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Discrimination surfaces are here introduced as a diagnostic tool for local-
izing brain regions where discrimination between diseased and nondiseased
participants is higher. To estimate discrimination surfaces, we introduce a
Mann-Whitney type of statistic for random fields and present large-sample
results characterizing its asymptotic behavior. Simulation results demonstrate
that our estimator accurately recovers the true surface and corresponding inter-
val of maximal discrimination. The empirical analysis suggests that in the
anterior region of the brain, schizophrenic patients tend to present lower local
asymmetry scores in comparison with participants in the control group.
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1 INTRODUCTION

The study of brain asymmetries is of fundamental importance to understand the origins of several diseases in humans and
animals; see for instance, Galaburda et al,1 Springer and Deutsch,2 Toga and Thompson,3 Rogers et al,4 and the references
therein. Morphological brain asymmetries have also been studied so to assess whether they contain information that can
be used to discriminate between diseased and nondiseased participants. For example, in a recent paper, Brignell et al5

propose a Bayesian registration method for 3-D magnetic resonance images (MRIs) brain images and analyze brain-shape
asymmetries by comparing schizophrenia with healthy (or control) participants. To this aim, the authors propose a global
measure of symmetry that consists in the ratio between the estimated left brain volume minus the estimated right brain
volume, relative to the total volume of the brain, for each patient, and find weak evidence of differences between the
2 groups: schizophrenic vs control patients. Neuroanatomical differences between schizophrenic patients and control
patients have been widely discussed in other studies in the medical literature.3,6-9 Beyond differences at a morphological
level, asymmetries of the brain at a functional level have also been examined.10 Neuroanatomical differences between
diseased and nondiseased participants—rather than functional differences—will be the ones of interest in this article.

Despite the results by Brignell et al,5 the evidence for differences in morphological asymmetries between schizophrenic
and control patients is not clear cut, and for instance, in Narr et al,11(p945) it can be read as follows:

“Many studies have observed schizophrenia-related reductions (or reversals) in asymmetric perisylvian
regions, but negative findings are common . . . .”

With the exception of Brignell et al,5 most aforementioned studies are mainly descriptive and do not address from
a rigorous statistical perspective where the location of structural differences between groups take place with higher
probability.
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In this article, we propose a novel statistical approach to localize specific regions on the brain where the asymmetry,
measured as the difference between left and right sides in the brain, is more likely to be observed when comparing the
group of schizophrenic patients with healthy controls participants. To this aim, we propose what we refer to as a dis-
crimination surface, and we use it to define 2 sets, namely, intervals of maximal discrimination (IMDs) and regions of
over-threshold discrimination (ROTDs). Such surfaces and corresponding sets allow us to identify regions of the brain at
which left-to-right morphological differences between diseased and nondiseased participants are more likely to occur.
From a conceptual viewpoint, discrimination surfaces—as formally defined in Section 3—have connections with the area
under conditional ROC curves, as discussed for example by Inácio de Carvalho et al. 12,13 However, while in conditional
ROC curves, the objective is often on assessing how the discrimination ability of a diagnostic test changes over a pre-
dictor; here, the goal is on searching for regions of maximum discrimination. Another object, which has connections
with discrimination surfaces, is the so-called free-response receiver operating characteristic (ROC) curve14; yet an impor-
tant distinction between the 2 paradigms is that discrimination surfaces deliver as output a suspected location, whereas
free-response ROC curve take as input suspected locations—along with a rating on the level of suspicion. Brain curves are
modeled here as a functional data analysis15-17 object and are used to generate a random field of local asymmetry scores.
To estimate discrimination surfaces, we propose what we call as empirical discrimination surfaces, which can be regarded
as a Mann-Whitney type of statistic for random fields, in the sense that such empirical surfaces consist of pointwise
Mann-Whitney estimates. Some large-sample results characterizing the asymptotic behavior of our methods are derived,
and in particular, we show that under mild conditions, the empirical surface is strongly uniformly consistent and that the
corresponding IMD is weakly consistent. A smoothed version of the estimator is also discussed.

The article is organized as follows. In Section 2, we describe the data, from a schizophrenia study, that motivate
the paper. In Section 3, we present the proposed discrimination surface-based methods. In Section 4, we assess the
finite-sample performance of the proposed estimator in a simulation study. In Section 5, we analyze the data from the
above-mentioned schizophrenia study. We conclude in Section 6. Proofs are included in Appendices A.1 to A.3.

2 DESCRIPTION OF STUDY DATA

The raw data consist of n = 68 3-D MRI, gathered from a neuroscience study conducted at the University of British
Columbia, Canada, and documented in Brignell et al5; the study involved nD = 30 schizophrenic patients and nD̄ = 38
healthy controls. Some comments on the geometry of the data are in order. Following common practice in neuroscience,
each brain was registered into the so-called Talairach space18—so that brains can be compared on the same 3-dimensional
referential coordinate space. The x-axis is created through the identification of 2 landmarks: the anterior commissure
and the posterior commissure, with the anterior commissure being the origin (0, 0, 0); the remainder axes are the y-axis:
inferior→ superior (bottom to top) and the z-axis: right→ left (“left”= patient's left). Of main interest is the so-called axial
plane, which corresponds to the x-z plane. In Figure 1A, we show the raw data corresponding to the x-z plane registered
by the MRI scanner with m = 500(x, z) coordinates on each participant; the other relevant perspectives, not shown here,
are the sagittal plane (x-y) and the coronal plane (y-z). These data are in nature continuous; therefore, the framework of
functional data analysis15-17 is natural to model brain sections on the axial plane. The raw data are available from the R
package shapes.19

Such data have been converted into functional data using a reproducing kernel Hilbert space approach discussed in the
Supporting Information. After transforming the raw data into functions, we obtain the brain curves B̃i ∶ [0, 2𝜋] → R2 for
i = 1, … ,n shown in Figure 1B.

Following Brignell et al,5 we assume the midline plane of the brain as the line of symmetry; therefore, we decompose
the brain curves into left (B̃L) and right (B̃R) as follows:

B̃L(𝜃) =
{

B̃(𝜃), if 𝜃 ∈ ( 𝜋
2
, 3𝜋

2
],

0, otherwise,

B̃R(𝜃) =
{

B̃(𝜃), if 𝜃 ∈ (− 𝜋

2
, 𝜋

2
],

0, otherwise.

It is clear that B̃(𝜃) = B̃L(𝜃) + B̃R(𝜃) from the previous decomposition. To analyze the brain asymmetries with respect
to the midline plane, we rotate and reflect the functions B̃L and B̃R and also rescale the domain of both functions to the
interval [0, 1]. In Figure 1C,D, we respectively represent left and right brain curves after these transformations; we denote
these curves throughout as BL ∶ [0, 1] → L ⊂ [0,∞) and BR ∶ [0, 1] → R ⊂ [0,∞).
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FIGURE 1 A, Brain sections on the axial plane, for healthy and diseased participants; x-axis: posterior → anterior (back to front); z-axis:
right → left (“left” = patient's left). B, Brain curves B̃ ∶ [0, 2𝜋] → R2. C, Left BL ∶ [0, 1] → L ⊂ [0,∞). D, Right BR ∶ [0, 1] → R ⊂ [0,∞) brain
curves after suitable rotations, reflections, and domain rescaling

3 DISCRIMINATION SURFACES

3.1 Distance to symmetry
Denote by D and D̄ the population of diseased and nondiseased participants, respectively, then, for pairs of functional
brain curves (BL,D,BR,D) and (BL,D̄,BR,D̄), we define the distance to local symmetry as follows:

YD(t) = ∫
b

a
{BL,D(x) − BR,D(x)}2 dx, YD̄(t) = ∫

b

a
{BL, D̄(x) − BR,D̄(x)}2 dx, (1)

for t = (a, b) ∈ T, where

T = {(a, b) ∈ [0, 1]2 ∶ 0 ⩽ a < b ⩽ 1}. (2)

The scores in Equation 1 should be interpreted as measures of distance to symmetry in the region [a, b], and for this
reason, we will refer to these as local asymmetry scores; indeed, for a completely symmetric brain, BL = BR, it holds that
Y(t) = 0, for all t ∈ T. The larger the value of Y (t) = ∫ b

a {BL(x) − BR(x)}2 dx, the less symmetric the brain should be on
the region parametrized by t. We refer to a and b as localization parameters.
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3.2 Discrimination surfaces, IMD, and ROTD
Using the local asymmetry scores YD(t) and YD̄(t) from Equation 1, we define the discrimination surface as

Λ(t) = P{YD(t) > YD̄(t)}, t ∈ T. (3)

Such surfaces can be used for assessing discrimination between the local asymmetry scores of diseased and nondiseased
participants by appraising how likely it is for YD(t) to be larger than YD̄(t), over the regions of the brain corresponding to
the interval (a, b) = t ∈ T. For the purpose of consistency with existing literature, the definition in Equation 3 follows the
standard convention in medical diagnostic statistics—that a higher value of the “marker” YD(t) would be more indicative
of disease—but all concepts in the paper can be readily adapted to the setting where a higher value of YD(t) is less indicative
of disease.

Another graphical device that can be used to summarize information on the discrimination ability over different inter-
vals is the discrimination contour, which is defined as 𝜆u = {t ∶ Λ(t) = u}, for u ∈ (0, 1). We can interpret 𝜆u as the sets
of intervals with the same discrimination power.

Example 1. (Discrimination surfaces for lognormal-distributed asymmetry scores)
Consider the location and scale functions 𝜇· ∶ [0, 1]2 → R and 𝜎· ∶ [0, 1]2 → [0,∞), with 𝜇D(t) > 𝜇D̄(t). Let YD(t) ∼
LN(𝜇D(t), 𝜎2

D(t)) and YD̄(t) ∼ LN(𝜇D̄(t), 𝜎2
D̄
(t)) be 2 independent and lognormal distributed asymmetry scores. Then,

Λ(t) = P{YD(t) > YD̄(t)} = Φ
(

𝛼(t)
{1 + 𝛽2(t)}1∕2

)
, t ∈ T,

where Φ is the cumulative distribution function of the standard normal distribution, 𝛼(t) = {𝜇D(t) − 𝜇D̄(t)}∕𝜎D̄(t)
and 𝛽2(t) = 𝜎D(t)∕𝜎D̄(t). The so-called binormal model is a particular case of the current model, and it corresponds to
the case 𝜇D(t) = 𝜇D, 𝜇D̄(t) = 𝜇D̄, 𝜎D(t) = 𝜎D, 𝜎D̄(t) = 𝜎D̄, with 𝜇D(t) > 𝜇D̄(t) and 𝜎D, 𝜎D̄ > 0; cf section 4.4 in Pepe.20

In Figure 2, we plot an example of a bi-lognormal discrimination surface and corresponding discrimination contours
with 𝜎D(t) = 𝜎D̄(t) = 1, 𝜇D̄(t) = 0, and 𝜇D(t) = 1 − 10(b − 3∕4)2 − 10(a − 1∕2)2, for 0 ⩽ a < b ⩽ 1; note that in the
latter specification, 𝛼(t) = 𝜇D(t) and 𝛽(t) = 1.

In practice, one may also be interested in assessing on what regions discrimination is above a certain threshold and this
leads us to define the ROTD:

ROTDu = {t ∶ Λ(t) ⩾ u or 1 − Λ(t) ⩾ u}, u ∈ (0, 1). (4)

Discrimination surfaces—as defined above—have connections with the area under conditional ROC curves,12,13 defined
as AUC(x) = ∫ 1

0 ROC(𝑝|x)d𝑝, where ROC(𝑝|x) = 1 − FD(F−1
D̄
(1 − 𝑝|x)|x), with x in R𝑝 being a covariate. Yet as it can

Discrimination surface Discrimination contour

FIGURE 2 (Left) Bi-lognormal discrimination surface and corresponding discrimination contour (right) using the configuration of
parameters in Example 1. The solid black dot (•) represents the coordinates t∗ = (a∗, b∗) = (1∕2, 3∕4) underlying the interval of maximal
discrimination, IMD= [a∗, b∗] [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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be seen from Equation 4 (and as it will be seen from Equation 5), here, the target is on seeking for regions of maximum
discrimination and not simply on assessing how discrimination ability changes over a covariate. Also, while in a typical
conditional ROC curve setting, data are of the types {(XD,i,YD,i)}

nD
i=1 and {(XD̄,𝑗 ,YD̄,𝑗)}

nD̄
𝑗=1 in our context data that consist

of the random fields of asymmetry scores, that is,

{YD,i(t) ∶ t ∈ T}nD
i=1, {YD̄,𝑗(t) ∶ t ∈ T}nD̄

𝑗=1,

which we compute using {(BL,D,i,BR,D,i)}
nD
i=1 and {(BL,D̄,𝑗 ,BR,D̄,𝑗)}

nD̄
𝑗=1.

Since the goal is to localize brain regions where schizophrenic patients differ further from healthy controls. Then, the
regions of interest are those where one of the random variables is stochastically greater than the other with maximum
probability. Therefore, let t+ ∶= arg maxt∈TΛ(t) and t− ∶= arg maxt∈T1 − Λ(t) = arg mint∈TΛ(t); both are well defined if
we assume Λ(t) is a uniformly continuous surface (note that T in Equation 2 is a compact set); then, the region of interest
is determined by t∗ ∶= t+ if Λ(t+) > 1 − Λ(t−) or t∗ ∶= t−, otherwise. In this way, we define the IMD as

IMD = [a∗, b∗], (5)

where the limits of this interval are defined through the elements in the vector t∗ = (a∗, b∗).

3.3 Estimating discrimination surfaces and their functionals
We start by noting that the trajectories of the random fields of asymmetry scores, as defined in Equation 1, live in 𝒴 , the
space of all nonnegative and differentiable random functions on T such that 𝜕Y (t)∕𝜕a ⩽ 0 and 𝜕Y (t)∕𝜕b ⩾ 0, a.s. Indeed,
it holds that

⎧⎪⎨⎪⎩
𝜕Y
𝜕a

= 𝜕

𝜕a

(∫ b
a {BL(x) − BR(x)}2 dx

)
= −{BL(a) − BR(a)}2 ⩽ 0,

𝜕Y
𝜕b

= 𝜕

𝜕b

(∫ b
a {BL(x) − BR(x)}2 dx

)
= {BL(b) − BR(b)}2 ⩾ 0.

(6)

Keeping in mind the applied context under analysis—and to rule out uninteresting cases from a morphological
perspective—we further assume that random functions in 𝒴 are “bounded,” in the sense that P{Y(t) ∈ S} = 1, with
S = [0,M], for some possibly large but finite M > 0, for all t ∈ T.

Let Ft(𝑦) = P{Y (t) ⩽ 𝑦}, and define the marginal empirical distribution function as

F̂t(𝑦) =
1
n

n∑
i=1

I{Yi(t) ⩽ 𝑦}, 𝑦 ∈ S, t = (a, b) ∈ T,

where I{·} is the indicator function and Y1(t), … ,Yn(t) is a sequence of independent identically distributed random
functions in𝒴 . Given that for each fixed t, Ft(y) is a distribution function, the standard Glivenko-Cantelli theorem implies
that, as n → ∞, it holds that

sup
𝑦

|F̂t(𝑦) − Ft(𝑦)| = o(1), a.s. (7)

Yet, since the trajectories of asymmetry scores live in 𝒴 , a stronger result actually holds for our setting. Indeed, F(·,·)(y)
is nondecreasing, and as a consequence of Equation 6, it follows that for 0 ⩽ a0 ⩽ a1 < b ⩽ 1, then,

P{Y (a1, b) ⩽ 𝑦|Y (a0, b) ⩽ 𝑦} = 1 and P{Y (a0, b) ⩽ 𝑦|Y (a1, b) ⩽ 𝑦} ⩽ 1. (8)

Therefore, by evaluating the ratio of the 2 conditional probabilities in Equation 8, we obtain that P{Y (a0, b) ⩽ 𝑦} ⩽
P{Y (a1, b) ⩽ 𝑦}, that is, F(a,·)(·) is nondecreasing; the same reasoning can be used to verify that F(·,b)(·) is nonincreasing.
The same monotonicity properties hold for the marginal empirical distribution function F̂t(𝑦). Thus, monotonicity on
each dimension of Ft(y) and F̂t(𝑦), along with the extra assumption that the true Ft(y) is continuous, allows us to go beyond
and state the following generalization of the result presented in Equation 7.

Theorem 1. Let Y1(t), … ,Yn(t) be a sequence of independent identically distributed random functions in 𝒴 . Suppose
Ft(y) is continuous for all (y, t) in S × T. Then, as n → ∞, it holds that

sup
(𝑦,t)

|F̂t(𝑦) − Ft(𝑦)| = o(1), a.s.
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Given a random sample of size n = nD + nD̄ of random fields of asymmetry scores from diseased and nondiseased
participants, define the empirical discrimination surface as

Λ̂(t) = 1
nDnD̄

nD∑
i=1

nD̄∑
𝑗=1

I{YDi(t) > YD̄𝑗(t)}. (9)

Here, YDi(t) is the distance to symmetry score, as defined in Equation 1, for the ith individual in the sample of diseased
patients, and YD̄𝑗(t) is the distance to symmetry score of the jth nondiseased participant in the control group.

Let t̂+ ∶= arg maxt∈TΛ̂(t) and t̂− ∶= arg maxt∈T1 − Λ̂(t); then, we define the estimated optimal localization vector
parameter t̂∗ ∶= t̂+ if Λ̂(̂t+) > 1 − Λ̂(̂t−) and t̂∗ ∶= t̂−, otherwise. The corresponding interval of maximum discrimination
estimate consists of a random interval, ÎMD = [â∗, b̂∗], where the limits of this random interval are defined through the
elements in the vector t̂∗ = (â∗, b̂∗).

Empirical ROTD can be obtained by setting a high level of discrimination u ∈ (0, 1) and consist of the following random
subset of T:

R̂OTDu = {t ∶ Λ̂(t) ⩾ uor1 − Λ̂(t) ⩾ u}. (10)

Some comments are in order. For each t ∈ T, our estimator in Equation 9 is a Mann-Whitney type of statistic, and thus,
it is straightforward to show that it is pointwisely unbiased and pointwisely weakly consistent, ie,

E{Λ̂(t)} = Λ(t), Λ̂(t) − Λ(t) = op(1), (11)

assuming nD∕n → 𝜌D ∈ (0, 1) and nD̄∕n → 𝜌D̄ ∈ (0, 1), with 𝜌D + 𝜌D̄ = 1. Beyond such straightforward statements, more
can actually be said by taking advantage of our extended Glivenko-Cantelli theorem (Theorem 1 above).

In the theoretical considerations made below, we work under the following assumptions:

(A1) Suppose YD(t) and YD̄(t) are in 𝒴 , the space of all nonnegative and differentiable random functions on T, such
that 𝜕Y (t)∕𝜕a ⩽ 0 and 𝜕Y (t)∕𝜕b ⩾ 0, and which are supported over S = [0,M], for some M > 0, for every
t ∈ T = {(a, b) ∈ [0, 1]2 ∶ 0 ⩽ a < b ⩽ 1}.

(A2) Suppose FDt(𝑦) = P{YD(t) ⩽ 𝑦} and FD̄t(𝑦) = P{YD̄(t) ⩽ 𝑦} are continuous in T×S and strictly increasing in y ∈ S.
(A3) Let YD,1(t), … ,YD,nD(t) and YD̄,1(t), … ,YD̄,nD̄

(t) be 2 independent sequences of independent identically dis-
tributed random functions in 𝒴 .

(A4) Suppose that as n → ∞, it holds that nD∕n → 𝜌D ∈ (0, 1) and nD̄∕n → 𝜌D̄ ∈ (0, 1), with 𝜌D + 𝜌D̄ = 1.

Here, A1 and A2 are regularity conditions on the true data-generating process, whereas A3 and A4 are conditions about
the way we sample from such process. For identification reasons, throughout, we assume that Λ(t) is uniquely maximized
at t∗; this plays no role on the consistency of Λ̂(t). The following results hold.

Theorem 2. Suppose assumptions A1 to A4 hold. Let Λ(t) be a discrimination surface and Λ̂(t) be its empirical discrim-
ination surface; let t∗ = (a∗, b∗) ∈ T be the pair of points delimiting the IMD and t̂∗ ∈ T be their corresponding estimates.
Then, as n → ∞, it holds that

1. supt|Λ̂(t) − Λ(t)| = o(1), a.s.,
2. t̂∗ − t∗ = op(1).

In addition to the empirical estimate of the discrimination surface, smooth estimations can be obtained by considering
the following kernel-based version of our estimator in Equation 9:

Λ̃(t) =
L∑

l=1
KH(t − t′)Λ̂(t), (12)

where L is the length of the grid over which we smooth the empirical discrimination surface and H is a positive definite
bandwidth matrix. In practice, both L and H act as smoothing parameters in the sense that if we increase L and fix H, we
should expect to get smoother estimates.
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Empirical discrimination surfaces

Empirical discrimination contours

FIGURE 3 Above: discrimination surface estimates Λ̂(t). Below: corresponding discrimination contours. A, n = 200; B, n = 1000; C,
n = 2000; D, n = 10000; E, n = 20000; F, True Λ(t) and 𝜆c. In F, the solid black dot (•) represents the coordinates t+ = (a+, b+) = (1∕2, 3∕4)
underlying the interval of maximal discrimination, IMD= [a+, b+], whereas in A to E, solid black dot (•) denotes its corresponding estimates
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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4 SIMULATION STUDY

4.1 Preliminary experiments and preparations for Monte Carlo study
In this section, we illustrate numerically the proposed methodology to estimate discrimination surfaces and correspond-
ing IMD. To this aim, we use as a reference framework the bi-lognormal model introduced in Example 1. A Monte Carlo
study will be reported in Section 4.2.

First, we simulate random samples of YD and YD̄, the lognormal-distributed asymmetry scores corresponding to the
Example 1, with sample size n = 200, 1000, 2000, 10000, and 20000 assuming that 𝜌D = 𝜌D̄ = 0.5. The estimated discrimi-
nation surfaces Λ̂(t) along with the corresponding discrimination contours 𝜆̂u are presented in Figure 3. The results of this
single-run experiment, suggest a fast convergence of the empirical discrimination surface, along with that of the corre-
sponding IMD. To evaluate the uncertainty around the estimation of the IMD in this single-run experiment, we compute
a bootstrap confidence region (CR) for the IMD. For that, we use the data relative to the sample size n = 200 and generate
B = 1000 bootstrap samples from the original data. The bootstrap 𝛼-CRs, based on P̂(IMD ∈ CR𝛼) = 1 − 𝛼 for 𝛼 ∈ [0, 1],
are reported in Figure 4, and for 95% confidence level, the estimated region contains the true localization parameter,
t+ = (a+, b+) = (1∕2, 3∕4). Coverage of the bootstrap will be assessed in the Monte Carlo study from Section 4.2.

4.2 Monte Carlo study
In this Monte Carlo study, we investigate the performance of our estimator in Equation 9 over a variety of sample sizes and
over 2 data configurations (Scenarios A and B). Specifically, we consider the following data generating processes based
on the bi-lognormal model from Example 1, where 𝜎D(t) = 𝜎D̄(t) = 1 and

𝜇D̄(t) = 0, 𝜇D(t) = 1 − 10(b − 3∕4)2 − 10(a − 1∕2)2, 0 ⩽ a < b ⩽ 1. (13)

Namely, we consider the following:

• Scenario A: YD(t) ∼ N(𝜇D(t), 1), with 𝜇D(t) as in (13), and YD̄(t) ∼ N(0, 1), with YD(t) independent of YD(t
′ ) and YD̄(t)

independent of YD̄(t′), for t ≠ t′ .
• Scenario B: YD(t) and YD̄(t) are Gaussian random fields with respective means 𝜇D(t) as in (13) and 𝜇D̄(t) = 0, and with

Matérn covariance function, 𝛾(h) = 𝜎221−𝜅∕Γ(𝜅)(h∕𝜑)𝜅K𝜅(h∕𝜑), for h > 0, where 𝜎 = 1, 𝜑 = 2, and 𝜅 = 0.5 are the sill,
range, and shape parameters, Γ is the gamma function, and with K𝜅 denoting the modified Bessel function of order 𝜅.

Scenario A is thus the one we already used to produce the normal distributed asymmetry scores for the 1-shot experi-
ment in Section 4.1. We continue assuming 𝜌D = 0.5 and consider again the sample size n = 200, 1000, 2000, 10000, and
20 000. For each sample size, we simulate M = 1000 datasets for each of the Scenarios A and B above. With each dataset,
we estimate the discrimination surface and the corresponding IMD; then, we compute the mean integrated squared error
(MISE) and mean squared error (MSE) as follows:

FIGURE 4 Bootstrap confidence regions along with true localization parameter t+ = (a+, b+) = (1∕2, 3∕4), in a solid dot (•), at different
confidence levels [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 1 Mean integrated squared error (MISE) estimates and mean
squared error (MSE) (both on a scale of 103), respectively for Λ and t, over
different sample sizes for Scenarios A and B as defined in Section 4.2. The
standard-error is reported in parenthesis

Sample size
Scenario Parameter 200 1000 2000 10000 20000

A Λ 3.833 0.765 0.380 0.076 0.038
(0.230) (0.047) (0.024) (0.005) (0.002)

t 5.766 2.761 2.014 0.963 0.739
(5.320) (2.482) (1.787) (0.874) (0.680)

B Λ 4.239 0.790 0.396 0.076 0.040
(4.666) (0.843) (0.429) (0.088) (0.044)

t 2.137 0.761 0.493 0.217 0.191
(2.002) (0.730) (0.463) (0.135) (0.088)

MISEn
Λ = 1

M

M∑
m=1∫T

{Λ̂m(t) − Λ(t)}2 dt, MSEn
t+ = 1

M

M∑
m=1

{(â+m − a+)2 + (b̂+
m − b+)2},

where Λ̂m(t) is the estimate produced using the mth simulated dataset, with t̂+m = (â+m, b̂+
m) denoting its corresponding

estimated localization parameters.
Table 1 summarizes our Monte Carlo simulation study. As expected, MISE decreases as the sample size increases,

both in terms of the MISE associated with Λ̂ and t̂+. However, it can be seen that in Scenario B, the estimates of t+ are
more accurate for all sample sizes. This is due to the dependence structure introduced in the data-generating process in
Scenario B, that leads to a reduction of the variability associated to t̂+. Note that MISEn

Λ looks proportional to 1∕n, while
MSEn

t+ seems to converge more slowly. This due to the fact the estimation of IMD is a challenging one, as the empirical
discrimination surface is only smooth in the limit. We have also conducted some Monte Carlo experiments, with n = 200,
so to assess coverage probability of the bootstrap CR for t+ in Scenarios A and B. The 99% and 95% coverage probabilities
in Scenario A are .999 and .955, respectively. In Scenario B, the 99% and 95% coverage probabilities are 0.987 and 0.945,
respectively. Thus, bootstrap CRs achieve nominal coverage in both scenarios.

5 BRAIN ASYMMETRY ANALYSIS IN SCHIZOPHRENIC PATIENTS

5.1 Context underlying the analysis
We now apply our methods to the brain curves from the study in Section 2. It has been suggested that schizophrenic
patients may tend to have more symmetric brains than controls in the anterior and perisilvian regions.11,21 This result is
controversial,3,7,8 and we show in this section that our methods can be used to localize brain regions where with maximum
probability schizophrenic patients may differ further from healthy controls.

5.2 Discrimination surfaces and regions of maximal discrimination: region-specific
analysis
We estimate the empirical discrimination surface by using the asymmetry scores introduced in Equation 1. In Figure 5,
we show the discrimination surfaces estimated using the methods proposed in Equations 9 and 12: At the top of the figure,
we show Λ̂(t) on the left and Λ̃(t) on the right, and 1 − Λ̂(t) and 1 − Λ̃(t) on the bottom (left and right, respectively).
The smoothed empirical discrimination surfaces corresponds to the smoothing parameters L = 2775 and H = 0.13I2×2.
Following Marron,22(p533) we conducted inference over a wide range of bandwidth matrices and grid sizes as a way
to assess the sensitivity and reliability of the inference to the smoothing parameters L and H. The results do not differ
substantially from the ones documented here for L and H close to the values selected to conduct the analysis.

In most regions of the brain, as parametrized by t, one finds that Λ̂(t) is lower than 1 − Λ̂(t); cf Figure 5; in particular,
maxt∈TΛ̂(t) = Λ̂(t̂+) ≤ maxt∈T1 − Λ̂(t) = Λ̂(t̂−). Indeed, evidence provided by empirical discrimination surfaces suggests
that for the study data, one is more likely to observe symmetric brains in the schizophrenia group of patients than in the
healthy control group. Thus, we concentrate in t∗ = t− as the estimation target in what follows.
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FIGURE 5 Discrimination surface estimates. Above: empirical discrimination surface Λ̂(t) and its smoothed version Λ̃(t). Below:
reversed empirical discrimination surface 1 − Λ̂(t) and its smoothed version 1 − Λ̃(t) [Colour figure can be viewed at wileyonlinelibrary.com]

We now turn our attention to the IMD as defined in (5). The corresponding estimate is ÎMD = [0.44, 0.52], which
corresponds partially to the perisilvian region of the brain. In the region parametrized by t̂∗, the estimated probability
P̂{YD(̂t

∗) ⩽ YD̄(̂t
∗)} = .66 can be interpreted as the estimated proportion of schizophrenic patients who present lower local

asymmetry scores than a healthy patient in the region parametrized by t̂∗. In Figure 6, we show the estimated average
brain curves (B̄L,D, B̄R,D) and (B̄L,D̄, B̄R,D̄) and, highlighted in red, the region that corresponds to t̂∗ = (0.44, 0.52). As can
be seen, the “average patient” in the control group have a more asymmetric brain than the average patient in the disease
group (notice that the area highlighted in red on the left of the figure is greater that the same brain area on the right of
the figure) in the local region parametrized by t̂∗.

The ROTDu as defined in (4), was estimated using the plug-in estimator in (10); the result is presented in Figure 7 for
u = 0.60 (on the left) and u = 0.65 (on the right). For the dataset, we are considering here Λ̂(t) < 0.60 for all t ∈ T;
therefore, the estimated ROTDu only highlights regions where P̂{YD(t) ≤ YD̄(t)} ≥ u. In Figure 7 (left), we can see that
schizophrenic patients present more symmetric brains than healthy patients in the regions of the brain corresponding to
the anterior zone. Moreover, in Figure 7 (right), we observe that this difference in terms of symmetry is more likely to be
observed in the perisylvian region of the brain, evidence which corroborated by the IMD estimate, which localizes the
region in Equation 10.

Therefore, the empirical evidence obtained in this local-brain asymmetry study agrees with the results obtained by Narr
et al11 and Oertel-Knöchel and Linden.21 A sensitivity analysis was conducted using other distances to local symmetry

http://wileyonlinelibrary.com
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FIGURE 6 Average brain curves and the local region t̂∗ corresponding to estimated interval of maximal discrimination, as defined in
Section 3.3, which corresponds to the point where the empirical discrimination surface attain its maximum [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Regions over-threshold discrimination (ROTDs) estimate as defined in Equation 10 with u = 0.60 (left) and u = 0.65 (right), for
brain asymmetry analysis data [Colour figure can be viewed at wileyonlinelibrary.com]

instead of Equation 1. The choice of the distance does not appear to affect our main findings; in particular, the IMDs
corresponding to the L1 and L∞ distances to local asymmetry are ÎMDL1 = [0.45, 0.51] and ÎMDL∞ = [0.47, 0.50]. To assess
the significance of the identified region of local asymmetry, we used Hsieh and Turnbull,23(Theorem 2.3) which implies
that asymptotically

√
nD{Λ̂(t) −Λ(t)} ∼ N(0, 𝜎2) + o𝑝(1), with 𝜎2 = 1∕12(1∕nD + 1∕nD̄)—under the null H0 ∶ Λ(t) = 1∕2.

The null is rejected at the estimated IMD, and more importantly, it is consistently rejected on a neighborhood of (â, b̂).
See Section S3 in the Supporting Information.

To describe the uncertainty around the IMD, we use the bootstrap to build a empirical CR for this parameter. The
study was conducted using B = 1000 bootstrap samples from the original data. In Figure 8, we show the empirical
𝛼-CRs—computed from P̂{IMD ∈ CR𝛼} = 1 − 𝛼 for 𝛼 ∈ [0, 1]—that support the evidence of morphological differences
in the brains between groups, being more likely to observe symmetric brains in the perisylvian and anterior regions in
schizophrenic patients.

In addition, in Figure 9, we show the bootstrap-based 95% percentile functional CR for P{YD(t) ⩽ YD̄(t)} and
1 − P{YD(t) ⩽ YD̄(t)}. These empirical functional CRs can be used to assess the variance regarding the estimated
discrimination surfaces and in particular the uncertainty around the estimated IMD.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 8 Bootstrap estimation of the confidence region for different confidence levels (1 − 𝛼) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Empirical functional 95% confidence interval for the discrimination surfaces: Λ(t) on the left and 1 − Λ(t) on the right [Colour
figure can be viewed at wileyonlinelibrary.com]

6 DISCUSSION

Discrimination surfaces are introduced here as a diagnostic tool for localizing brain regions where discrimination between
diseased and nondiseased participants is higher. To estimate discrimination surfaces and associated regions of maxi-
mum discrimination, we introduce a Mann-Whitney type of statistic for random fields and present large-sample results
characterizing its asymptotic behavior. We have analyzed the data documented in Brignell et al5 and found evidence of
region-specific difference in terms of symmetry between the groups of healthy and schizophrenic patients. The empirical
analysis suggests that for this study data, schizophrenic patients are more likely to present symmetric brains in the ante-
rior region. In particular, with maximum probability, this difference in shape is observed in the perisylvian region as is
also documented in Narr et al 11 and Oertel-Knöchel and Linden21 and the reference therein. An obvious limitation with
empirical discrimination surface stems from the lack of ability to borrow strength across values of t, which motivates the
need for also considering the smoothed version in (12).

A natural possibility for future work entails building alternative IMDs from other measures assessing discrimination
between groups such as the Youden index24—which has links with the Kolmogorov-Smirnov statistic—or a standardized
log-rank statistic25-27—which has links with the Wilcoxon rank statistic. Specifically, in a similar way that we argue here
that discrimination surfaces have connections with the area under conditional ROC curves (cf Section 3.2), it would
be naturally modeling our applied setting of interest with an analogue of the covariate-adjusted Youden index,28 YIt =
maxct {FD̄t(ct) − FDt(ct)}, with ct being a function of t; the corresponding IMD would in this case result from maximizing
YIt. In addition, a similar approach would entail developing standardized log-rank statistics for random fields, |Sct |, whose
corresponding IMD would result from maximizing the discrimination surface |Sct | over t in T.

http://wileyonlinelibrary.com
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Another natural avenue for future work is on extending the local asymmetry analysis to 3-D functional data so to
estimate 3-D regions of maximal discrimination. Accompanying the latest trends in the study of medical images,29,30 a
natural starting point for this would be to model the brain surface B̃(x, 𝑦, z) as a Riemann manifold, , embedded in a
normed vector space (R3, || · ||). After a suitable partition and reparametrization of the brain manifold into left and right
brain submanifolds, BL(x, y, z) and BR(x, y, z), one could consider the set  of closed smooth curves 𝛾 ∶ [0, 1] → , that
is, for all 𝛾 ∈  then 𝛾(0) = 𝛾(1) and 𝛾

′ (0) = 𝛾
′ (1); a curve belonging to this set determines a 3-D closed region in the brain

surface. Asymmetry scores in the local region determined by the closed curve 𝛾 ∈  could then be defined as

YD(𝛾) = ∫
1

0
{BL,D(𝛾(s)) − BR,D(𝛾(s))}2 ds, YD̄(𝛾) = ∫

1

0
{BL,D̄(𝛾(s)) − BR,D̄(𝛾(s))}2 ds,

along with the discrimination functional for such 3-D setting,

Λ(𝛾) = P{YD(𝛾) > YD̄(𝛾)}, 𝛾 ∈ .
The variational problems associated to the local region of maximal discrimination,

𝛾+ =∶ arg max𝛾∈Λ(𝛾) and 𝛾− =∶ arg max𝛾∈1 − Λ(𝛾),

would entail estimation over an infinite-dimensional parameter space  and thus, would require the need of developing
inference methods and asymptotics tailored for that setting.
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APPENDIX A In these appendices, we use F(y, a, b) to denote Ft(𝑦) = P{Y (t) ⩽ 𝑦}when the context so requires and use
the notation FDt(𝑦) = P{YD(t) ⩽ 𝑦} and FD̄t(𝑦) = P{YD̄(t) ⩽ 𝑦}, for y ∈ S and t ∈ T. Also, F−1

t (𝑝) = inf{𝑦 ∶ Ft(𝑦) ⩾ 𝑝} are
the marginal quantiles, F̂−1

t (𝑝) = inf{𝑦 ∶ F̂t(𝑦) ⩾ 𝑝} are the marginal empirical quantiles, with F̂t(𝑦) = n−1 ∑n
i=1 I{Yi(t) ⩽

𝑦} denoting the marginal empirical distribution function.

A.1 Proof of Theorem 1
Our line of attack is similar to that of Embrechts et al.31(p62) Let Ci,j,k = [yi, yi+1] × [aj, aj+1] × [bk, bk+1], with

0 = 𝑦0 < 𝑦1 < · · · < 𝑦I−1 < 𝑦I = M, 0 = a0 < a1 < · · · < aJ−1 < aJ = 1, 0 = b0 < b1 < · · · < bK−1 < bK = 1,

be such |F(𝑦i+1, a𝑗+1, bk) − F(𝑦i, a𝑗 , bk+1)| < 𝜖,

for a given 𝜖 > 0, for i = 0, … , I, j = 0, … , J, and k = 0, … ,K. By the monotonicity properties of Ft(y) and F̂t(𝑦) on
S×[0, 1]2, namely, F(·,·)(y) and F(a,·)(·) are nondecreasing, F(·,b)(·) is nonincreasing, and analogous properties hold for F̂t(𝑦),
it follows that

Δn ≡ sup
(𝑦,t)∈S×T

|F̂t(𝑦) − Ft(𝑦)| ⩽ sup
(𝑦,t)∈S×[0,1]2

|F̂t(𝑦) − Ft(𝑦)|
= max

i,𝑗,k
sup

(𝑦,t)∈Ci,𝑗,k

|F̂t(𝑦) − Ft(𝑦)|
⩽ max

i,𝑗,k
max{|F̂(𝑦i+1, a𝑗+1, bk) − F(𝑦i, a𝑗 , bk+1)|, |F(𝑦i+1, a𝑗+1, bk) − F̂(𝑦i, a𝑗 , bk+1)|},

and thus, by taking the limit and using the strong law of large numbers,

https://doi.org/10.1002/sim.7611
https://doi.org/10.1002/sim.7611
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lim sup
n→∞

Δn = max
i,𝑗,k

{|F(𝑦i+1, a𝑗+1, bk) − F(𝑦i, a𝑗 , bk+1)|} < 𝜖, a.s.

A.2 Auxiliary results
This appendix includes auxiliary lemmas, which streamline the proof of Theorem 2 in Appendix A.3.

Lemma 1. Let t ∈ T, and let g(t) be a function. Suppose that (1) g(t) is uniquely maximized at t∗, (2) T is compact, (3)
g(t) is continuous, and (4) ĝ(t) converges uniformly in probability to g(t), and t̂ = arg maxt ĝ(t). Then, as n → ∞, it holds
that

t̂ − t∗ = op(1).

Proof. See Newey and McFadden.32(p2121)

Lemma 2. Let Y1(t), … ,Yn(t) be a sequence of independent identically distributed random functions in 𝒴 . Suppose
Ft(y) is continuous for all (y, t) in S × T and strictly increasing for all y in S. Then, as n → ∞, it holds that

sup
(𝑝,t)

|F̂−1
t (𝑝) − F−1

t (𝑝)| = o(1), a.s.

Proof. The proof follows the same reasoning as that of Theorem 1 and can be found in Supporting Information.

Lemma 3. Suppose assumptions A1 to A4 of Section 3.2 hold. Then, as n → ∞, it holds that

sup
(𝑝,t)

|FDt{F̂−1
D̄t (𝑝)} − FDt{F−1

D̄t (𝑝)}| = o(1), a.s.

Proof. Since FD̄t(𝑦) is a bounded and continuous function for all (y, t) in S × T, it is uniformly continuous, and thus,
for every 𝜖 > 0, there exists a 𝛿 > 0 such that

sup
(𝑝,t)∈[0,1]×T

|F̂−1
D̄t (𝑝) − F−1

D̄t (𝑝)| < 𝛿 ⇒ sup
(𝑝,t)∈[0,1]×T

|FDt{F̂−1
D̄t (𝑝)} − FDt{F−1

D̄t (𝑝)}| < 𝜖, a.s. (A1)

Then, by the uniform convergence of F̂−1
D̄t
(𝑝)(Lemma 2), we can always find an n > N(𝜖) such that the right-hand

side of (A1) holds, from where the final result follows.

A.3 Proof of Theorem 2
Keeping in mind that the area under the curve coincides with the area under the ordinal dominance curve,23(p27) it
follows that

|Λ̂(t) − Λ(t)| = |||||∫
1

0
F̂Dt{F̂−1

D̄t (𝑝)}d𝑝 − ∫
1

0
FDt{F−1

D̄t (𝑝)}d𝑝
|||||

⩽ ∫
1

0
|F̂Dt{F̂−1

D̄t (𝑝)} − FDt{F̂−1
D̄t (𝑝)}|d𝑝 + ∫

1

0
|FDt{F̂−1

D̄t (𝑝)} − FDt{F−1
D̄t {𝑝)}|d𝑝

⩽ sup
𝑝∈[0,1]

|F̂Dt{F̂−1
D̄t (𝑝)} − FDt{F̂−1

D̄t (𝑝)}| + sup
𝑝∈[0,1]

|FDt{F̂−1
D̄t (𝑝)} − FDt{F−1

D̄t (𝑝)}|,
and thus,

sup
t
|Λ̂(t) − Λ(t)| ⩽ sup

(𝑝,t)∈[0,1]×T
|F̂Dt{F̂−1

D̄t (𝑝)} − FDt{F̂−1
D̄t (𝑝)}| + sup

(𝑝,t)∈[0,1]×T
|FDt{F̂−1

D̄t (𝑝)} − FDt{F−1
D̄t (𝑝)}|.

Strong uniform consistency of Λ̂ follows by observing that a.s. convergence to zero of the left-hand term follows by
Theorem 1, whereas a.s. convergence to zero of the right-hand term follows by Lemma 3.

Weak consistency of t̂ then follows from Lemma 1 and by noting that Λ(t) is continuous. To justify the latter claim note
that by assumption FDt{F−1

D̄t
(𝑝)} is a bounded and continuous function for (p, t) in [0, 1] × T, and thus, it is uniformly

continuous, so that for every 𝜖 > 0, there exists a 𝛿 > 0, such that if max{|𝑝 − 𝑝′|, |a − a′|, |b − b′|} < 𝛿, then

|FDt{F−1
D̄t (𝑝)} − FDt′ {F−1

D̄t′ (𝑝
′)}| < 𝜖. (A2)

Continuity of Λ(t) then follows from (A2) and the fact that to ensure |Λ(t) − 𝛬(t′ )| < 𝜖, we only need to set 𝛿 >

max{|a − a′|, |b − b′|}.
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