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Abstract

A frequent observation in plant–animal mutualistic networks is that abundant species tend to be
more generalised, interacting with a broader range of interaction partners than rare species.
Uncovering the causal relationship between abundance and generalisation has been hindered by a
chicken-and-egg dilemma: is generalisation a by-product of being abundant, or does high abun-
dance result from generalisation? Here, we analyse a database of plant–pollinator and plant–seed
disperser networks, and provide strong evidence that the causal link between abundance and
generalisation is uni-directional. Specifically, species appear to be generalists because they are
more abundant, but the converse, that is that species become more abundant because they are
generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abun-
dant species interact with many other species simply because they are more likely to encounter
potential interaction partners.
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INTRODUCTION

Understanding the causal relationships among entities in natu-
ral systems is one of the major philosophical and scientific
challenges of all times (Pearl 2000; Shipley 2000). The chal-
lenge is particularly great in ecology, given that ecological sys-
tems are usually driven by multiple causality, and
experimentation is not always possible (Pickett et al. 1994;
Shipley 2000). The frequent observation in plant–animal mutu-
alistic networks that abundant species tend to be more gener-
alised, interacting with a broader range of interaction partners
than rare species (Dupont et al. 2003; V�azquez & Aizen 2003),
is a case in point: does high generalisation lead to high abun-
dance, or does high abundance lead to high generalisation
(Santamar�ıa & Rodr�ıguez-Giron�es 2007; Fontaine 2013)?
Solving the above chicken-and-egg dilemma has been diffi-

cult, as there are good reasons to argue both ways. On the
one hand, it is possible to argue that high generalisation
should lead to high local abundance (as well as broad geo-
graphic distributions) because generalists are able to exploit a
broad range of resources, thus giving them an advantage over
specialists (Brown 1984). For instance, an animal that can
exploit flowers or fruits of many plant species should attain a
higher local abundance than an animal specialised on few
plant species. However, the likely trade-offs between generali-
sation and the ability to exploit successfully any given
resource – the jack-of-all-trades is a master of none
(MacArthur 1972; Krasnov et al. 2004) – would blur the

positive correlation between generalisation and abundance.
On the other hand, it is also possible to argue that high abun-
dance should lead to high generalisation since abundant spe-
cies would interact with many other species simply because
they are more likely to encounter potential interaction part-
ners (V�azquez et al. 2007). In addition, abundance may lead
to generalisation if generalised species are a collection of indi-
viduals specialised on distinct sets of resources, so that a
greater number of individuals results in a larger set of
resources exploited by the population (Ara�ujo et al. 2011;
Bolnick et al. 2011). We should also expect abundance to
determine generalisation if pollinators forage optimally,
because at high pollinator densities resources should become
scarcer, pushing pollinators towards greater generalisation
(Fontaine et al. 2008).
Here, we offer a solution to the abundance–generalisation

causality dilemma in plant–animal mutualistic networks by
evaluating the logical consequences of the above alternative
hypotheses. We start by classifying plant and animal species
in a network into two abundance categories (rare, R, or abun-
dant, A) and two generalisation categories (specialist, S, or
generalist, G). The four resulting classes can be represented by
a 2 9 2 abundance–generalisation matrix:

FR;S FR;G

FA;S FA;G

� �
ð1Þ

Each entry of the above matrix represents the fraction
of (animal or plant) species in the corresponding class; thus,
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FR,S + FR,G + FA,S + FA,G = 1. The abundance–generalisation
correlation implies that the diagonal entries FR,S and FA,G

should be large, whereas the non-diagonal entries should be
small. In other words, the abundance–generalisation correla-
tion implies that low abundance (or rarity, R) and low gener-
alisation (or specialisation, S) come together as well as high
abundance (A) and high generalisation (G). Therefore, the
diagonal matrix entries, FR,S and FA,G must be larger than the
non-diagonal ones, FR,G and FA,S. The question we want to
answer can be formulated in terms of the following two alter-
native logic relationships between A and G:

(i) If A implies G, then no abundant species can be a spe-
cialist, i.e. FA,S = 0.
(ii) If G implies A, then no generalist species can be rare,

i.e. FR,G = 0.

Relationship (i) is equivalent to stating that A is a sufficient
condition for G (and G is a necessary condition for A), whereas
relationship (ii) is equivalent to stating that G is a sufficient
condition for A (and A is a necessary condition for G).
We compiled a database on plant–pollinator and plant–seed

disperser networks from local communities around the world,
and then classified species in each network as either abundant
or rare and either specialist or generalist to evaluate whether
the frequencies FA,S and FR,G observed in plant–animal mutu-
alistic networks matched the above predictions. We also con-
ducted a null model analysis to assess whether the observed
network patterns can be reproduced by assuming that abun-
dant species are more likely to encounter potential interaction
partners than rare species.

METHODS

Data

The data consisted in 35 quantitative bipartite mutualistic
networks (22 for plant–pollinator interactions and 13 for
plant–seed disperser interactions), with broad geographic and
taxonomic spans, with link weights represented as animal visi-
tation frequency to plants, and the abundance of each animal
or plant species in the network (Table 1).

Calculation of abundance and generalisation

Abundance estimates
To compute the fractions of the 2 9 2 abundance–generalisa-
tion matrix (eqn 1) for each network we need appropriate
measures of abundance and generalisation. Regarding abun-
dance, for plants, ten of the plant–pollinator networks
included estimates of plant abundance independent from the
interaction observations, from transect and quadrat sampling.
For animals, no equivalent estimates of abundance were avail-
able for any of the data sets; we thus estimated the abundance
of each animal species from the quantitative interaction net-
works by summing across the link weights (representing ani-
mal visitation frequency to plants). These animal abundance
data are arguably limited, as they are not independent from
the interactions; but these are the best data available to evalu-
ate our question. Furthermore, the plant data do include

independent estimates of abundance, and results for those
datasets (see below) were similar to those for animals. In addi-
tion, we have used two different measures of generalisation,
degree and g (see below), for both of which we got similar
results. All of this suggests that our results are robust to the
methodological limitations of the animal abundance data.

Generalisation estimates
For generalisation, the simplest measure is species degree (the
number of species with which a given species interacts)
(V�azquez & Aizen 2006). Since measuring generalisation in this
way ignores important information about interaction fre-
quency and availability of interaction partners, and depends
strongly on network size, we also used an alternative measure
of generalisation, based on the Kullback–Leibler distance d,
which overcomes some of these limitations (Bl€uthgen et al.
2006). The Kullback–Leibler (K–L) distance or relative
entropy is a non-symmetric measure of the difference between
two probability distributions P and Q (the K–L divergence
from P to Q is generally not the same as that from Q to P).
For a given animal or plant, P corresponds to the distribution
of the interactions with each partner (respectively, plants or
animals) and Q corresponds to the overall partner availability
(Bl€uthgen et al. 2006). We defined g = 1�d/dmax as a standard-
ised measure of generalisation, where dmax is the natural loga-
rithm of the sum of all link weights in the network (i.e. the
grand sum of the bipartite interaction matrix) and is the maxi-
mum theoretically possible value for d (corresponding to the
case when two species interact exclusively with each other).

Binary classification of abundance and generalisation using the
mean as threshold
For any distribution there are two standard reference points
that in principle could be used to provide binary classifica-
tions of variables: the median and the mean. The median, by
its very definition, fails in the case of variables that follow
very skewed distributions, such as abundance or degree. That
is the case for many of the datasets considered in this study,
in which more than half of the species have abundance and/or
degree equal to its minimum possible value, i.e. 1. Therefore,
the corresponding median is also 1 and any species with abun-
dance (degree) > 1 would be classified as A (G). Such a classi-
fication is highly unsatisfactory. Take for instance the dataset
number 1, code name ‘bah’ (Barrett & Helenurm 1987) in
Table 1. The median abundance for pollinator species is 1
and the maximum abundance is 104 (Eusphalerum sp.). It
makes little sense to consider a pollinator species A if it has
abundance = 2, in the same class as a species with abun-
dance = 104. Indeed a species with abundance = 2 seems to
be closer to a species with abundance = 1 than to another spe-
cies with abundance = 104. On the other hand, the mean does
a better job than the median (in the same example the mean
abundance is equal to 5.4 and then A species are those with
an abundance of at least 6). Hence, we classified species in
each network as A if their abundance was equal or greater
than mean abundance in the network, or R if their abundance
was lower than the mean. Similarly, for generalisation, we
classified species as G if their degree or g was at or above the
mean, and S if their degree or g was below the mean.
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Fuzzy logic classification of abundance and generalisation
Relying on a sharp threshold for defining categories may be
problematic, as most so-called opposites – tall or short, hot or
cold, etc. – are not separated by a sharp line; instead, they are
ends of a continuum that involves subtle shadings. A useful
alternative for classifying things or properties for which there
is a degree of vagueness or context dependence that cannot be
properly expressed with clear-cut classes is the fuzzy logic for-
malism (Zadeh 1965). We have conducted a fuzzy logic analy-
sis, which leads to the same qualitative conclusions we
reached using the simpler and more drastic classification with
the mean as threshold. Fuzzy logic uses fuzzy sets or classes,
which are generalisations of the conventional sets or ‘crisp’
sets. A conventional set or class C can be defined by a mem-
bership function PC(x) that specifies whether an element x
belongs to C or not. If an element x belongs to C then

PC(x) = 1, whereas if it does not belong to C then PC(x) = 0.
In contrast, a fuzzy set or class F is defined through a mem-
bership function PF(x) that is not binary; rather it varies from
0 to 1. For example a fuzzy set, representing a fuzzy concept
such as ‘tall’, can be defined by assigning to each possible ele-
ment within a certain domain (e.g. all the people in a country)
a membership grade between 0 and 1 that denotes the extent
to which that element belongs to the fuzzy set (i.e. the extent
to which that particular individual is tall).
Thus, we considered the following less drastic fuzzy classifi-

cation: a species is in the lower class L (S or R), with mem-
bership grade = 1, if its property x (generalisation or
abundance respectively) is below or equal to the mean minus
one standard deviation of this quantity, lX � rX. In a com-
pletely equivalent way, a species is in the upper class U (G or
A), with membership grade = 1, if its corresponding property

Table 1 Data sets used in the study

Data

set no.

Data set

code Interaction type Location

No. animal

species

No. plant

species References*

1 bah Plant–pollinator Central New Brunswick, Canada 102 12 1

2 bez Plant–pollinator Pernambuco State, Brazil 13 13 2

3 dih Plant–pollinator Hickling, Norfolk, UK 61 17 3

4 dis Plant–pollinator Shelfanger, Norfolk, UK 36 16 3

5 ino Plant–pollinator Snowy Mountains, Australia 85 42 4

6 kat Plant–pollinator Ashu, Kyoto, Japan 679 91 5

7 mem Plant–pollinator Bristol, England 79 25 6

8 mos Plant–pollinator Melville Island, Canada 18 11 7

9 mot Plant–pollinator North Carolina, USA 44 13 8

10 ole Plant–pollinator Mauritian Ile aux Aigrettes 13 14 9

11 oll Plant–pollinator KwaZulu-Natal region, South Africa 56 9 10

12 sch Plant–pollinator Brownfield, Illinois, USA 32 7 11

13 sma Plant–pollinator Ottawa, Canada 34 13 12

14 vag Plant–pollinator Arroyo Goye, neighbourhood of Nahuel Huapi

National Park, Argentina

29 10 13

15 vcl Plant–pollinator Cerro L�opez, Nahuel Huapi National Park, Argentina 33 9 13

16 vll Plant–pollinator Llao-Llao Municipal Reserve, Bariloche, Argentina 29 10 13

17 vmn Plant–pollinator Lago Mascardi, Nahuel Huapi National Park, Argentina 26 8 13

18 vmh Plant–pollinator Lago Mascardi, Nahuel Huapi National Park, Argentina 35 8 13

19 vqh Plant–pollinator Pen�ınsula Quetrihu�e, Nahuel Huapi National Park, Argentina 27 8 13

20 vqn Plant–pollinator Pen�ınsula Quetrihu�e, Nahuel Huapi National Park, Argentina 24 7 13

21 vsa Plant–pollinator Safariland, Nahuel Huapi National Park, Argentina 27 9 13

22 vvi Plant–pollinator Villavicencio Nature Reserve, Mendoza, Argentina 97 41 14

23 bai Plant–seed disperser Princeton, Mercer, New Jersey, USA 21 7 15

24 bee Plant–seed disperser Mount Missim, Morobe Prov, New Guinea 9 31 16

25 ccg Plant–seed disperser Caguana, Puerto Rico 16 25 17

26 cci Plant–seed disperser Cialitos, Puerto Rico 20 34 17

27 cco Plant–seed disperser Cordillera, Puerto Rico 13 25 17

28 cfr Plant–seed disperser Fronton, Puerto Rico 15 21 17

29 fro Plant–seed disperser Mtunzini, South Africa 10 16 18

30 ge1 Plant–seed disperser Santa Genebra Reserve T1 SE, Brazil 18 7 19

31 ge2 Plant–seed disperser Santa Genebra Reserve T2 SE, Brazil 29 35 19

32 hra Plant–seed disperser Hato Rat�on, Sevilla Spain 17 16 20

33 nco Plant–seed disperser Nava Correhuelas S Cazorla, SE Spain 33 25 21

34 sap Plant–seed disperser Yakushima Island, Japan 8 15 22

35 sno Plant–seed disperser Tropical rainforest, Trinidad 14 50 23

*Dataset references: 1, Barrett & Helenurm (1987); 2, Bezerra et al. (2009); 3, Dicks et al. (2002); 4, Inouye & Pyke (1988); 5, Kato et al. (1990); 6, Mem-

mott (1999); 7, Mosquin & Martin (1967); 8, Motten (1982, 1986); 9, Olesen et al. (2002); 10, Ollerton et al. (2003); 11, Schemske et al. (1978); 12, Small

(1976); 13, V�azquez & Simberloff (2003); 14, V�azquez et al. (2009b); 15, Baird (1980); 16, Beehler (1983); 17, Carlo et al. (2003); 18, Frost (1980); 19,

Galetti & Pizo (1996); 20, Jordano (1985); 21, Olesen et al. (2010); 22, Noma (1997); 23, Snow & Snow (1971).
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is above the mean plus one standard deviation, lX + rX.
Those species in-between lX � rX and lX + rX have a mem-
bership grade to class L (S or R) that is given by a linear
membership function PL(x) interpolating between 0, for
x ¼ lX þ rX, and 1, for x ¼ lX � rX. [In some of the plant–
animal networks considered in our study lX � rX was below
the minimum possible value for the variable x (i.e. xmin = 1
for the degree and the abundance and xmin = 0 for the index
g). In such cases we took for the threshold delimiting the class
L the maximum between lX � rX and xmin.]
To obtain the corresponding four fuzzy logic fractions of

the 2 9 2 abundance–generalisation matrix it remains to spec-
ify how to compute the membership function of the comple-
ments of classes R and S, i.e. A and G, respectively, as well as
the membership function for the intersections R∩S, R∩G,
A∩S and A∩G. As membership function of the complement
FC of a fuzzy set F (e.g. G in the case of S, A in the case of
R) the natural and most widely used function is the additive
complement, PFC

xð Þ ¼ 1� PF xð Þ. There are many functions
that can be used to compute the intersection of fuzzy sets
(Zimmermann 2010). We used as membership function for the
intersection of two fuzzy sets F and F 0, F∩F 0, the product,
which is one of the most widely used functions (Zimmermann
2010): PF\F 0

xð Þ ¼ PF xð Þ � PF 0
xð Þ. Therefore, the four frac-

tions of the 2 9 2 abundance–generalisation matrix become:

FR;S � PR\S xð Þ ¼ PR xð Þ � PS xð Þ,
FR;G � PR\G xð Þ ¼ PR xð Þ � PG xð Þ,
FA;S � PA\S xð Þ ¼ PA xð Þ � PS xð Þ; and
FA;G � PA\G xð Þ ¼ PA xð Þ � PG xð Þ.

Null model analysis

We compared the frequency of occurrence of species in the
2 9 2 abundance–generalisation matrix (eqn 1) with those pre-
dicted by a null model that assumes neutrality of interactions
(V�azquez et al. 2009b), so that individuals interact randomly,

regardless of their taxonomic identity. The null model
generated 1000 randomised plant–animal interaction matrices
for each data set by assigning interactions according to an
interaction probability matrix N constructed by multiplying the
relative abundances of each pair of plant and animal species in
the network, with the only constraint that each species had at
least one interaction (see V�azquez et al. 2009b for details).

RESULTS

We started by confirming the abundance–generalisation
correlation for pollinators, seed dispersers and plants in our
database. Figure 1 shows a highly positive correlation for
most datasets.
We then evaluated the frequency of occurrence of species in

the 2 9 2 abundance–generalisation matrix (eqn 1) to evaluate
the predictions of logic relationships (i) and (ii) (see Introduc-
tion). Virtually no species were both abundant and specialised
(i.e. FA,S close to zero), when using both degree (Fig. 2, left col-
umn) and, especially, g (Fig. 2, right column) as measures of
generalisation, matching the expectation of logic relationship
(i) (A implies G). Conversely, the frequency of rare and gener-
alised species was high, substantially higher than zero (i.e. FR,

G ≫ 0) for both degree and g (Fig. 2), which does not match
the expectation of logic relationship (ii) (G implies A).
The above results were based on a classification of species

into abundance and generalisation categories using the mean
of these variables as the threshold for classification. Using the
abundance and generalisation classification based on fuzzy
logic (see Methods: Calculation of abundance and generalisa-
tion), results were qualitatively similar to those obtained using
the mean as threshold, especially for g as our measure of gen-
eralisation, which, as we argued above (see Methods: Calcula-
tion of abundance and generalisation), is a better measure of
generalisation than the degree (Fig. S1).
Given the above results, the simplest interpretation of the

pervasive abundance–generalisation correlation in mutualistic
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Figure 1 Correlation between abundance and generalisation. Plots show the distribution of Spearman rank correlation coefficients between abundance and

one of two measures of generalisation, degree or g (where g = 1�d/dmax and d is Kullback–Leibler distance (Bl€uthgen et al. 2006; see text) for pollinators

(left), seed dispersers (centre) and plants (right) in mutualistic networks. In all panels, in each box-and-whisker plot, the horizontal line parting each box

indicates the median, box limits are first and third distributional quartiles, whiskers extend to most extreme data point within 1.5 times the interquartile

range, and circles indicate outlying data points.
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networks is that abundant species are engaged in generalised
interactions simply because they are more likely to encoun-
ter potential interaction partners (V�azquez et al. 2007). To
evaluate this conjecture we compared the observed frequen-
cies in the 2 9 2 abundance–generalisation matrix (eqn 1)
with the frequencies predicted by the null model that
assumes random interactions among individuals. The predic-
tions of the null model match closely the observed frequen-
cies of occurrence in the 2 9 2 matrix for a majority of
data sets (Fig. 3).

DISCUSSION

Our analysis provides strong support for the hypothesis that
abundance implies generalisation, while generalisation does
not appear to imply high abundance. Thus, high abundance is
a sufficient (but not a necessary) condition for generalisation,
while generalisation is a necessary (but not sufficient) condi-
tion for a species to be abundant. Furthermore, our null
model analysis indicates that the simplest interpretation of the
pervasive correlation between abundance and generalisation in
mutualistic networks is that abundant species are engaged in

generalised interactions simply because they are more likely to
encounter potential interaction partners.
Based on these results, can we make a statement about the

causal relationship between abundance and generalisation? It
is well-known that, given two propositions p and q, logical
implications of the kind “p implies q” do not imply cause and
effect; in other words, we can infer that “A implies G,” but
not that “A causes G”. Cause-and-effect assertions are predic-
tive hypotheses that cannot be proved by statistical analysis,
only disproved (Panik 2012). In that sense, our findings pro-
vide evidence against the proposition that generalisation
causes abundance, suggesting then that abundance causes gen-
eralisation. In other words, if there is a causal relationship
between abundance and generalisation, abundance is what
causes generalisation, not the other way around.
When studying the structure of ecological interaction net-

works, it is important to bear in mind that the observed struc-
ture may partly result from sampling artefacts (V�azquez et al.
2009a). However, this is an unlikely explanation of our finding
of FA,S � 0, as such artefacts come from the lack of informa-
tion for links involving rare species (Bl€uthgen 2010) rather
than abundant species. Missing interaction links for rare spe-
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nð Þp
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(Crawley 2007).
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Figure 3 Results of null model analyses. Each panel shows the results of the null model analysis of the fraction of species in each category in the 2 9 2

abundance–generalisation matrix (eqn 1) for each network in our dataset (indicated by dataset codes in the abcissa of each panel), each of the two

generalisation measures (degree, top three panels, and g, bottom three panels), and each group of studied species (plants and animals in plant–pollinator
networks and animals in plant–seed disperser networks). For each network, observed fractions are represented by empty circles, and 95% confidence

intervals of null model fractions are represented by error bars. Thus, an overlap between a circle and an error bar means no significant differences between

observed and predicted fractions. For each category in the 2 9 2 matrix the ordinates are scaled between 0 and 1.
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cies would not affect FA,S; it would, instead, lead to an under-
estimation of FR,G. Therefore, increased sampling effort should
lead to a larger FR,G, thus reinforcing our conclusion. Further-
more, as we mentioned above (see Methods, Calculation of
abundance and generalisation), using the sum of interaction
weights as a proxy of the abundances of pollinators and seed
dispersers is arguably limited. However, since for the data sets
available for our study there were no independent measure-
ments of abundances for animals, these are the best estimates
one can obtain. In any event, for plants, for which we did have
estimates of abundances independent from visits, the results
are similar to those for animals, confirming the general trend
we found. Our findings also seem independent of the classifica-
tion scheme of species into abundance and generalisation cate-
gories (the binary and fuzzy logic classifications). Thus, it
seems unlikely that our findings are just an artefact of the
limitations of the abundance data for animals.
Our study sheds light on a long-standing causality dilemma

between abundance and generalisation in plant–animal mutu-
alistic networks, with important implications for the ecological
and evolutionary dynamics of these ecological systems. Fur-
thermore, the reasoning used here, which is based on first prin-
ciples of logical inference, could be applied to address similar
causality problems in ecology. For example for many ecologi-
cal relationships, such as the relationship between species
diversity and disturbance (Hughes 2010), it is unclear whether
effects are uni- or bi-directional, and to what extent feedbacks
influence dynamics (Agrawal et al. 2007). Our approach could
be used to offer solutions to such causality dilemmas.
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