
Information Processing Letters 130 (2018) 11–15
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Approximating weighted neighborhood independent sets

Min Chih Lin a, Julián Mestre b, Saveliy Vasiliev a,∗
a CONICET and Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Argentina
b The University of Sydney, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2017
Received in revised form 28 September
2017
Accepted 30 September 2017
Available online 3 October 2017
Communicated by B. Doerr

Keywords:
Weighted neighborhood independent set
Approximation algorithms
Graph algorithms

A neighborhood independent set (NI-set) is a subset of edges in a graph such that the
closed neighborhood of any vertex contains at most one edge of the subset. Finding a
maximum cardinality NI-set is an NP-complete problem. We consider the weighted version
of this problem. For general graphs we give an algorithm with approximation ratio �, and
for diamond-free graphs we give a ratio �/2 + 1, where � is the maximum degree of the
input graph. Furthermore, we show that the problem is polynomially solvable on cographs.
Finally, we give a tight upper bound on the cardinality of a NI-set on regular graphs.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Let G = (V , E) be a simple undirected graph. For v ∈ V ,
let N(v) = {u : uv ∈ E} be the open neighborhood of v; and
let N[v] = N(v) ∪ {v} be the closed neighborhood of v . Let
�(G) = maxv∈V |N(v)| be the maximum degree of a vertex
in G , if the context is clear we write � = �(G). A subset
S ⊆ E is neighborhood independent if |E[v] ∩ S| ≤ 1 for any
vertex v ∈ V , where E[v] denotes the set of edges in the
subgraph induced by N[v]. The goal of the maximum NI-
set problem is to find a NI-set S of maximum cardinality.
The decision version of the problem is formulated as fol-
lows: given an integer k and a graph G , decide whether G
contains a NI-set of size at least k.

In 1986, Lehel and Tuza [1] gave a linear time algorithm
for interval graphs. Wu [2] gave a O (n3) algorithm for
strongly chordal graphs. Tuza et al. [3] proved the problem
to be NP-complete on split graphs whose vertices of the
independent set have degree 3; and gave a linear time al-
gorithm for strongly chordal graphs if a strong elimination

* Corresponding author.
E-mail addresses: oscarlin@dc.uba.ar (M.C. Lin), mestre@it.usyd.edu.au

(J. Mestre), svassiliev@dc.uba.ar (S. Vasiliev).
https://doi.org/10.1016/j.ipl.2017.09.014
0020-0190/© 2017 Elsevier B.V. All rights reserved.
order is given as input. Guruswami and Rangan [4] proved
the problem to be NP-complete for diamond-free planar
graphs with � = 3. In the same work it is shown that
the problem is NP-complete on line graphs with � = 3.
Warnes [5] gave a linear time algorithm for tree-cographs
and P4-tidy graphs, and proved the problem to be NP-
complete on co-bipartite graphs. Other non-algorithmic re-
sults related to this problem can be found in [6,7]. A nat-
ural generalization of the NI-set problem was considered
in [8]. We remark that the above mentioned results are for
the unweighted version of the problem. To our best knowl-
edge, no approximation algorithms for this problem were
explored before.

In this work we consider the weighted version of this
problem, which we call Maximum Weighted NI-set (MWNI).
Formally, given an edge-weighted graph we are to find a
NI-set that maximizes its total weight. To our best knowl-
edge, MWNI was not studied before. First we argue that
this problem is hard to approximate. Then we show that a
simple greedy algorithm yields an approximation ratio �
for general graphs. Furthermore, we propose a fractional
local ratio algorithm for diamond-free graphs with approx-
imation ratio �/2 + 1. We give a polynomial time algo-
rithm for cographs. Finally, a tight bound on the cardinality
of a NI-set on d-regular graphs is given.

https://doi.org/10.1016/j.ipl.2017.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:oscarlin@dc.uba.ar
mailto:mestre@it.usyd.edu.au
mailto:svassiliev@dc.uba.ar
https://doi.org/10.1016/j.ipl.2017.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.09.014&domain=pdf

12 M.C. Lin et al. / Information Processing Letters 130 (2018) 11–15
We close the introduction with some definitions and
notation used in this paper. Let distG (u, v) be the distance
between the vertices u and v in G . A maximal complete
subgraph K = (V (K), E(K)) of G with at least two ver-
tices is a clique of G . Let Ki, j be the complete bipartite
graph of i vertices in one partition and j in the other.
Given a vector x over E and a subset F ⊆ E , we define
x(F) = ∑

f ∈F x f . For an edge uv = e ∈ E , let C(e) ⊆ E be
the set of edges which are in conflict with e; more formally,
C(e) = ⋃

w∈N[u]∩N[v] E[w]. Note that e ∈ C(e).

2. Inapproximability

Let us first briefly observe that the NI-set problem is
hard to approximate within a ratio O (�1−ε) for any ε > 0.
The implications of this are twofold: on the one hand, it
rules out any constant approximation ratio; and on the
other hand, it proves that our algorithms are in a sense
tight.

Theorem 1. For � ≥ 4, MWNI is NP-hard to approximate
within a ratio

� − 1

2
O

(√
log(�−1)

) .

Proof. To show this we give a reduction from independent
set that preserves approximability and use a hardness re-
sult given by Trevisan in [9].

Let G be a graph with �(G) ≥ 3 and suppose we are
to compute an independent set of G . Construct the graph
H as follows. For each vertex u ∈ V (G) add two adjacent
vertices u and u′ to H . For each edge uv ∈ E(G) add a
new vertex cuv in H adjacent to u, u′, v and v ′ . For an
edge of type uu′ we set wuu′ = 1; and we = 0 for any
edge e incident to some cuv . There is a direct correspon-
dence between NI-sets of H with no zero-weight edges
and independent sets in G preserving their sizes: for an
independent set I of G we define the NI-set {uu′ : u ∈ I}
in H ; and for an NI-set S of H we define the indepen-
dent set {u : uu′ ∈ S} in G . It is clear that a β-approximate
NI-set of H amounts to a β-approximate independent set
of G .

A key observation is that �(H) = max{�(G) + 1, 4} =
�(G) + 1. Trevisan [9] observed that it is NP-hard to ap-
proximate the maximum independent set problem within

a ratio �(G)/2
O

(√
log �(G)

)
. Therefore, it is NP-hard to ap-

proximate MWNI within a ratio

�(H) − 1

2
O

(√
log(�(H)−1)

) . �

Remark 1. For any ε > 0 and � ≥ 4, MWNI cannot be ap-
proximated within a ratio O (�1−ε), unless P = NP.

Proof. This follows because for any constant c > 0 we
have

�1−ε = �

2ε log �
= o

(
� − 1

2c
√

log(�−1)

)
. �
Fig. 1. Tightness of the greedy algorithm.

3. A �-approximation algorithm

If � ≤ 2, then computing a maximum weighted NI-set
amounts to finding a maximum weighted matching; the
set S is the maximum weighted matching. We thus con-
sider graphs with � ≥ 3. We first introduce a technical
result.

Lemma 2. If S is a NI-set of G and � ≥ 3, then |S ∩ C(e)| ≤ �

for each uv = e ∈ E.

Proof. Let W = N[u] ∩ N[v] \ {u, v}. Observe that |W | ≤
� − 1. If |W | = � − 1, then S ∩ C(e) = S ∩ ⋃

w∈W E[w],
and therefore |S ∩ C(e)| ≤ ∑

w∈W |E[w] ∩ S| ≤ |W | =
� − 1. If |W | ≤ � − 2, then S ∩ C(e) = S ∩ (E[u] ∪ E[v] ∪⋃

w∈W E[w]), and therefore |S ∩ C(e)| ≤ 2 + |W | ≤ �. �
Consider the natural greedy approach: begin with an

empty solution S , and in each iteration add to S the edge
e ∈ E \ S of maximum weight such that |(S ∪{e}) ∩ E[v]| ≤ 1
for each v ∈ V . Return the constructed set once no more
edges can be added.

Let S∗ be an optimal NI-set of G . Each time we add an
edge e to S , the edges in C(e) cease to be candidates for
future iterations—they become blocked. Among the edges
in C(e) some may have been blocked in a previous itera-
tion while some in the current. Those in S∗ ∩ C(e) blocked
in a previous iteration are already accounted for by some
e′ ∈ S . And those in S∗ ∩ C(e) blocked in the current it-
eration are at most � by the above lemma, and each of
them has weight at most we by the choice of e. When the
algorithm ends, all edges in S∗ are blocked by S , and it fol-
lows that w(S∗) ≤ �w(S). This implies an approximation
ratio �.

Remark 2. The analysis of the algorithm is tight.

Proof. Consider the graph of Fig. 1. The greedy algorithm
outputs the sole edge of weight 1 + ε , while the optimum
corresponds to the bold edges of total weight �. Therefore,
the ratio between the optimum and the computed solution
is �/(1 + ε). �
4. A (�/2 + 1)-approximation algorithm
for diamond-free graphs

In this section we give a fractional local ratio approx-
imation algorithm for the MWNI problem on diamond-
free graphs. To the unfamiliarized reader, the intuition be-

M.C. Lin et al. / Information Processing Letters 130 (2018) 11–15 13
hind the local ratio approach is as follows: given some
feasible solution, one can decompose the weight vector
into a sum of components and analyze the approxima-
tion ratio with respect to (w.r.t.) each of them. Under
very general conditions, if the solution has an approxi-
mation ratio α w.r.t. each of these components, then it
is an α-approximation w.r.t. the original weight vector. In
practice, the feasible solution is constructed recursively de-
composing the weight vector into two vectors: the current
(or local) and the recursive. By proving that the built so-
lution is α-approximate w.r.t. the local vector and using
an inductive reasoning for the recursive vector, one ob-
tains an α-approximate solution w.r.t. the original vector.
Sometimes it is helpful to use fractional solutions to linear
programs to make the recursive decompositions: on the
one hand, the approximation ratio may be improved; and
on the other hand, one has a natural bound for proving a
ratio. This last approach is usually called fractional local ra-
tio. For an in depth overview on local ratio algorithms we
suggest the survey by Bar-Yehuda et al. [10].

Let G = (V , E) be an edge-weighted diamond-free
graph with weights we ∈ Q≥0. Consider the following lin-
ear relaxation of the MWNI problem.

max
∑
e∈E

wexe

s.t. x(E[v]) ≤ 1 ∀v ∈ V ,

xe ≥ 0 ∀e ∈ E.

For a subset F ⊆ E , we denote L P F to be the above
linear program restricted to the variables x f for f ∈ F .

Algorithm 1 NI(F , w).
1: if F = ∅ then
2: return ∅
3: Compute an optimal solution x to L P F

4: Let F0 = {e ∈ F : xe = 0}
5: if F0 �= ∅ then
6: return NI(F \ F0, w)
7: Let e ∈ F such that x(C(e)) ≤ �/2 + 1

8: For each f ∈ F , let ŵ f =
{

we if f ∈ C(e),
0 otherwise.

9: S ← NI(F \ {e}, w − ŵ)
10: if S ∪ {e} is an NI-set (i.e. if C(e) ∩ S = ∅) then
11: S ← S ∪ {e}
12: return S

In what follows we show that Algorithm 1 has approx-
imation ratio �/2 + 1 provided that in each recursive call
one can find an edge e ∈ F such that x(C(e)) ≤ �/2 + 1.
Note that there is at most one recursive call in each step,
and in each iteration |F | decreases by at least one. There-
fore, the algorithm ends after at most |E| recursive calls.
For the sake of completeness, we include the proof of the
following theorem, which is essentially the same proved
in [10,11]; although for a different problem, ratio α and
method of finding the decomposition of the weight vector.

Theorem 3. ([10,11]). Let α = �/2 − 1 and F ⊆ E. If for any
non empty subset F ′ ⊆ F and any feasible solution y to L P F ′
there is some g ∈ F ′ such that y(C(g)) ≤ α, then Algorithm 1
computes a NI-set S such that w(S) ≥ 1

α

∑
f ∈F w f x f , where x

is the solution to L P F computed in Line 3.
Proof. We prove this by induction in the number of iter-
ations. The base case is handled in Line 2, which trivially
holds.

Suppose the algorithm returns on Line 6. Let x′ be the
solution to L P F\F0 computed in the recursive call. Then

w(S) ≥ 1

α

∑
f ∈F\F0

w f x′
f ≥ 1

α

∑
f ∈F\F0

w f x f = 1

α

∑
f ∈F

w f x f ,

where the first inequality holds by inductive hypothesis;
the second holds because x′ is an optimal solution for
L P F\F0 and x restricted to F \ F0 is feasible for L P F\F0 ;
and the last equality holds because x f = 0 for each f ∈ F0.

We now consider the case when the algorithm returns
on Line 12. Let w̃ = w − ŵ . Denote x′ to the computed
optimal solution to L P F\{e} with weights w̃ . On the one
hand, we have

w̃(S) ≥ 1

α

∑
f ∈F\{e}

w̃ f x′
f ≥ 1

α

∑
f ∈F\{e}

w̃ f x f = 1

α

∑
f ∈F

w̃ f x f ,

where the first inequality follows from the inductive hy-
pothesis; the second from the fact that x′ is an optimal
solution for L P F\{e} (with weights w̃) and x restricted to
F \ {e} is feasible for L P F\{e}; and the last equality holds
because w̃e = 0, regardless of whether e ∈ S or not. On the
other hand, we have

ŵ(S) = ŵe|S ∩ C(e)| ≥ ŵe ≥ ŵe
x(C(e))

α

= 1

α

∑
f ∈C(e)

ŵex f = 1

α

∑
f ∈F

ŵ f x f ,

where the first equality follows from the definition of ŵ;
the first inequality follows since S ∩ C(e) is always non-
empty; the second inequality because x(C(e)) ≤ α; and the
last equality follows because ŵ f = 0 for any f ∈ F \ C(e)
and ŵ f = ŵe for each f ∈ C(e).

Therefore, we have

w(S) = w̃(S) + ŵ(S) ≥ 1

α

∑
f ∈F

ŵ f x f + 1

α

∑
f ∈F

w̃ f x f

= 1

α

∑
f ∈F

w f x f . �

In what follows we show that there is some edge e ∈ F
such that x(C(e)) ≤ �/2 +1. Note that since G is diamond-
free, each edge is contained in exactly one clique.

Lemma 4. Let x be an optimal solution to L P F . If each clique K
such that x(E(K)) > 0 has at least �/2 + 1 vertices, then there
is some clique K ′ such that x(E(K ′)) ≥ 1/2.

Proof. Let v be a vertex associated to a tight constraint
of L P F , that is, such that x(E[v]) = 1. Let K be a clique
containing v . If x(E(K)) ≥ 1/2, then there is nothing to
prove. Suppose x(E(K)) < 1/2. Then there must be some
other clique K ′ such that x(E(K ′)) > 0 containing v be-
cause of the tightness of v . Observe that K ∩ K ′ = {v}
because K and K ′ cannot share another vertex since G

14 M.C. Lin et al. / Information Processing Letters 130 (2018) 11–15
is diamond-free. Since � ≥ deg(v) ≥ |V (K)| + |V (K ′)| −
2 ≥ �, it follows that we have equality throughout and
the only cliques containing v are K and K ′ , and therefore
x(E(K ′)) > 1/2. �
Lemma 5. Let x be an optimal solution to L P F , then there is
some edge e ∈ F such that x(C(e)) ≤ �/2 + 1.

Proof. Suppose that there is some clique K such that
x(E(K)) > 0 and |V (K)| < �/2 + 1. Take an edge e ∈
F ∩ E(K). Clearly, x(C(e)) ≤ ∑

w∈V (K) x(E[w]) ≤ |V (K)| <
�/2 + 1.

Suppose now that for any clique K such that
x(E(K)) > 0 we have |V (K)| ≥ �/2 + 1. By Lemma 4 there
is some clique K such that x(E(K)) ≥ 1/2. Take an edge
uv = e ∈ F ∩ E(K). We have that

x(C(e)) ≤ x(E[u]) + x(E[v]) +
∑

w∈V (K)\{u,v}
x(E[w] \ E(K))

≤ 2 + |V (K)| − 2

2

≤ 2 + � − 2

2
= �/2 + 1,

where the first inequality holds because each variable x f
with f ∈ C(e) appears in the sum; the second because
x(E[w] \ E(K)) ≤ 1 − x(E(K)) ≤ 1/2; and the third be-
cause if |V (K)| = � +1, then K must be an isolated clique,
and therefore x(C(e)) would trivially be at most 1, which
means that we can assume |V (K)| ≤ �. �
Corollary 1. Algorithm 1 has approximation ratio �/2 + 1.

5. A polynomial time algorithm on cographs

Given two graphs G and H , the join graph G ⊕ H is
the graph obtained after connecting all the vertices of G
with all the vertices of H . A cograph is a graph that can be
constructed using the following rules.

• ({v}, ∅) is a cograph.
• If G and H are cographs, then G ⊕ H is a cograph.
• If G and H are cographs, then G ∪ H is a cograph.

A tree representing the above decomposition is called
cotree, and it can be computed in linear time due to an
algorithm by Corneil et al. [12].

In what follows we give the recursive rules for build-
ing a polynomial time algorithm using the cotree of G for
computing a NI-set of maximum weight. Note that the un-
weighted case is linear for P4-tidy graphs [5], which is a
superclass of cographs. However, it is not clear how to gen-
eralize that algorithm for the weighted case.

The base and union cases are trivial. We are to analyze
the G ⊕ H case. Let F denote the set of edges introduced
when joining G and H .

Lemma 6. If S is a NI-set of G ⊕ H and it contains an edge
e ∈ E(G) ∪ E(H), then it is the only edge in S.

Pr
f
|E
en
V (

to

fro
sh

tex
cG

cH

fin
cG

Le
dia

Le
mu

Pr
en
M
tio
Su
ge
|E
ha
if
e
tra

ar
co
sp
{e
for
|E
ca
po
ot
tio

Th
ab

6.

bo

Th
|S

Pr
po
oof. Suppose e ∈ E(G) ∩ S and that there is another edge
∈ S . If f ∈ E(G), then for any vertex v ∈ V (H) we have
[v] ∩ S| ≥ 2. If f ∈ E(H), then |E[v] ∩ S| ≥ 2 for each
dpoint v of e and f . Finally, if uv = f ∈ F with v ∈
H), it follows that |E[v] ∩ S| ≥ 2 because v is adjacent

 both endpoints of e. �
The optimum of G ⊕ H will thus be either a sole edge
m E(G) ∪ E(H) or some subset of F . In what follows we
ow how to find the best possible NI-set contained in F .
Let G ′ be the complete bipartite graph given by ver-
 sets {cG(v) : v ∈ V (G)} and {cH (u) : u ∈ V (H)}, where
(v) is the connected component of G containing v , and
(u) the connected component of H containing u. De-
e the weight of an edge cG (v)cH (u) as max{wxy : x ∈
(v) and y ∈ cH (u)}.

mma 7. ([13]) Each connected component of a cograph has
meter at most 2.

mma 8. If M is a maximum matching of G ′ and N a maxi-
m weighted NI-set contained in F , then w(M) = w(N).

oof. We first prove w(M) ≤ w(N). To see this it is
ough to prove that M is a NI-set contained in F , where
in the edge set of G ⊕ H is given by the weight defini-
n of G ′ . Under this interpretation it is clear that M ⊆ F .
ppose M is not a NI-set. Then, without losing overall
nerality, there must be some vertex v ∈ V (G) such that
[v] ∩ M| ≥ 2. Suppose {e, f } ⊆ E[v] ∩ M . Note that if e
s no endpoint in cG (v), then e /∈ E[v]. In the same way,
f has no endpoint in cG (v), then f /∈ E[v]. Therefore,

and f have both at least one endpoint in cG (v)—a con-
diction because M is a matching.
We now prove w(M) ≥ w(N). First suppose that there

e two edges e, f ∈ N with endpoints in one connected
mponent of G . Suppose these endpoints are u and v , re-
ectively. Clearly, u �= v . If distG(u, v) = 1, then |E[v] ∩
, f }| = |E[u] ∩ {e, f }| = 2. Finally, if distG (u, v) = 2, then
 any vertex w ∈ V (G) adjacent to u and v we have
[w] ∩ {e, f }| = 2. Note that by Lemma 7 it cannot be the
se that distG (u, v) > 2. Therefore, each connected com-
nent of G and H contains at most one endpoint of N . In
her words, N is a matching in G ′ . By the weight defini-
n of G ′ , it follows that w(M) ≥ w(N). �
eorem 9. Weighted NI-set on cographs is polynomially solv-
le.

Unweighted NI-set

In this section we present an asymptotically tight upper
und on the cardinality of a NI-set for d-regular graphs.

eorem 10. Let G be a d-regular graph and S a NI-set. Then
| < m

d−1 .

oof. First note that in a d-regular graph 2m = nd. Sup-
se that |S| ≥ m . Then, multiplying by 2 on each side
d−1

M.C. Lin et al. / Information Processing Letters 130 (2018) 11–15 15
Fig. 2. Tightness of Theorem 10 for d = 4.

we get
∑

v∈V dS (v) = 2|S| ≥ 2m
d−1 , where dS(v) is the num-

ber of edges in S incident to v . Therefore, by the pigeon-
hole principle, there must be some vertex v ∈ V such that
dS (v) ≥ 2m

n(d−1)
= d

d−1 > 1, which is a contradiction since
|E[v] ∩ S| ≤ 1. �
Remark 3. The bound is asymptotically tight. Indeed, for
any d ≥ 2 there is a d-regular graph G such that for a max-
imum NI-set S ,

m
d−1

|S| = d

d − 1
.

Proof. Consider the graph given by two copies of
K(d−1),(d−1) where each vertex is adjacent to its copy as
in Fig. 2. Clearly, m = 2d(d − 1) and |S| = 2(d − 1). �
Acknowledgements

We appreciate the comments of the reviewers, which
significantly helped us improving the presentation and
clarity of this work.

This work was partially supported by UBACyT Grant
20020120100058, and PICT ANPCyT Grant 2013-2205.
References

[1] J. Lehel, Z. Tuza, Neighborhood perfect graphs, Discrete Math. 61 (1)
(1986) 93–101, http://dx.doi.org/10.1016/0012-365X(86)90031-2.

[2] J. Wu, Neighborhood-covering and neighborhood-independence in
strongly chordal graphs, preprint.

[3] G.J. Chang, M. Farber, Z. Tuza, Algorithmic aspects of neighbor-
hood numbers, SIAM J. Discrete Math. 6 (1) (1993) 24–29, http://dx.
doi.org/10.1137/0406002.

[4] V. Guruswami, C.P. Rangan, Algorithmic aspects of clique-transversal
and clique-independent sets, Discrete Appl. Math. 100 (3) (2000)
183–202, http://dx.doi.org/10.1016/S0166-218X(99)00159-6.

[5] X. Warnes, Structural and Algorithmic Results on Neighborhood-
Perfect Graphs and Neighborhood Numbers, Master’s thesis, Depart-
mento de Matemática, Facultad de Ciencias Exactas y Naturales, Uni-
versidad de Buenos Aires, Argentina, 2014.

[6] A. Gyárfás, D. Kratsch, J. Lehel, F. Maffray, Minimal non-
neighborhood-perfect graphs, J. Graph Theory 21 (1) (1996) 55–66,
http://dx.doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-
JGT8>3.0.CO;2-L.

[7] J. Lehel, Neighbourhood-perfect line graphs, Graphs Comb. 10 (2)
(1994) 353–361, http://dx.doi.org/10.1007/BF02986685.

[8] S.-F. Hwang, G.J. Chang, k-Neighborhood-covering and -independence
problems for chordal graphs, SIAM J. Discrete Math. 11 (4) (1998)
633–643, http://dx.doi.org/10.1137/S0895480193244322.

[9] L. Trevisan, Non-approximability results for optimization problems
on bounded degree instances, in: Proceedings of STOC, 2001,
pp. 453–461.

[10] R. Bar-Yehuda, K. Bendel, A. Freund, D. Rawitz, Local ratio: a uni-
fied framework for approximation algorithms – In memoriam: Shi-
mon Even 1935–2004, ACM Comput. Surv. 36 (4) (2004) 422–463,
http://dx.doi.org/10.1145/1041680.1041683.

[11] S. Canzar, K.M. Elbassioni, G.W. Klau, J. Mestre, On tree-constrained
matchings and generalizations, Algorithmica 71 (1) (2015) 98–119,
http://dx.doi.org/10.1007/s00453-013-9785-0.

[12] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for
cographs, SIAM J. Comput. 14 (4) (1985) 926–934, http://dx.doi.org/
10.1137/0214065.

[13] D. Corneil, H. Lerchs, L. Burlingham, Complement reducible graphs,
Discrete Appl. Math. 3 (3) (1981) 163–174, http://dx.doi.org/10.1016/
0166-218X(81)90013-5.

http://dx.doi.org/10.1016/0012-365X(86)90031-2
http://dx.doi.org/10.1137/0406002
http://dx.doi.org/10.1016/S0166-218X(99)00159-6
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib746865736973586176696572s1
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib746865736973586176696572s1
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib746865736973586176696572s1
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib746865736973586176696572s1
http://dx.doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-JGT8>3.0.CO;2-L
http://dx.doi.org/10.1007/BF02986685
http://dx.doi.org/10.1137/S0895480193244322
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib547265766973616E3A323030313A4E524F3A3338303735322E333830383339s1
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib547265766973616E3A323030313A4E524F3A3338303735322E333830383339s1
http://refhub.elsevier.com/S0020-0190(17)30170-9/bib547265766973616E3A323030313A4E524F3A3338303735322E333830383339s1
http://dx.doi.org/10.1145/1041680.1041683
http://dx.doi.org/10.1007/s00453-013-9785-0
http://dx.doi.org/10.1137/0214065
http://dx.doi.org/10.1016/0166-218X(81)90013-5
http://dx.doi.org/10.1137/0406002
http://dx.doi.org/10.1002/(SICI)1097-0118(199601)21:1<55::AID-JGT8>3.0.CO;2-L
http://dx.doi.org/10.1137/0214065
http://dx.doi.org/10.1016/0166-218X(81)90013-5

	Approximating weighted neighborhood independent sets
	1 Introduction
	2 Inapproximability
	3 A Δ-approximation algorithm
	4 A (Δ/2+1)-approximation algorithm for diamond-free graphs
	5 A polynomial time algorithm on cographs
	6 Unweighted NI-set
	Acknowledgements
	References

