder direction is energetically more costly
than bending in the perpendicular direction [35].

The phenomena described above can be analyzed us-
ing general symmetry considerations. The curvature free
energy per area of isotropic fluid-like membranes can be
expanded in the invariants of the shape operator S as
FHC = κb

2 (2H − c0)2 + κgK, where κb and κg are the
bending and Gaussian rigidity, respectively, and c0 is
the spontaneous curvature [36, 37]. Here we consider
anisotropic nematic membranes with in-plane order char-
acterized by a director n (the orientation of the cylin-
ders), thus additional terms become possible. Including
all terms up to second order in S that are compatible with
the in-plane nematic symmetry, i.e., (n ·S ·n), (n ·S ·n)2

[38, 39], and (S ·n)2 [40, 41], we can derive the following
expression for the anisotropic part of the curvature free
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energy per area [see SM]:

Fani = −κ
′

2
(k1−k2)(2H−c′0) cos(2θ)−κ

′′

2
(H2−K) cos(4θ).

(1)
Here θ ∈ [0 : π/2] denotes the angle between the director
and the direction of largest curvature k1 (|k1| > |k2|),
and κ′, κ′′, c′0 are anisotropic elastic parameters. In sym-
metric membranes, c′0 vanishes (c′0 = 0). We empha-
size that Eq. (1) gives the generic form of the free en-
ergy of curved nematic films up to second order in the
curvatures, which should be generally valid regardless of
molecular details. For κ′′ > 0, the second term describes
a quadrupolar coupling between the curvature tensor
and the director that favors two directions of preferen-
tial alignment of the director n along the two principle
directions of curvature. Such a competition of two sta-
ble/metastable aligned states was also predicted in other
continuum models for nematic shells [42, 43]. The first
term selects between the two direction.

The results of the symmetry analysis are compatible
with the experiments: As discussed above, in the BC
membranes, wrinkles form preferentially parallel or per-
pendicular to the director (Fig. 1 d). Similarly, in the
thin films, the distribution of local cylinder orientations
θ is bimodal at early annealing time (30 min), with two
characteristic peaks separated by ∼ π/2 (Fig. 2d). Dur-
ing the first stage of coarsening, the parallel and per-
pendicular configurations compete. After long annealing
times, C⊥ dominates, and the histogram becomes sharply
peaked at the orientation θ = 0, suggesting κ′ > 0 in Eq.
(1). We note, however, that supported films are asym-
metric and hence the spontaneous curvature parameter
c′0 will very likely not vanish, in which case Eq. (1) pre-
dicts that preferred orientation switches from θ = 0 to
θ = π/2 in a region of very small curvatures k1 ∈ [0 : c′0].
We will discuss this further below.

In order to obtain a more quantitative theoretical de-
scription, we use SCFT [31, 44] to study the two systems
considered in the experiment, the free-standing mem-
brane and the curved supported thin film. We consider
a melt of asymmetric AB diblock copolymer molecules
with degree of polymerizaton N and statistical segment
length b at temperature T confined to a curved film
of thickness ε by two coaxial cylindrical surfaces (see
schematics in Fig. 3a and 4a). Periodic or tilted peri-
odic boundary conditions [see SM] are applied in the two
in-plane directions.

In the following, lengths and energies are given in units
of R2

g = 1
6Nb

2 and GkBT , respectively, where kB is the
Boltzmann constant and G = ρc R

3
g is the rescaled di-

mensionless copolymer density in the bulk. The incom-
patibility between the blocks is specified by the prod-
uct χN , where χ is the Flory-Huggins parameter. Here
we use χN = 20 and f = 0.7 to match the experi-
mental values (f is the volume fraction of the A-block).

FIG. 3. (a) Schematic representation of curvature radius Rm

in free-standing membranes. (b) Density profiles from SCFT
for the parallel (left) and perpendicular (right) configurations
C‖ and C⊥ at Rm = 9Rg. (c) Free energy per area as a
function of inverse curvature radius Rg/Rm for C|| and C⊥
configurations. Inset shows free energy shift per area as a
function of angle θ between the cylinders and the direction of
curvature relative to the C⊥ configuration (θ = 0) at Rm =
50Rg.

Our calculations are done in the grand canonical ensem-
ble with the chemical potential µ = (2.55 + lnG)kBT
[9, 45]. and inverse isothermal compressibility κN = 25
[46]. Monomers α = A,B close to a surface experience
a surface field, which we characterize in terms of the
surface energy per area γα of a fluid of α-monomers in
contact with the same surface [see SM], given in units
γ̂ = GkBT/R

2
g. To account for the experimental fact

that cylinders align parallel to the film, the interaction
parameters are chosen such that majority A-blocks pref-
erentially adsorb to the surface, i.e., γA < γB . In pla-
nar films, the copolymers then self-assemble into aligned
cylinders with a spacing λbulk = 3.7Rg and λfilm = 3.6Rg.
Matching this with the value dsm = 21 nm observed ex-
perimentally, we can identify Rg ≈ 5.8 nm [47] and hence
G = 5.77 for our experimental systems (assuming an av-
erage copolymer density of 0.861 g/cm3 at 363K).

We first consider free-standing membranes, which we
model as a symmetric film with surface interaction ener-
gies γAN = −24γ̂ and γBN = −23γ̂. We calculate the
free energy per area as a function of the curvature radius
1/Rm of the mid-surface of the film (see Fig. 3a) for the
two cases where cylinders are aligned parallel or perpen-
dicular to the curvature (C‖, C⊥, see Fig. 3b). In each
case, the film thickness ε and the wavelength of the char-
acteristic pattern are optimized to obtain the lowest free
energy state. Fig. 3b shows the resulting density pro-
files for the parallel and perpendicular configurations in
a system with a relatively large curvature (Rm = 9Rg).
The differences are small, indicating that curvature af-
fects neither the position of the cylinder with regard to
the plane of symmetry, nor the segregation strength. The
optimum inter-cylinder spacing is λ ∼ 3.6Rg, which is
slightly smaller than the bulk value, λbulk ∼ 3.7Rg. The
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ratio, λ/λbulk ∼ 0.97, is in good agreement with SCFT
calculations and experiments on flat substrates, where
it was found that in thin films the unit cell is stretched
perpendicular to the plane of the film resulting in lateral
distances smaller than those in bulk [9, 48]. The optimal
thickness is ε ∼ 3.5Rg for both the parallel and perpen-
dicular configurations [see Fig. S9 in SM]. None of these
features appears to be severely affected by the curvature
within the range of curvatures explored here.

The behavior of the free energy per area for the two
configurations is shown in Fig. 3c. The perpendicular
orientation is clearly favored. Furthermore, in agree-
ment with Eq. (1), both C⊥ and C|| represent local
free energy minima with respect to variations of the an-
gle θ between cylinders and the direction of curvature,
(see inset of Fig. 3c). Since the free energy grows al-
most quadratically with the curvature, F/A = κ/2R2

m,
we can calculate bending stiffness parameters for the
C|| and C⊥ configurations. By fitting the free energy
per area up to a quadratic order of the mean curva-
ture, we obtain κ|| = (1.056 ± 0.002)GkBT and κ⊥ =
(0.376 ± 0.002)GkBT for the parallel and perpendicular
configurations, respectively. Comparing this with Eq.
(1) and using k1 = ±1/Rm, k2 = 0, we can deduce
κ′ = (κ||−κ⊥) = 0.68GkBT ≈ 4kBT , which corresponds
to κ′ ≈ 1.6×10−13 erg at room temperature. In contrast,
the total bending energy of the membranes has been esti-
mated to be of order κb ∼ 10−9 erg, which is much higher
due to the large contribution of the glassy PS block [29].
Hence, the influence of κ′ on the membrane shapes is
presumably negligible.

The situation is different when looking at copolymer
ordering in supported films, where the curvatures are
kept fixed and energy differences of order kBT do signifi-
cantly influence the selection of the pattern orientations.

Thin films differ from membranes in two respects.
First, the reference surface which is kept fixed during
the free energy minimization is the interface between the
substrate and the film (not mid-plane of the film as in
membranes), and second, the interaction energies may
be different at the substrate and air interfaces. Fig. 4c,d
shows results for γa,sB = −6γ̂ and two exemplary param-
eter sets for γa,sA : (I) γsAN = −10γ̂, γaAN = −20γ̂, and
(II) γsAN = −24γ̂, γaAN = −10γ̂, where superscripts s
and a denote “substrate” and “air”, respectively. In both
cases, the perpendicular configuration is more favorable
at large curvatures. At small curvatures, however, there
exists a small regime where parallel configurations have
lower free energy. This is in agreement with our sym-
metry considerations (see above, Eq. (1)) and also with
the experimental observations. Indeed, Fig. 2b and Fig.
S3 in SM suggest that the locally preferred orientation
switches from perpendicular to parallel in a region around
the inflection point of the surface profile (green shaded
areas in Fig. 2), and this induces defects in that region.
Hence curvature can be used not only to orient patterns,

FIG. 4. (a,b) Schematic representation of supported thin
films (green) on curved substrates (gray). (c,d) Free energy
difference per area ∆F = (F|| − F⊥)/A of supported thin
films with parallel (C||) vs. perpendicular (C⊥) orientation,
versus curvature, for two sets of surface interaction energies
I (top) and II (bottom) as described in the main text. Blue
shaded regions highlight curvature regimes where the parallel
orientation is more favorable (∆F < 0). (e,f) Corresponding
curves for the energy per area (red) and thickness (green) in
the perpendicular configuration C⊥.

but also to generate defects at specific regions in space.
Fig. 4 also shows the behavior of the free energy and

the minimum-energy thickness as a function of mean cur-
vature for the C⊥ configuration. For H ≥ 0, the free en-
ergy increases as the curvature increases, indicating that
the thin film is likely to become unstable and dewet from
the substrate, also in good agreement with the experi-
mental data shown in Fig. 2. Conversely, for H < 0
the film remains stable, since the free energy decreases
as the curvature increases. In the experiments (Fig. 2),
it can be observed that the thin film dewets at the region
with the highest curvature, where HmaxRg ∼ 0.03, while
the stable region with the strongest guiding field corre-
sponds to HmaxRg . 0.007. These results are in good
agreement with recent experiments on curved substrates
by Park and Tsarkova [49], who also found dewetting for
H > 0 and thin film thickening for H < 0 in agreement
with Fig. 4e,f (green curves).

In conclusion, we have shown through experiments,
symmetry considerations, and SCFT calculations that
curvature can be employed as a guiding field to pro-
duce Well-ordered patterns. The SCFT calculations pro-
vide a rough estimate of the equilibrium configuration
for curved systems and predict dewetting in regions with
high local positive curvature H > 0. From a technologi-
cal perspective, our results indicate that through appro-
priate control over the surface interactions, it should be
possible to prevent dewetting while keeping a geometric
field with sufficient strength to guide order.
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SUPPLEMENTARY INFORMATION ON:
CURVATURE AS A GUIDING FIELD FOR

PATTERNS IN THIN BLOCK COPOLYMER
FILMS

This supplementary material provides additional infor-
mation about the experimental systems and details on
the theory and the SCFT calculations.

Experimental Systems

System Preparation

The polystyrene-block-poly(ethylene-alt-propylene)
diblock (PS-PEP 4/13) copolymers are synthesized
through sequential living anionic polymerization of
styrene and isoprene followed by selective saturation of
the isoprene block (see ref. [33] for details). Thin films
of thickness ∼ 30 nm are prepared by spin-coating from
a 1 wt. % solution in toluene.

To obtain a free-standing membrane, we first spin coat
a monolayer of BC cylinders onto a 50 nm thick flat layer
of sucrose deposited onto a silicon wafer, then thermally
anneal it at T=363K until a prescribed orientational cor-
relation length of ξ2 ∼ 200 nm is obtained [29], and fi-
nally cool it to room temperature. The sucrose layer is
then used as a sacrificial layer to float the thin film off
the substrate and onto the surface of water, and subse-
quently redeposit it as a free-standing membrane on a
transmission electron microscopy (TEM) grid (grid spac-
ing 25µm > ξ2 > dsm). As the film is lifted off at a
temperature well below the glass transition temperature
of the PS block, the system retains the symmetry, aver-
age inter-cylinder distance, and structure of defects es-
tablished during annealing. The pattern order is mainly
disrupted by ± 1

2 disclination multipoles.
To prepare the substrate, we employ a solvent-

annealing technique on a photoresist array of trench pat-
terns deposited onto a silicon nitride wafer. Details about
the method of sustrate preparation can be found else-
where [7]. It yields Gaussian-like smooth substrates with
a pitch of 2.2 µm and crests with maximum height of 80
nm. The largest mean curvature of the substrate is found
at the crests, where H = Hmax ∼ 2.5 mu m−1.

The thin films are imaged using a Veeco Dimension
3000 atomic force microscope (AFM) in tapping mode.
The spring constant of the tip (uncoated Si) is ∼ 40 N/m
and its resonant frequency is 300 kHz.

Membrane topography.

In order to determine the local curvatures, the metric
tensor for the membrane was obtained at room temper-
ature from the AFM height profiles. Through AFM we

parametrize the surface in the Monge gauge. In this rep-
resentation, the coordinates of each point r are expressed
as r = (x, y, h(x, y)), where x and y are planar coor-
dinates and h(x, y) the out-of-plane displacement. The
metric tensor can then be calculated as gij = δij + hihj
and the shape tensor as

S =
1

(1 + h2x + h2y)3/2
(S1)(

(1 + h2y)hxx − hxhyhxy (1 + h2x)hxy − hxxhxhy
(1 + h2y)hxy − hxhyhyy (1 + h2x)hxy − hxyhxhy

)
.

The Eigenvalues of S give the principal curvatures. Stan-
dard methods are employed to determine the metric ten-
sor and the principal curvatures at each point on the
membrane surface [29].

Figure S1 shows the direction of the principal min-
imum and maximum curvatures. Once these directions
and the principal radii of curvature R1,2 have been deter-
mined, the whole geometric properties of the membrane
shape can be obtained. To determine the correlation be-
tween the pattern orientation α and membrane distor-
tions, we determine the local orientation of the membrane
wrinkles β relative to the x-axis from the distribution of
the maximum main curvature k1. The wrinkle orienta-
tion β was obtained by measuring the local gradient of
k1 (see Fig. S2), i.e. tan (β) = ∇yK1/∇xK1.

FIG. S1. Unit vectors indicating the directions of the prin-
cipal maximum (red lines) and minimum (light blue lines)
curvatures.

Figs. S3 and S4 show the mean and Gaussian curva-
tures for a free-standing cylinder-forming BC thin film
membrane. Here a semitransparent mask with the maps
for H and K was applied to also show the block copoly-
mer texture (70% transparency).
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FIG. S2. Local values of maximum principal curvature allow clear identification of the location and local orientation β of the
membrane wrinkles. Left panel: maximum principal curvature. Right panel: Orientation β of the wrinkles with regard to the
x-axis.

Note the wrinkled topography of the membrane and
the coupling with the smectic-like texture of the BC sys-
tem.

FIG. S3. Height-phase AFM image of a freestanding thin
film overlapped with mean curvature. (Hmax = −Hmin =
3.84× 10−3 nm−1; image size: 2.6 µm x 2.6 µm).

Thin films on curved substrates.

Fig. S5 emphasizes the coupling between the pat-
tern orientation and the mean curvature of the substrate.
As here the Gaussian curvature is zero, the substrate is

FIG. S4. Height-phase AFM image of a freestanding thin
film overlapped with Gaussian curvature. (Kmax = −Kmin =
1.2× 10−5 nm−2; image size: 2.6 µm x 2.6 µm).

topologically equivalent to flat space. Thus, while for a
strictly 2D system no coupling can be expected, the finite
thickness of the film leads to an interaction that penalizes
those configurations that involve an inter-cylinder elastic
distortion.
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FIG. S5. (a) 3D AFM phase-height image of the BC thin film
lying on a curved substrate after 3.5 h of thermal annealing
at T=373K. (image size: 2.5 µm x 1.0 µm).

Theory: Symmetry considerations.

In its own Eigensystem, the shape tensor S can be
written as S =

∑2
i=1 kiui⊗ui, where ki are the principal

curvatures and ui the corresponding Eigenvectors, where
we can choose |k1| > |k2| without loss of generality. If a
membrane or thin film has in-plane order characterized
by a director field n, the curvature free energy per area
no longer has to be rotationally symmetric, and it may
contain additional terms of the form (n ·S ·n), (n ·S ·n)2,
and (n ·S)2. We write the contribution of these terms to
the curvature free energy per area in the general form

Fn = An · S · n−B(n · S · n)2 − C(n · S)2. (S2)

The product (n · u1) defines the angle θ between the
director and the direction of largest curvature via (n ·
u1)2 = cos2 θ. Inserting this and using n = (n · u1)u1 +
(n · u2)u2 and (n · u2)2 = 1− (n · u1)2, we obtain

Fn = AH − (
3

2
B + 2C)H2 + (

1

2
B + C)K (S3)

+
(A

2
(k1 − k2)− (B + C)(k1 − k2)H

)
cos(2θ)

−B
2

(H2 −K) cos(4θ).

The first term can be absorbed in the spontaneous cur-
vature c0, and the second two terms in the bending and
Gaussian modulus κb and κg, respectively. The last two
terms give the expression for the anisotropic curvature
free energy per area Fani in the main text (Eq. (1)), with
κ′ = (B + C) and κ′′ = B, and c′0 = A/(B + C).

Theory: SCFT calculations.

Basic equations

We consider a melt of asymmetric AB diblock copoly-
mer molecules confined in a volume V between two coax-
ial cylindrical surfaces of radius R1 and R2 = R1 + ε,
where ε is the thickness of the confined film. The two
surfaces preferentially attract A-monomers. Dirichlet
boundary conditions are applied in the radial direction

and periodic boundary conditions are applied in the in-
plane directions. Each diblock copolymer molecule con-
sists of N segments of which a fraction f forms the ma-
jority block A. We assume that A and B segments have
the same statistical segment length b. The microscopic
concentration operators of A and B segments at a given
point r(r, ϕ, z) are defined as

φ̂A(r) =
1

ρc

n∑
j=1

∫ f

0

ds δ(r− rj(s)) (S4)

φ̂B(r) =
1

ρc

n∑
j=1

∫ 1

f

ds δ(r− rj(s)) (S5)

respectively. These concentrations are made dimension-
less by dividing by the average copolymer density ρc. The
interaction potential of the melt is

HI
kBT

= ρc

∫
dr
[
χNφ̂A(r)φ̂B(r)

+
1

2
κN

(
φ̂A(r) + φ̂B(r)− 1

)2]
+ρc

∫
drH(r)

[
Λs,aA Nφ̂A(r) + Λs,aB Nφ̂B(r)

]
(S6)

where the Flory-Huggins parameter χ specifies the re-
pulsion of A and B segments. The second term describes
a finite compressibility of the melt [46], which is fixed to
κN = 25, similar to previous work on similar systems
[52, 53]. The terms Λa,sA,B H(r) are surface fields. We
choose a form

H(r) =

 (1 + cos(π(r −R1)/δ)) R1 ≤ r ≤ R1 + δ
0 R1 + δ < r < R2 − δ
(1 + cos(π(R2 − r)/δ)) R2 − δ ≤ r ≤ R2

(S7)
with δ = 0.2Rg. The value of δ must be chosen small

enough relative to the domain size so that its finite size
does not affect the phase behavior of the thin films sig-
nificantly. Λs,aA,B gives the strength of the interaction
between block A or B, respectively, and the substrate
(s) and air (a) interface. The “surface interaction en-
ergies per area” of component A or B are defined as
the integrated surface energy per area of a hypotheti-
cal film of A or B monomers with density φ̂A,B ≡ 1, i.e.,
γs,aA,B = ρc

∫
drH(r)Λs,aA,B . They will be given in units of

γ̂ = ρcRgkBT (which is a unit of energy per area). In the
following, we shall set kBT = 1, for notational simplicity.

In the membrane study we assume that the two sur-
faces are symmetric for each block, ΛaAN = −120 and
ΛaBN = −115 corresponding to γAN = −24γ̂ and
γBN = −23γ̂. In the curved supported thin films, we
choose symmetric surface interactions for the B-block
ΛsBN = ΛaBN = −30 corresponding to γBN = −6γ̂,
and asymmetric conditions for the A-block. Specifically,
we study two cases:
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I. The substrate attracts the A-block more strongly
than the free (air) surface (ΛsAN = −120,ΛaAN =
−50) with corresponding surface energy per area
γsAN = −24γ̂, γaAN = −10γ̂.

II. The free surface attracts the A-block more strongly
than the substrate (ΛsA = −50,ΛaAN = −100)
with corresponding surface energy per area γsAN =
−10γ̂ and γaAN = −20γ̂.

Our calculations are done in the grand canonical ensem-
ble with the free energy

FGC = −eµQ+ ρc

∫
dr [χNφA(r)φB(r)

+
κ

2
(φA(r) + φB(r)− 1)

2
]

−ρc
∫
dr [ωA(r)φA(r) + ωB(r)φB(r)]

+ρc

∫
drH(r)N [Λs,aA φA(r) + Λs,aB φB(r)](S8)

where µ is chemical potential, Q the partition function
of a single non-interacting polymer chain,

Q =

∫
drq(r, s)q†(r, 1− s) (S9)

and q(r, s) and q†(r, 1− s) satisfy the modified diffusion
equation

∂q(r, s)

∂s
= ∆q(r, s)− ωα(r, s)q(r, s) (S10)

with

ωα(r, s) =

{
ωA(r) for 0 < s < f
ωB(r) for f < s < 1

(S11)

and the initial condition q(r, 0) = 1. The diffusion equa-
tion for q†(r, 1 − s) is similar with ωα(r, s) replaced by
ωα(r, 1 − s) and the same initial condition, q†(r, 0) = 1.
By finding the extremum of the free energy, Eq. (S8) with
respect to ωA,B(r) and φA,B(r), we get the self-consistent
equations,

ωA(r)

N
= χφB(r) + κ [φA(r) + φB(r)− 1] + ΛAH(r)

ωB(r)

N
= χφA(r) + κ [φA(r) + φB(r)− 1] + ΛBH(r)

φA(r) =
1

ρc
eµ
∫ f

0

ds q(r, s) q†(r, 1− s)

φB(r) =
1

ρc
eµ
∫ 1

f

ds q(r, s) q†(r, 1− s) (S12)

Boundary conditions

The SCFT calculations are done in cylindrical coor-
dinates (r, φ, z), where r is the direction normal to the

film or membrane surface and z is the direction of zero
curvature. Configurations C‖, C⊥ with cylinder orienta-
tions parallel or perpendicular to the direction of curva-
ture can be obtained with periodic boundary conditions
in the (φ, z) directions. In order to impose a given tilted
orientation with tilt angle θ (as in Fig. 3c, inset), we
must apply tilted boundary conditions, either in the z
or in the φ direction. We do this by using affine coordi-
nates (r, u, v) with periodic boundary conditions in (u, v)
and (1) u = ϕ, v = z − ϕa, a = R tan θ or (2) (r, u, v),
u = ϕ−bz, v = z, b = 1/(R tan θ). In case (1), a = 0 cor-
responds to the perpendicular configuration C⊥ (θ = 0),
and in case (2) b = 0 corresponds to the parallel config-
uration C‖ (θ = π/2).

We solve the modified diffusion equations with peri-
odic boundary conditions in effectively two dimensions:
(r, v), independent of u in case (1), and (r, u), indepen-
dent of v in case (2). This enforces tilted orientations of
cylinders. In general, the Laplace-Beltrami operator has
the following form

∆LB =
1√
|det g|

∑
ij

∂

∂xi

(
gij
√
|det g| ∂

∂xj

)
(S13)

where gij is the metric tensor and gij its inverse. The
Laplace-Beltrami operator in cases (1) and (2) is thus
given by

∆
(1)
LB =

1

r

∂

∂r
+

∂2

∂r2
+

1

r2
∂2

∂u2
− 2a

r2
∂2

∂u ∂v

+

(
1 +

a2

r2

)
∂2

∂v2
case (1) (S14)

∆
(2)
LB =

1

r

∂

∂r
+

∂2

∂r2
+

(
1

r2
+ b2

)
∂2

∂u2

−2b
∂2

∂u ∂v
+

∂2

∂v2
case (2). (S15)

The modified diffusion equations were solved using the
the Crank-Nicolson method. We used the setup (1) for
small angles 0 < θ < π/4 and the setup (2) for large
angles π/4 < θ < π/2, and compared the results from
both setups at the angle θ = π/4, to verify that both
setups give the same result.

Discretization errors and correction

The discretizations in the azimuthal and thin film di-
rections (z and r, respectively) were chosen as ∆z =
0.05Rg and ∆r = 0.01Rg, and the parameter s was dis-
cretized in steps of ∆s = 0.0001. Whereas most of the
choices are not critical, we found that the discretization
in the r direction has a significant influence on the result-
ing free energies, and discretization errors could not be
neglected. On the other hand, we also found that they
lead to an energy shift ∆F which depends only on ∆r
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and not on the film thickness or curvature. We there-
fore study the dependence of ∆F on ∆r systematically
for different values of the film thickness and curvature.
Then we fitted the result to a third order polynomial, re-
sulting in the estimate ∆F (∆r) = −11.75∆r−270∆r2 +
5035∆r3 (∆F (∆r) = −11.95∆r−167∆r2+3737∆r3) and
∆F (∆r) = −12.6∆r−277∆r2−2367∆r3 with asymmet-
ric and homogeneous surface interactions, respectively.
Figs. S6, S7 and S8 present the fitting results. These
corrections were then applied to the results of the SCFT
calculations.

FIG. S6. Shift of free energy ∆F as a function of dis-
cretization ∆r for symmetric films with surface interactions
Λa

AN = −120,Λa
BN = −115, for different curvatures and film

thicknesses ε as indicated. Solid line: fit function f(x) =
−12.6x− 277x2 − 2367x3.

FIG. S7. Shift of free energy ∆F as a function of dis-
cretization ∆r for films with asymmetric surface interac-
tions Λs

AN = −120,Λs
BN = −30 at the fixed substrate and

Λa
AN = −50,Λa

BN = −30 at the free surface for different
curvatures and film thicknesses ε as indicated. Solid line: fit
function f(x) = −11.75x− 270x2 + 5035x3.

FIG. S8. Shift of free energy ∆F as a function of dis-
cretization ∆r for films with asymmetric surface interac-
tions Λs

AN = −50,Λs
BN = −30 at the fixed substrate and

Λa
AN = −100,Λa

BN = −30 at the free surface for different
curvatures and film thicknesses ε as indicated. Solid line: fit
function f(x) = −11.95x− 167x2 + 3737x3.

Optimum thickness of free-standing membranes

Fig. S9 shows the behavior of the optimum film thick-
ness of free-standing membranes as a function of curva-
ture ε ∼ 3.5Rg for both parallel and perpendicular con-
figurations. Interestingly, the optimal thickness is not
affected strongly by curvature in the range of curvatures
considered here.

FIG. S9. The optimal film thickness of free-standing mem-
branes as a function of curvature.
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