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A neighborhood independent set (NI-set) is a subset of edges in a graph such that the 
closed neighborhood of any vertex contains at most one edge of the subset. Finding a 
maximum cardinality NI-set is an NP-complete problem. We consider the weighted version 
of this problem. For general graphs we give an algorithm with approximation ratio �, and 
for diamond-free graphs we give a ratio �/2 + 1, where � is the maximum degree of the 
input graph. Furthermore, we show that the problem is polynomially solvable on cographs. 
Finally, we give a tight upper bound on the cardinality of a NI-set on regular graphs.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Let G = (V , E) be a simple undirected graph. For v ∈ V , 
let N(v) = {u : uv ∈ E} be the open neighborhood of v; and 
let N[v] = N(v) ∪ {v} be the closed neighborhood of v . Let 
�(G) = maxv∈V |N(v)| be the maximum degree of a vertex 
in G , if the context is clear we write � = �(G). A subset 
S ⊆ E is neighborhood independent if |E[v] ∩ S| ≤ 1 for any 
vertex v ∈ V , where E[v] denotes the set of edges in the 
subgraph induced by N[v]. The goal of the maximum NI-
set problem is to find a NI-set S of maximum cardinality. 
The decision version of the problem is formulated as fol-
lows: given an integer k and a graph G , decide whether G
contains a NI-set of size at least k.

In 1986, Lehel and Tuza [1] gave a linear time algorithm 
for interval graphs. Wu [2] gave a O (n3) algorithm for 
strongly chordal graphs. Tuza et al. [3] proved the problem 
to be NP-complete on split graphs whose vertices of the 
independent set have degree 3; and gave a linear time al-
gorithm for strongly chordal graphs if a strong elimination 
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order is given as input. Guruswami and Rangan [4] proved 
the problem to be NP-complete for diamond-free planar 
graphs with � = 3. In the same work it is shown that 
the problem is NP-complete on line graphs with � = 3. 
Warnes [5] gave a linear time algorithm for tree-cographs 
and P4-tidy graphs, and proved the problem to be NP-
complete on co-bipartite graphs. Other non-algorithmic re-
sults related to this problem can be found in [6,7]. A nat-
ural generalization of the NI-set problem was considered 
in [8]. We remark that the above mentioned results are for 
the unweighted version of the problem. To our best knowl-
edge, no approximation algorithms for this problem were 
explored before.

In this work we consider the weighted version of this 
problem, which we call Maximum Weighted NI-set (MWNI). 
Formally, given an edge-weighted graph we are to find a 
NI-set that maximizes its total weight. To our best knowl-
edge, MWNI was not studied before. First we argue that 
this problem is hard to approximate. Then we show that a 
simple greedy algorithm yields an approximation ratio �
for general graphs. Furthermore, we propose a fractional 
local ratio algorithm for diamond-free graphs with approx-
imation ratio �/2 + 1. We give a polynomial time algo-
rithm for cographs. Finally, a tight bound on the cardinality 
of a NI-set on d-regular graphs is given.
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We close the introduction with some definitions and 
notation used in this paper. Let distG (u, v) be the distance 
between the vertices u and v in G . A maximal complete 
subgraph K = (V (K ), E(K )) of G with at least two ver-
tices is a clique of G . Let Ki, j be the complete bipartite 
graph of i vertices in one partition and j in the other. 
Given a vector x over E and a subset F ⊆ E , we define 
x(F ) = ∑

f ∈F x f . For an edge uv = e ∈ E , let C(e) ⊆ E be 
the set of edges which are in conflict with e; more formally, 
C(e) = ⋃

w∈N[u]∩N[v] E[w]. Note that e ∈ C(e).

2. Inapproximability

Let us first briefly observe that the NI-set problem is 
hard to approximate within a ratio O (�1−ε) for any ε > 0. 
The implications of this are twofold: on the one hand, it 
rules out any constant approximation ratio; and on the 
other hand, it proves that our algorithms are in a sense 
tight.

Theorem 1. For � ≥ 4, MWNI is NP-hard to approximate 
within a ratio

� − 1

2
O

(√
log(�−1)

) .

Proof. To show this we give a reduction from independent 
set that preserves approximability and use a hardness re-
sult given by Trevisan in [9].

Let G be a graph with �(G) ≥ 3 and suppose we are 
to compute an independent set of G . Construct the graph 
H as follows. For each vertex u ∈ V (G) add two adjacent 
vertices u and u′ to H . For each edge uv ∈ E(G) add a 
new vertex cuv in H adjacent to u, u′, v and v ′ . For an 
edge of type uu′ we set wuu′ = 1; and we = 0 for any 
edge e incident to some cuv . There is a direct correspon-
dence between NI-sets of H with no zero-weight edges 
and independent sets in G preserving their sizes: for an 
independent set I of G we define the NI-set {uu′ : u ∈ I}
in H ; and for an NI-set S of H we define the indepen-
dent set {u : uu′ ∈ S} in G . It is clear that a β-approximate 
NI-set of H amounts to a β-approximate independent set 
of G .

A key observation is that �(H) = max{�(G) + 1, 4} =
�(G) + 1. Trevisan [9] observed that it is NP-hard to ap-
proximate the maximum independent set problem within 

a ratio �(G)/2
O

(√
log �(G)

)
. Therefore, it is NP-hard to ap-

proximate MWNI within a ratio

�(H) − 1

2
O

(√
log(�(H)−1)

) . �

Remark 1. For any ε > 0 and � ≥ 4, MWNI cannot be ap-
proximated within a ratio O (�1−ε), unless P = NP.

Proof. This follows because for any constant c > 0 we 
have

�1−ε = �

2ε log �
= o

(
� − 1

2c
√

log(�−1)

)
. �
Fig. 1. Tightness of the greedy algorithm.

3. A �-approximation algorithm

If � ≤ 2, then computing a maximum weighted NI-set 
amounts to finding a maximum weighted matching; the 
set S is the maximum weighted matching. We thus con-
sider graphs with � ≥ 3. We first introduce a technical 
result.

Lemma 2. If S is a NI-set of G and � ≥ 3, then |S ∩ C(e)| ≤ �

for each uv = e ∈ E.

Proof. Let W = N[u] ∩ N[v] \ {u, v}. Observe that |W | ≤
� − 1. If |W | = � − 1, then S ∩ C(e) = S ∩ ⋃

w∈W E[w], 
and therefore |S ∩ C(e)| ≤ ∑

w∈W |E[w] ∩ S| ≤ |W | =
� − 1. If |W | ≤ � − 2, then S ∩ C(e) = S ∩ (E[u] ∪ E[v] ∪⋃

w∈W E[w]), and therefore |S ∩ C(e)| ≤ 2 + |W | ≤ �. �
Consider the natural greedy approach: begin with an 

empty solution S , and in each iteration add to S the edge 
e ∈ E \ S of maximum weight such that |(S ∪{e}) ∩ E[v]| ≤ 1
for each v ∈ V . Return the constructed set once no more 
edges can be added.

Let S∗ be an optimal NI-set of G . Each time we add an 
edge e to S , the edges in C(e) cease to be candidates for 
future iterations—they become blocked. Among the edges 
in C(e) some may have been blocked in a previous itera-
tion while some in the current. Those in S∗ ∩ C(e) blocked 
in a previous iteration are already accounted for by some 
e′ ∈ S . And those in S∗ ∩ C(e) blocked in the current it-
eration are at most � by the above lemma, and each of 
them has weight at most we by the choice of e. When the 
algorithm ends, all edges in S∗ are blocked by S , and it fol-
lows that w(S∗) ≤ �w(S). This implies an approximation 
ratio �.

Remark 2. The analysis of the algorithm is tight.

Proof. Consider the graph of Fig. 1. The greedy algorithm 
outputs the sole edge of weight 1 + ε , while the optimum 
corresponds to the bold edges of total weight �. Therefore, 
the ratio between the optimum and the computed solution 
is �/(1 + ε). �
4. A (�/2 + 1)-approximation algorithm 
for diamond-free graphs

In this section we give a fractional local ratio approx-
imation algorithm for the MWNI problem on diamond-
free graphs. To the unfamiliarized reader, the intuition be-
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hind the local ratio approach is as follows: given some 
feasible solution, one can decompose the weight vector 
into a sum of components and analyze the approxima-
tion ratio with respect to (w.r.t.) each of them. Under 
very general conditions, if the solution has an approxi-
mation ratio α w.r.t. each of these components, then it 
is an α-approximation w.r.t. the original weight vector. In 
practice, the feasible solution is constructed recursively de-
composing the weight vector into two vectors: the current 
(or local) and the recursive. By proving that the built so-
lution is α-approximate w.r.t. the local vector and using 
an inductive reasoning for the recursive vector, one ob-
tains an α-approximate solution w.r.t. the original vector. 
Sometimes it is helpful to use fractional solutions to linear 
programs to make the recursive decompositions: on the 
one hand, the approximation ratio may be improved; and 
on the other hand, one has a natural bound for proving a 
ratio. This last approach is usually called fractional local ra-
tio. For an in depth overview on local ratio algorithms we 
suggest the survey by Bar-Yehuda et al. [10].

Let G = (V , E) be an edge-weighted diamond-free 
graph with weights we ∈ Q≥0. Consider the following lin-
ear relaxation of the MWNI problem.

max
∑
e∈E

wexe

s.t. x(E[v]) ≤ 1 ∀v ∈ V ,

xe ≥ 0 ∀e ∈ E.

For a subset F ⊆ E , we denote L P F to be the above 
linear program restricted to the variables x f for f ∈ F .

Algorithm 1 NI(F , w).
1: if F = ∅ then
2: return ∅
3: Compute an optimal solution x to L P F

4: Let F0 = {e ∈ F : xe = 0}
5: if F0 �= ∅ then
6: return NI(F \ F0, w)
7: Let e ∈ F such that x(C(e)) ≤ �/2 + 1

8: For each f ∈ F , let ŵ f =
{

we if f ∈ C(e),
0 otherwise.

9: S ← NI(F \ {e}, w − ŵ)
10: if S ∪ {e} is an NI-set (i.e. if C(e) ∩ S = ∅) then
11: S ← S ∪ {e}
12: return S

In what follows we show that Algorithm 1 has approx-
imation ratio �/2 + 1 provided that in each recursive call 
one can find an edge e ∈ F such that x(C(e)) ≤ �/2 + 1. 
Note that there is at most one recursive call in each step, 
and in each iteration |F | decreases by at least one. There-
fore, the algorithm ends after at most |E| recursive calls. 
For the sake of completeness, we include the proof of the 
following theorem, which is essentially the same proved 
in [10,11]; although for a different problem, ratio α and 
method of finding the decomposition of the weight vector.

Theorem 3. ([10,11]). Let α = �/2 − 1 and F ⊆ E. If for any 
non empty subset F ′ ⊆ F and any feasible solution y to L P F ′
there is some g ∈ F ′ such that y(C(g)) ≤ α, then Algorithm 1
computes a NI-set S such that w(S) ≥ 1

α

∑
f ∈F w f x f , where x

is the solution to L P F computed in Line 3.
Proof. We prove this by induction in the number of iter-
ations. The base case is handled in Line 2, which trivially 
holds.

Suppose the algorithm returns on Line 6. Let x′ be the 
solution to L P F\F0 computed in the recursive call. Then

w(S) ≥ 1

α

∑
f ∈F\F0

w f x′
f ≥ 1

α

∑
f ∈F\F0

w f x f = 1

α

∑
f ∈F

w f x f ,

where the first inequality holds by inductive hypothesis; 
the second holds because x′ is an optimal solution for 
L P F\F0 and x restricted to F \ F0 is feasible for L P F\F0 ; 
and the last equality holds because x f = 0 for each f ∈ F0.

We now consider the case when the algorithm returns 
on Line 12. Let w̃ = w − ŵ . Denote x′ to the computed 
optimal solution to L P F\{e} with weights w̃ . On the one 
hand, we have

w̃(S) ≥ 1

α

∑
f ∈F\{e}

w̃ f x′
f ≥ 1

α

∑
f ∈F\{e}

w̃ f x f = 1

α

∑
f ∈F

w̃ f x f ,

where the first inequality follows from the inductive hy-
pothesis; the second from the fact that x′ is an optimal 
solution for L P F\{e} (with weights w̃) and x restricted to 
F \ {e} is feasible for L P F\{e}; and the last equality holds 
because w̃e = 0, regardless of whether e ∈ S or not. On the 
other hand, we have

ŵ(S) = ŵe|S ∩ C(e)| ≥ ŵe ≥ ŵe
x(C(e))

α

= 1

α

∑
f ∈C(e)

ŵex f = 1

α

∑
f ∈F

ŵ f x f ,

where the first equality follows from the definition of ŵ; 
the first inequality follows since S ∩ C(e) is always non-
empty; the second inequality because x(C(e)) ≤ α; and the 
last equality follows because ŵ f = 0 for any f ∈ F \ C(e)
and ŵ f = ŵe for each f ∈ C(e).

Therefore, we have

w(S) = w̃(S) + ŵ(S) ≥ 1

α

∑
f ∈F

ŵ f x f + 1

α

∑
f ∈F

w̃ f x f

= 1

α

∑
f ∈F

w f x f . �

In what follows we show that there is some edge e ∈ F
such that x(C(e)) ≤ �/2 +1. Note that since G is diamond-
free, each edge is contained in exactly one clique.

Lemma 4. Let x be an optimal solution to L P F . If each clique K
such that x(E(K )) > 0 has at least �/2 + 1 vertices, then there 
is some clique K ′ such that x(E(K ′)) ≥ 1/2.

Proof. Let v be a vertex associated to a tight constraint 
of L P F , that is, such that x(E[v]) = 1. Let K be a clique 
containing v . If x(E(K )) ≥ 1/2, then there is nothing to 
prove. Suppose x(E(K )) < 1/2. Then there must be some 
other clique K ′ such that x(E(K ′)) > 0 containing v be-
cause of the tightness of v . Observe that K ∩ K ′ = {v}
because K and K ′ cannot share another vertex since G
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is diamond-free. Since � ≥ deg(v) ≥ |V (K )| + |V (K ′)| −
2 ≥ �, it follows that we have equality throughout and 
the only cliques containing v are K and K ′ , and therefore 
x(E(K ′)) > 1/2. �
Lemma 5. Let x be an optimal solution to L P F , then there is 
some edge e ∈ F such that x(C(e)) ≤ �/2 + 1.

Proof. Suppose that there is some clique K such that 
x(E(K )) > 0 and |V (K )| < �/2 + 1. Take an edge e ∈
F ∩ E(K ). Clearly, x(C(e)) ≤ ∑

w∈V (K ) x(E[w]) ≤ |V (K )| <
�/2 + 1.

Suppose now that for any clique K such that
x(E(K )) > 0 we have |V (K )| ≥ �/2 + 1. By Lemma 4 there 
is some clique K such that x(E(K )) ≥ 1/2. Take an edge 
uv = e ∈ F ∩ E(K ). We have that

x(C(e)) ≤ x(E[u]) + x(E[v]) +
∑

w∈V (K )\{u,v}
x(E[w] \ E(K ))

≤ 2 + |V (K )| − 2

2

≤ 2 + � − 2

2
= �/2 + 1,

where the first inequality holds because each variable x f
with f ∈ C(e) appears in the sum; the second because 
x(E[w] \ E(K )) ≤ 1 − x(E(K )) ≤ 1/2; and the third be-
cause if |V (K )| = � +1, then K must be an isolated clique, 
and therefore x(C(e)) would trivially be at most 1, which 
means that we can assume |V (K )| ≤ �. �
Corollary 1. Algorithm 1 has approximation ratio �/2 + 1.

5. A polynomial time algorithm on cographs

Given two graphs G and H , the join graph G ⊕ H is 
the graph obtained after connecting all the vertices of G
with all the vertices of H . A cograph is a graph that can be 
constructed using the following rules.

• ({v}, ∅) is a cograph.
• If G and H are cographs, then G ⊕ H is a cograph.
• If G and H are cographs, then G ∪ H is a cograph.

A tree representing the above decomposition is called 
cotree, and it can be computed in linear time due to an 
algorithm by Corneil et al. [12].

In what follows we give the recursive rules for build-
ing a polynomial time algorithm using the cotree of G for 
computing a NI-set of maximum weight. Note that the un-
weighted case is linear for P4-tidy graphs [5], which is a 
superclass of cographs. However, it is not clear how to gen-
eralize that algorithm for the weighted case.

The base and union cases are trivial. We are to analyze 
the G ⊕ H case. Let F denote the set of edges introduced 
when joining G and H .

Lemma 6. If S is a NI-set of G ⊕ H and it contains an edge 
e ∈ E(G) ∪ E(H), then it is the only edge in S.

Pr
f
|E
en
V (

to

fro
sh

tex
cG

cH

fin
cG

Le
dia

Le
mu

Pr
en
M
tio
Su
ge
|E
ha
if 
e
tra

ar
co
sp
{e
for
|E
ca
po
ot
tio

Th
ab

6. 

bo

Th
|S

Pr
po
oof. Suppose e ∈ E(G) ∩ S and that there is another edge 
∈ S . If f ∈ E(G), then for any vertex v ∈ V (H) we have 
[v] ∩ S| ≥ 2. If f ∈ E(H), then |E[v] ∩ S| ≥ 2 for each 
dpoint v of e and f . Finally, if uv = f ∈ F with v ∈
H), it follows that |E[v] ∩ S| ≥ 2 because v is adjacent 

 both endpoints of e. �
The optimum of G ⊕ H will thus be either a sole edge 
m E(G) ∪ E(H) or some subset of F . In what follows we 
ow how to find the best possible NI-set contained in F .
Let G ′ be the complete bipartite graph given by ver-
 sets {cG(v) : v ∈ V (G)} and {cH (u) : u ∈ V (H)}, where 
(v) is the connected component of G containing v , and 
(u) the connected component of H containing u. De-
e the weight of an edge cG (v)cH (u) as max{wxy : x ∈
(v) and y ∈ cH (u)}.

mma 7. ([13]) Each connected component of a cograph has 
meter at most 2.

mma 8. If M is a maximum matching of G ′ and N a maxi-
m weighted NI-set contained in F , then w(M) = w(N).

oof. We first prove w(M) ≤ w(N). To see this it is 
ough to prove that M is a NI-set contained in F , where 
in the edge set of G ⊕ H is given by the weight defini-
n of G ′ . Under this interpretation it is clear that M ⊆ F . 
ppose M is not a NI-set. Then, without losing overall 
nerality, there must be some vertex v ∈ V (G) such that 
[v] ∩ M| ≥ 2. Suppose {e, f } ⊆ E[v] ∩ M . Note that if e
s no endpoint in cG (v), then e /∈ E[v]. In the same way, 
f has no endpoint in cG (v), then f /∈ E[v]. Therefore, 

and f have both at least one endpoint in cG (v)—a con-
diction because M is a matching.
We now prove w(M) ≥ w(N). First suppose that there 

e two edges e, f ∈ N with endpoints in one connected 
mponent of G . Suppose these endpoints are u and v , re-
ectively. Clearly, u �= v . If distG(u, v) = 1, then |E[v] ∩
, f }| = |E[u] ∩ {e, f }| = 2. Finally, if distG (u, v) = 2, then 
 any vertex w ∈ V (G) adjacent to u and v we have 
[w] ∩ {e, f }| = 2. Note that by Lemma 7 it cannot be the 
se that distG (u, v) > 2. Therefore, each connected com-
nent of G and H contains at most one endpoint of N . In 
her words, N is a matching in G ′ . By the weight defini-
n of G ′ , it follows that w(M) ≥ w(N). �
eorem 9. Weighted NI-set on cographs is polynomially solv-
le.

Unweighted NI-set

In this section we present an asymptotically tight upper 
und on the cardinality of a NI-set for d-regular graphs.

eorem 10. Let G be a d-regular graph and S a NI-set. Then 
| < m

d−1 .

oof. First note that in a d-regular graph 2m = nd. Sup-
se that |S| ≥ m . Then, multiplying by 2 on each side 
d−1
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Fig. 2. Tightness of Theorem 10 for d = 4.

we get 
∑

v∈V dS (v) = 2|S| ≥ 2m
d−1 , where dS(v) is the num-

ber of edges in S incident to v . Therefore, by the pigeon-
hole principle, there must be some vertex v ∈ V such that 
dS (v) ≥ 2m

n(d−1)
= d

d−1 > 1, which is a contradiction since 
|E[v] ∩ S| ≤ 1. �
Remark 3. The bound is asymptotically tight. Indeed, for 
any d ≥ 2 there is a d-regular graph G such that for a max-
imum NI-set S ,

m
d−1

|S| = d

d − 1
.

Proof. Consider the graph given by two copies of
K(d−1),(d−1) where each vertex is adjacent to its copy as 
in Fig. 2. Clearly, m = 2d(d − 1) and |S| = 2(d − 1). �
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