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Conformational changes on substrate binding
revealed by structures of Methylobacterium
extorquens malate dehydrogenase
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Three high-resolution X-ray crystal structures of malate dehydrogenase (MDH,;
EC 1.1.1.37) from the methylotroph Methylobacterium extorquens AM1 are
presented. By comparing the structures of apo MDH, a binary complex of MDH
and NAD", and a ternary complex of MDH and oxaloacetate with ADP-ribose
occupying the pyridine nucleotide-binding site, conformational changes
associated with the formation of the catalytic complex were characterized.
While the substrate-binding site is accessible in the enzyme resting state or
NAD*-bound forms, the substrate-bound form exhibits a closed conformation.
This conformational change involves the transition of an a-helix to a 3;¢-helix,
which causes the adjacent loop to close the active site following coenzyme and
substrate binding. In the ternary complex, His284 forms a hydrogen bond to the
C2 carbonyl of oxaloacetate, placing it in a position to donate a proton in the
formation of (25)-malate.

1. Introduction

Malate dehydrogenase (MDH; EC 1.1.1.37) reversibly cata-
lyzes the reduction of oxaloacetate to (2S)-malate using
NADH as a reductant. It is a member of the lactate dehy-
drogenase-like family, which primarily includes lactate dehy-
drogenases (EC 1.1.1.27) and malate dehydrogenases (EC
1.1.1.37) (Zarzycki & Kerfeld, 2013). In aerobic organisms,
MDH plays a central role in energy generation as part of the
citric acid cycle, where it primarily functions in the oxidation
of malate. However, during the growth of the methylotroph
Methylobacterium extorquens AM1 on C; compounds, MDH
functions in the ic/” -serine pathway for formaldehyde assim-
ilation (Anthony, 1982). During growth on methanol as its sole
carbon source, M. extorquens AM1 derives its energy from the
pyrroloquinoline quinone-dependent methanol dehydro-
genase-catalyzed oxidation of methanol, yielding formalde-
hyde. Formaldehyde, as 5,10-methylene tetrahydrofolate, is
condensed with glycine via serine hydroxymethyltransferase.
MDH functions in the serine pathway, which provides glyox-
ylate for the regeneration of glycine. In contrast to its role in
the TCA cycle, in the ic/”-serine pathway MDH primarily
functions in the reduction of oxaloacetic acid.

The lactate/malate dehydrogenase family is well repre-
sented in the Protein Data Bank (PDB). The members of this
family contain an NAD"-binding domain with a characteristic
Rossmann fold (Rao & Rossmann, 1973) of the form
(BaB)a(af),. Structural studies have shown that substrate
binding causes a conformational change around the active site,
in which a mobile loop closes to bring key residues into
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Table 1
Macromolecule-production information.

Source organism M. extorquens AM1

DNA source Synthetic, Genewiz
Forward primer N/A
Reverse primer N/A

Cloning vector

Expression vector

Expression host

Complete amino-acid sequence
of the construct produced

pET-42a(+), Novagen

pET-42a(+), Novagen

E. coli (DE3) ArcticExpress, Stratagene

MARSKIALIGAGQIGGTLAHLAGLKELGDV
VLFDIVDGVPQGKALDIAESAPVDGEFDA
KYSGASDYSAIAGADVVIVTAGVPRKPG
MSRDDLIGINLKVMEAVGAGIKEHAPDA
FVICITNPLDAMVWALQKEFSGLPTNKVV
GMAGVLDSARFRHFLAEEFGVSVEDVTA
FVLGGHGDDMVPLTRYSTVAGVPLTDLV
KLGWTTQEKLDAMVERTRKGGGEIVNLL
KTGSAFYAPAASAIAMAESYLRDKKRVL
PCAAYLDGQYGIDGLYVGVPVVIGENGV
ERVLEVTEFNDDEKAMFEKSVNSVKGLIE
ACKSVNDKLAHHHHHHHH

contact with the substrate (Chapman et al., 1999). Here, we
report three high-resolution structures of M. extorquens AM1
MDH: uncomplexed, with NAD* bound and with ADP-ribose
occupying the NAD™-binding site and oxaloacetate occupying
the substrate site.

2. Materials and methods
2.1. Macromolecule production

2.1.1. Materials. Unless otherwise noted, all chemicals were
obtained from Sigma-Aldrich. Oligonucleotide-synthesis and
DNA-sequencing reactions were performed by Genewiz. The
pET-42a(+) expression vector (Novagen) and ArcticExpress
(DE3) competent Escherichia coli cells (Stratagene) were
obtained from commercial sources.

2.1.2. Cloning of MexMDH. A gene encoding malate
dehydrogenase from M. extorquens AM1 with codons opti-
mized for expression in E. coli was synthesized and subcloned
into pET-42a(+) by Genewiz. The Ndel and Xhol cloning sites
were used to obtain a clone that expressed MexMDH with a
Hisg tag at the C-terminus of the protein (MexMDH-Hisg;
Table 1).

2.2. Protein expression and purification

E. coli ArcticExpress (DE3) competent cells transformed
with expression vector encoding MexMDH-Hisg were selected
by growth on an LB-agar plate containing 50 pg ml~' kana-
mycin. A single colony was cultured overnight (at 37°C on a
rotary shaker) in 25 ml LB medium containing 50 pig ml™
kanamycin. 4 ml of this culture was then used to inoculate 2 1
LB medium containing 50 pg ml~' kanamycin. The cells were
cultured (at 37°C on a rotary shaker) until an ODgq of 0.6 was
reached. The temperature of the culture was lowered to 16°C,
isopropyl p-p-1-thiogalactopyranoside (IPTG; 238 mgl1™')
was added to a final concentration of 1mM to induce
expression and the culture was incubated overnight. Bacterial
cells were harvested by centrifugation at 7000g for 10 min at
4°C. The pellet was washed and resuspended (10 ml per gram

Table 2

Crystallization.

Method Vapor diffusion, sitting drop
Plate type 96-well Intelli-Plate, 24-well VDX
Temperature (K) 298

Protein concentration (mg ml™") 20

Buffer composition of protein solution 10 mM HEPES pH 8.0, 20 mM NaCl

Composition of reservoir solution 0.1 M HEPES pH 7.5, 25-28% PEG
400, 180-220 mM CaCl,

Volume and ratio of drop 4, 1:1

Volume of reservoir (pl) 1000

of cells) in 20 mM sodium phosphate buffer containing 50 mM
NaCl and 5 mM imidazole pH 7.4 (buffer A). Before cell
disruption, 5 pg ml~' DNAse and 0.1 mg ml™" of the protease
inhibitor phenylmethylsulfonyl fluoride were added to the cell
suspension. The cell suspension was cooled using an ice bath
and lysed by sonication (Cole Palmer Sonic Processor). Using
an amplitude of 95%, the sonicator was cycled 2 s on followed
by 2 s off for a total of 10 min. The sample was then cooled for
5 min. This sonication cycle was carried out a total of three
times. The soluble protein was separated from the cell debris
by centrifugation at 12 000g for 15 min at 4°C and was then
loaded onto two 5 ml HisTrap columns (GE Healthcare)
connected in tandem and equilibrated with buffer A.
MexMDH-Hisg was eluted with a linear gradient of buffer A
and 500 mM imidazole pH 7.4 (buffer B). Fractions containing
MexMDH-Hisg were pooled, concentrated, loaded onto a
HiLoad 26/60 Superdex 200 prep-grade gel-filtration column
(GE Healthcare) and eluted with 20 mM HEPES buffer,
50 mM NaCl pH 7.2 (buffer C). The purity of the protein was
monitored by SDS gel electrophoresis. The protein concen-
tration was estimated from the A,g, using a theoretical
extinction coefficient of 0.64 mgml™' cm™' calculated using
the protein identification and analysis tools on the ExPASy
server.

2.3. Protein characterization

2.3.1. Protein molecular-weight determination. A Tricorn
5/150 column (GE Healthcare) was packed with Superdex 200
prep-grade resin and equilibrated with buffer consisting of
50 mM Tris, 50 mM NaCl pH 8.0. The column was calibrated
with a gel-filtration markers kit for protein molecular weights
12-200 000 kDa (Sigma—Aldrich). To determine the elution
volumes for each of the protein standards and for MexMDH-
Hisg, the proteins were diluted in equilibration buffer to a final
concentration of 1 mgml™'. 100 pul of each protein solution
was loaded onto the column. The size of purified MexMDH-
Hisg was then estimated using a calibration curve prepared by
plotting the molecular weights of the protein standards versus
their elution volumes.

2.3.2. Specific activity determination. The specific activity
of MDH for the reduction of oxaloacetate to malate was
monitored spectrophotometrically at 340 nm by following the
oxidation of NADH using a Synergy H4 hybrid microplate
reader (BioTek Instruments). The standard assay consisted of
100 mM HEPES pH 8.1, 100 mM KCI, 0.1 mgml™" BSA,

20f7

Gonzalez et al. -

Files: f/rf5009/rf5009.3d f/rf5009/rf5009.sgml RF5009 RC 1U-1817/26(6)9 1817/26(6)9 ()

Methylobacterium extorquens malate dehydrogenase

Acta Cryst. (2018). F74



research communications

Table 3
Data collection and processing.

Values in parentheses are for the outer shell.

Diffraction source

Wavelength (A)

Temperature (K)

Detector

Crystal-to-detector distance (mm)
Rotation range per image (°)
Total rotation range (°)

Exposure time per image (s)
Space group

a=b,c (A)

o= }3# Y (0)

Mosaicity (°)

Resolution range (A)

Total No. of reflections

No. of unique reflections
Completeness (%)

Multiplicity

(tla (D))

Rmeas

CCip .
Overall B factor from Wilson plot (A?)

Apo MexMDH

BL7-1, SSRL
1.12709

100

ADSC Quantum 315R
200

0.3

102

0.5

P6,22

108.99, 104.66
90, 120

0.17
37.75-1.66 (1.72-1.66)
494660 (12815)
44052 (2137)
99.6 (93.1)
11.2 (6.0)

142 (2.2)
0.092 (0.329)
0.998 (0.947)
18

MexMDH-OAA/APR

BL7-1, SSRL

1.12709

100

ADSC Quantum 315R
250

108.40, 104.01
90, 120

0.20

37.53-1.95 (2.00-1.95)
218344 (9435)

26510 (1665)

99 (90)

82 (5.7)

23.0 (2.1)

0.065 (0.812)

0.999 (0.711)

32

MexMDH-NAD"

08ID-1, CLSI
0.97949

100

Rayonix MX-300
200

0.25

210

0.6

P6,22

108.19, 104.32
90, 120

0.58

54.09-1.53 (1.56-1.53)
580319 (23920)
54696 (2651)
100 (99.8)

10.6 (9.0)

12.1 (2.2)
0.108 (1.088)
0.998 (0.733)
15

0.64 mM NADH, 8.0 ng ml~' MexMDH and oxaloacetate in a
final volume of 250 pl at 30°C.

2.3.3. Data analysis. The kinetic parameters k., and K,
were determined by fitting the initial velocity data to the
Michaelis—-Menten model, v/E, = k., A/(K,, + A), where v is
the initial velocity, E, is the enzyme concentration, k., is the
turnover number, A is the substrate concentration and K, is
the Michaelis constant.

2.4. Crystallization

Crystals of MexMDH were grown using the sitting-drop
vapor-diffusion method in 3-well Intelli-Plate 96 trays from
Art Robbins Instruments (Table 2). Drops were prepared with
an Oryx8 liquid-handling robot (Douglas Instruments). Initial
crystallization trials used the commercial screens MCSG-1,
MCSG-2, MCSG-3 and MCSG-4 (Midwest Center for Struc-
tural Genomics, Microlytic). Crystals appeared after 3-4 d of
incubation at 298 K in a medium corresponding to condition
No. 10 of the MCSG-1 crystallization screen. Crystals were
successfully reproduced in 24-well VDX plates in a sitting-
drop setup with micro-bridges (Hampton) using the condi-
tions described in Table 2 (Supplementary Fig. S1). In general,
MexMDH crystals exhibited good diffraction quality, experi-
encing only minor damage during the ligand-soaking steps,
which led to increased mosaicity values. The crystals were
mounted in nylon loops (Hampton Research) and flash-cooled
in liquid nitrogen; they were cryoprotected in the mother
liquor diluted with glycerol to a final concentration of 20%.
Complexes of MexMDH with oxaloacetate (OAA) and
adenosine 5-diphosphoribose (APR) and with NAD" were
obtained by soaking crystals for 1 h in 1 mM ligand solutions
by dilution of 100 mM stock solutions into the mother liquor.
Crystals of MexMDH with OAA and APR appeared fortui-
tously while attempting to obtain a complex with OAA and

NAD", ie. with both substrate and cofactor oxidized, to
prevent the redox reaction from taking place during crystal-
lization. Instead, our sample of NAD™ contained a significant
amount of APR which bound in place of NAD". The fact that
APR is the product of the hydrolysis of pyridine dinucleotides
and is present in many commercial preparations of NAD™ has
been known for many years (Colowick & Kaplan, 1957,
Dalziel, 1962a). In addition, APR has been shown to be a
competitive inhibitor of pyridine nucleotide-dependent
dehydrogenases (Dalziel, 1962a,b).

2.5. Data collection and processing

Diffraction data for MexMDH in its apo and OAA/APR-
bound forms were collected on beamline BL7-1 of the Stan-
ford Synchrotron Radiation Light Source (SSRL) at a wave-
length of 1.127 A using a ADSC 315r CCD detector (Cohen et
al., 2002; Soltis et al., 2008), whereas the MexMDH-NAD"
complex data were collected on beamline O8ID-1 at the
Canadian Light Source (CLSI) at a wavelength of 0.9795 A
using a Rayonix MX-300 detector. Reflections were indexed
and integrated with XDS (Kabsch, 2010). Scaling was
performed with AIMLESS (Evans & Murshudov, 2013),
including structure-factor calculation with the French and
Wilson algorithm as implemented in TRUNCATE (French &
Wilson, 1978) and space-group determination with POINT-
LESS (Evans, 2006). Data-collection and quality statistics are
summarized in Table 3.

2.6. Structure solution and refinement

The malate/lactate dehydrogenase from Brucella melitensis
(PDB entry 3gvh; Seattle Structural Genomics Center for
Infectious Disease, unpublished work) was used as an initial
model for molecular replacement with Phaser (McCoy et al.,
2007), from which all noncovalently bound ligands, alternate
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Table 4
Structure solution and refinement.

Values in parentheses are for the outer shell.

MexMDH- MexMDH-
Apo MexMDH OAA/APR NAD*
PDB code R Sulv 4ros Sujk
Resolution range (A)  37.75-1.66 34.70-1.95 93.69-1.53
(1.69-1.66) (2.00-1.95) (1.57-1.53)

No. of reflections

Working set 41822 (2872) 25164 (1654) 51855 (3766)
Test set 2191 (176) 1307 (92) 2774 (195)
Final Repys 0.139 (0.203) 0.168 (0.2306) 0.124 (0.211)
Final Ry, 0.168 (0.240) 0.199 (0.280) 0.177 (0.275)
Cruickshank DPI (A)  0.070 0.120 0.060

Polypeptide chains per 1 1 1

asymmetric unit
No. of non-H atoms

Total 2776 2515 2676
Protein 2417 2341 2336
Ligands 45 [OAA, APR] 46 [NAD"]
Ions 2 [Ca™] 1 [Ca™] 2 [Ca™, CI7]
‘Water molecules 357 127 292
R.m.s. deviations
Bonds (A) 0.020 0.019 0.019
Angles (°) i 1.9 1.9 1.8
Average B factors (A%)
Overall 22 37 25
Protein 21 37 24
Ligands 36 20
Tons 29 49 28
Water 30 38 32
Ramachandran plot
Most favored (%) 98 97 98
Allowed (%) 2 3 2

conformers and solvent molecules were removed. Prior to
refinement, the atoms were subjected to a random shift of
03 A to minimize model bias. Structure refinement was
performed with REFMACS (Murshudov et al, 2011) and the
CCP4 suite of programs (Winn et al., 2011). Manual building
was conducted with Coot (Emsley et al, 2010) using o4-
weighted 2F, — F. and F, — F. Fourier difference maps.
Structure validation was performed with SFCHECK (Vaguine
et al., 1999) and the built-in functions implemented in Coot,
including the Ramachandran ‘most favored’ and ‘allowed’
categories reported in Table 4. The structure of apo MexMDH
was then used to phase the structures of the MexMDH-ligand
complexes. In all cases (NAD", OAA and APR) the ligands
were clearly discernible in F,, — F, difference Fourier maps as
strong positive density peaks. All ligands were refined in fully
occupied sites and displayed B factors that were lower than
the average for the corresponding proteins. The final models
were refined to 1.66, 1.95 and 1.53 A resolution for apo, OAA/
APR-bound and NAD*-bound MexMDH, respectively
(Table 4). The refined structures have been deposited in the
PDB as entries Sulv (apo), 4ros (OAA/APR-bound) and Sujk
(NAD" bound). Figures were prepared with PyMOL v.1.2
(Schrodinger) and CorelDraw X7.

2.7. Phylogenetic analysis of MDH-like proteins

The MexMDH structure (PDB entry Sulv) and its sequence
(UniProt entry A9W386) were used to compare MexMDH

with all homologous protein structures available in the PDB.
A structure-based search conducted with the DALI server
(Holm & Rosenstrom, 2010) using the structure with PDB
code Sulv as a query yielded 145 homologous proteins, which
were subsequently reduced to 57 proteins using a 90% identity
cutoff. The resulting set of 57 PDB entries was used to map
and retrieve the corresponding amino-acid sequences from the
UniProtKB database (The UniProt Consortium, 2017). These
sequences were then aligned with ProbCons (Do et al., 2005)
running on the CIPRES computing server (Miller et al., 2010).
The resulting multiple sequence alignment was edited with
Jalview (Waterhouse et al., 2009) to remove highly gapped
columns and was used to calculate a maximum-likelihood
phylogenetic tree with RAxML (Stamatakis, 2014) running on
the CIPRES computing server. The best-scoring tree resulted
from 708 automatic bootstrap replicates and was used to
define three major clades among all MDH-like proteins of
known three-dimensional structure. Phylogenetic and align-
ment results are summarized in Supplementary Figs. S2 and
S3.

3. Results and discussion
3.1. Molecular-weight determination and kinetics

MexMDH-Hisg was purified to homogeneity, with a single
band visible on the SDS gel aligned with the soybean trypsin
inhibitor (32.5 kDa) band of the Kaleidoscope prestained
standards, which compares favorably with the predicted
molecular weight of 34.7 kDa based on the protein sequence
and calculated using the online PROTEIN CALCULATOR
v.3.4 tool (http://protcalc.sourceforge.net/). The kinetic para-
meters for MexMDH-Hisg were calculated using the decrease
in absorbance caused by the enzymatic oxidation of NADH to
NAD" (¢ = 6.22 mM " cm™") in the presence of oxaloacetate.
We obtained a Michaelis constant (K,,) of 36.8 + 0.6 pM for
oxaloacetate, which compares favorably to a serine-type
methanotroph (Rozova et al., 2015) and is twofold to tenfold
lower then those observed for MDHs found in many aerobic
bacteria (Rozova er al., 2015; Takahashi-Iiiiguez er al., 2016).
MexMDH catalyzes the reduction of oxaloacetic acid with a
kea of (4.6 £ 0.1) x 10* s™", yielding a specificity constant K,/
Knof (13 4£03) x 10" M~ 's™.

3.2. Overall structure

MexMDH rendered hexagonal crystals with symmetry
consistent with space group P6,22, with one polypeptide chain
per asymmetric unit. The structure of MexMDH displays the
typical fold of proteins belonging to the lactate dehydrogenase
(LDH)/malate dehydrogenase (MDH)-like family (CDD
accession cl17195), which contains mostly dimeric and tetra-
meric 2-hydroxycarboxylic acid dehydrogenases (Marchler-
Bauer et al., 2017). Based on calculations using the PISA
server, MexMDH is stable as a 137.4 kDa tetramer with a
buried surface area of 14 740 A2, which is in agreement with
our phylogenetic analysis, where MexMDH belongs to a clade
of tetrameric MDH/LDH-like proteins (Supplementary Fig.
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S2). Residues 1-143 in the N-terminal domain comprise a
characteristic Rossmann fold (Rao & Rossmann, 1973) of the
form (Bap).(aB),, which harbors the NAD'-binding site
(Fig. 1, Supplementary Fig. S4). The substrate-binding site is
located at the interface between this domain and the
remainder of the polypeptide (residues 144-320 in the
C-terminus).

NAD" binding induces minor conformational changes,
mostly in the flexible loop between B4 and a3 which connects
the two Rossmann-fold a8 motifs. Three specific interactions
occur upon NAD™ binding: (i) the 2’- and 3'-OH groups in the
adenosine ribose moiety hydrogen-bond to the carboxylate of
Asp34, (ii) the backbone carbonyl O atom of Met144 accepts a
hydrogen bond from the NAD" carboxamide amino group
and (iii) the O atom of the NAD™ carboxamide carbonyl group
accepts a hydrogen bond from His176 protonated at N
(Fig. 2a).

In an attempt to obtain a ternary complex of the protein
with OAA and NAD", we performed a soaking procedure as
described in §2. Unexpectedly, our solution contained
adenosine 5-diphosphoribose (APR) that resulted from
hydrolysis of the nicotinamide moiety from NAD" and led to a
MexMDH structure modeled with bound OAA and APR, as
shown by the corresponding electron-density maps (Fig. 2a).
The conformation and identity of each ligand was validated
using model-independent isomorphous difference Fourier
maps. Given the isomorphism of MexMDH crystals in the apo,
NAD*-bound and OAA/APR-bound forms, we constructed
Fourier synthesis maps (opiganp) Using observed structure-
factor differences between the ligand-bound (Fyjganp) and
apo (Fapo) refined structures as coefficients and phases
calculated from the refined apo structure (@apo); that is,

pricanp = D wl(FLicanp — Faro €xplicapo)]. By  using
calculated phases for the apo MexMDH structure, the

85 A

Y

Figure 1

resulting difference Fourier maps are not biased by the ligand
models, thereby providing strong experimental evidence
supporting the refined position and conformation of each
ligand (Fig. 2b).

In contrast to the NAD®-binding scenario, significant
conformational changes take place upon OAA binding. While
the enzyme resting state and NAD"-bound forms display a
structurally similar conformation, the substrate-bound form
exhibits a closed conformation. In particular, the o-helical
segment SRDDLIG in helix a3 (residues 88-94) transitions
into a 3;y-helix upon substrate binding which, along with the
adjacent loop between 4 and a3 (LB4a3), functions as a door
that closes the active site following entrance of the coenzyme
and substrate (Fig. 3, Supplementary Fig. S5). Three arginine
residues form salt bridges to OAA: Argl52, the conformation
of which is minimally changed compared with the apo and
NAD"-bound forms, Arg83 in helix &3 and Arg89 in LA4c3
(Fig. 2b). The electron densities of the Arg83 and Arg89 side
chains are only discernible when the substrate is bound,
highlighting their crucial role in stabilizing the negatively
charged substrate in the proper orientation. To confirm the
model in the SRDDLIG and GGHG regions, we calculated
polder OMIT maps (Liebschner et al., 2017), which avoid the
artifacts that arise in solvent-exposed regions in traditional
OMIT maps (Bhat, 1988). The polder OMIT maps fully
support the modeled coordinates, since the SRDDLIG and
GGHG regions are clearly discernible in these maps as well as
in 2F, — F, maps (Supplementary Fig. S6).

The second region affected by substrate binding is the
GGHG loop harboring the conserved residue His176 (resi-
dues 174-177). As mentioned above, the His176 side chain
hydrogen-bonds to the carboxamide carbonyl group of the
NAD" nicotinamide group. However, this interaction is
disrupted upon the binding of OAA, which becomes

Overall structure of MexMDH. The polypeptide displays a Rossmann fold of the form (Baf).(af),, typical of NAD"-binding MDH/LDH-like proteins;
the protein is arranged into a tetramer with one active site per monomer. The figure displays the MexMDH-NAD" complex as obtained in this work

(PDB entry 5ujk).
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Figure 2

Binding of NAD* and of OAA and APR by MexMDH. (a) The carboxamide group of NAD™ (blue) appears to be hydrogen-bonded to the Met144 and
Tle119 backbone carbonyls through its amino group, and to the protonated His176 at N°* through its carbonyl O atom. The Asp149 carboxylate also
appears to be hydrogen-bonded to the protonated His176 at N°'. (b) Binding of OAA and APR (orange) induces a significant reorganization of the
active site. In the presence of OAA His176 becomes hydrogen-bonded to the carbonyl O atom of OAA, whereas three arginine residues become salt-
bridged to OAA carboxylate groups, namely Argl52, Arg83 and Arg89. Wireframe mesh surfaces in the top panels (gray) indicate 2F, — F, electron-
density maps contoured at 1.50 and the bottom panels (green) show isomorphous Fy ;ganp — Fapo Fourier difference maps around NAD™ (contoured at
—3.00) and OAA/APR (contoured at —2.00). Note that a water molecule ‘w’ (red) in the apo MexMDH structure is located in a similar position to that
of the OAA carboxylate coordinating Argl52, leading to a discontinuity in the corresponding isomorphous difference map. Mechanistically relevant
hydrogen-bond interactions are depicted as dashed lines.

hydrogen-bonded to His176 N> through its own carbonyl malate. The presence of several glycine residues in the GGHG
group, setting the stage for its protonation and release as loop undoubtedly enables this conformational change,
providing conformational flexibility with minimal energetic
costs.

helix a

SRDDLIG
y <8 . U 3.3. Mechanistic implications
(3 APR 3
W10 fl By comparing the structures reported in this work, along
G{OG?-IPG \ with previous reports on a variety of lactate and malate

dehydrogenases (Goward & Nicholls, 1994; Grau et al., 1981;
Hall & Banaszak, 1993; Hall er al, 1992), the catalytic
mechanism for MDH can be substantiated. The binding mode
of NAD" in the MexMDH-NAD" complex strongly suggests
that the side chain of His176 is protonated and present as
imidazolium, given the hydrogen-bonding pattern (Fig. 4). The
amide protons of the NAD™ carboxamide form hydrogen
bonds to the backbone carbonyls of Met144 and Ile119. The
proton at N°' of His176 forms a hydrogen bond to Asp149,
. while the proton at N of His176 forms a hydrogen bond to
Figure 3 . .
Cartoon representation of secondary-structure matching superposition of the NAD" carboxamide carbonyl O atom. Upon substrate
the structures of MexMDH in the NAD*-bound (blue) and OAA/APR- binding, His176 moves, maintaining the hydrogen bond with
boun;i gﬁange) fOTmOS~A T:eb reé‘;ions exﬁer}ijningd significant Conf?fm;l- Asp149 and forming a new hydrogen bond between the proton
tional changes upon inding are highlighted in green, namely the &2 . _
a-helical segment SRDDLIG (residues 88-94) in «3, which acts as the at N and the C2 carbonyl O atom in Oxaloaf:etate' Proto
active-site door, and the GGHG loop (residues 174-177), which harbors nation of the C2 carbonyl O atom further polarizes the OAA
the essential residue His176. carbonyl, facilitating hydride transfer from NADH. During

His176
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His176

Figure 4

Secondary-structure matching superposition of NAD*-bound (blue) and
OAA-bound (orange) MexMDH structures, suggesting the likely binding
mode of OAA in the presence of NADH. Dashed lines indicate
catalytically important hydrogen-bond interactions following the same
color scheme, except for the red dashed line, which indicates the distance
of 2 A between the OAA carbonyl O atom and C4 of the nicotinamide
ring holding the reactive hydride.

product formation His176 donates the proton from N* to
form the hydroxyl of (25)-malate.

4. Concluding remarks

Here, we report the structure of M. extorquens malate dehy-
drogenase complexed with mechanistically relevant ligands.
To our knowledge, this is the first report of a malate dehy-
drogenase that provides experimental, high-resolution atomic
models supporting the well known reaction mechanism of
NAD"-dependent dehydrogenases belonging to the MDH/
LDH-like superfamily.
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