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ABSTRACT: All known terrestrial proteins are coded as continuous strings of ≈20
amino acids. The patterns formed by the repetitions of elements in groups of finite
sequences describes the natural architectures of protein families. We present a
method to search for patterns and groupings of patterns in protein sequences using a
mathematically precise definition for “repetition”, an efficient algorithmic
implementation and a robust scoring system with no adjustable parameters. We
show that the sequence patterns can be well-separated into disjoint classes according
to their recurrence in nested structures. The statistics of the occurrences of patterns
indicate that short repetitions are sufficient to account for the differences between
natural families and randomized groups of sequences by more than 10 standard
deviations, while contiguous sequence patterns shorter than 5 residues are effectively
random in their occurrences. A small subset of patterns is sufficient to account for a
robust ”familiarity” definition between arbitrary sets of sequences.

■ INTRODUCTION

“See f irst, think later, then test. But always see f irst. Otherwise you
will only see what you were expecting.” Douglas Adams
Protein molecules can be described as finite linear strings of

≈20 amino acid types. It is still an intriguing fact that most
natural amino acid strings appear indistinguishable from
random by many statistical tests,1 yet most of the random
polypeptides synthesized do not behave as proteins do; they do
not fold to specific structures nor do they function in a cellular
context. Thus, the reduction in the description of proteins to
linear strings of single amino acids misses a fundamental aspect
to account for the, admittedly complex, biophysics of protein
folding and function.2,3 The search for “structural codes” in the
analysis of protein sequences must consider the occurrence of
correlations in the patterns of groups of amino acids, a task
that gets combinatorially prohibitive to analyze exhaustively for
all protein sequences.4 Multiple heuristics designed to analyze
correlations of the amino acid patterns in proteins have led to
useful ways for approximating the grouping of sequences into
families5 and the structural ensembles of folded globules in
these families6 and even hint at the connection between
folding thermodynamics7 and the evolution of natural
proteins.8 Most of these methods require multiple sequences
to be aligned each other through a common matrix in a so-
called multiple sequence alignment. Multiple sequence align-
ment is still a mathematical open problem, and thus the
current computations of inferred alignments need to be
tediously curated by human experts.9

To search for patterns and groupings of patterns in protein
sequences, we use a mathematically rigorous definition of
repetition and develop a method to characterize such
repetitions. that uses no adjustable parameters. A maximal
repetition (MR) is a well-defined exact match of a continuous
block of amino acids that occurs two or more times in a single
protein or in several proteins, while any of its extensions to
longer sequences either to the N-terminus, the C-terminus, or
both occurs fewer times. The search for maximal repetitions
can be implemented with an algorithm whose computational
complexity scaling is O(n log n), as n the size of the amino acid
data set increases. This modest rate of growth in difficulty
allows a very efficient exhaustive search.10 The natural
architectures of protein sequences can be analyzed by the
occurrence of MR patterns. In previous work,11 we introduced
the concept and defined a continuos familiarity function that
provides a fast quantification of the likelihood that any given
amino acid string belongs to a given set of sequences. This
familiarity function is computed from the search and match of
maximal repetitions in sets of sequences. Here we show that
the total of maximal repetition set can be well separated into
disjoint classes according to their recurrence in nested
structures. We analyze the statistics of maximal repetition
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classes in several natural protein families and in random
strings, and find that only a small subset of the maximal
repetitions is sufficient to account for a robust “familiarity”
definition.

■ METHODS
Notation and Definitions. Let there be an alphabet Σ, a

finite set of symbols. We will consider linear sequences s of
symbols in Σ of length |s|. We label the positions along the
sequence s by counting from 1 to |s|. A string s[i..j] denotes the
sequence that starts at position i and ends at position j in s. If
the proposition 1 ≤ i ≤ j ≤ |s| is false, then s[i..j] is equal to the
empty sequence. We say u occurs in s if u = s[i..j] for some i, j.
A right extension of an occurrence u = s[i..j] exists if j < |s| and
is s[i..j + 1]. A left extension of an occurrence u = s[i..j] is said
to exist if i > 1 and is denoted as s[i − 1..j]. A right context of
an occurrence u = s[i..j] is said to exist if j < |s| and is denoted
as s[j + 1]. A left context of an occurrence u = s[i..j] exists if i >
1 and is denoted as s[i − 1].
Definition 1. (Gusfield12) A maximal repetition (MR) is a

sequence that occurs more than once in s, and each of its
extensions occurs fewer times.
We classify the different patterns of maximal repetitions into

three disjoint categories: the first is super maximal repetition
(SMR): which is a sequence that occurs more than once in s,
while any of its extensions occurs only once. The next category
is that of nested maximal repetition (NE), when all of the
occurrences of the repetition are contained in a longer maximal
repetition. Finally, the category of non-nested maximal
repetition (NN), when at least one of the repetition
occurrences are not contained in a longer maximal repetition
and is not super maximal repetition. Formal details of these
definitions have been described in a previous work.13

An illustration of the proposed classification of maximal
repetitions (MR) is presented in Figure 1. The set of MRs of

the string s1 = cSMR1dSMR2eMRf SMR2gSMR1h (nonrepeat-
ing symbols are lower case) is {MR, SMR, SMR1, SMR2} (see
Figure 1). Observe that SMR1 and SMR2 substrings are the
longest maximal repetitions, occurring twice each. SMR and
MR substrings are also maximal repetitions because they occurs
four and five times in s1 respectively, and each of their
extensions occurs fewer times. Note that SM is not a maximal
repetitions because SMR (which is its unique possible
repetitive right-extension) occur four times, violating the
definition that any extension must occur fewer times. SMR1
and SMR2 are super maximal repetitions because their

extensions occur only once. SMR is a nested maximal
repetition since all of it occurrences are contained in SMR1
and SMR2. Finally, MR is classified as non-nested maximal
repetition since, although 4 of its occurrences are contained in
longer patterns (SMR1 and SMR2), there is a fifth occurrence
that is not contained in any other longer repetition.

Definition 2. Let S be a set of n sequences over the alphabet
Σ, S = {s1, s2,···sn}. The set of maximal repetition in S is
obtained by concatenation of all sequences in S, interleaved
with different symbols $1,···,$n−1 that are not in Σ. Thus, the set
of maximal repetitions in S is the set of MR in s1$1s2$2...$n−1sn.
If we work with sequences of characters, at the time of
implementing this solution in a digital computer, there is an
upper limit given by the necessary finite alphabet (Σ has only
256 symbols in the extended ASCII table) which restricts the
amount of different $ symbols we can use, and thus the
number of sequences we can concatenate. To overcome this
limitation, we implement a logically distinguished symbol (+),
which we assign to it the unique property of being different
from itself. That is, a non-Aristotelian + ≠ +. Taillefer et al.13

proposed an algorithm that efficiently identifies and classifies
MR from a sequence s into SMR, NE, and NN. We extended
this algorithm in order to identify and classify MR originating
from an arbitrary set of sequences (see the Supplementary
Methods section in the Supporting Information).

■ RESULTS AND DISCUSSION
Occurrences of Maximal Repetition Patterns in

Natural Proteins. In order to analyze the structure of
maximal repetition patterns in natural protein sequences we
concentrate on 46 abundant protein families which have been
curated. Each of the families contains between 924 and 38 342
nonredundant sequences, and comprise between 805 684 and
23 670 587 amino acids (Table S2), making a grand total of
696 114 strings and 434 447 858 amino acids. We analyze
some families for which recurrent structural repetitions have
already been annotated (as “repeat-proteins”14), and families
for which no such repetitions have previously been reported
(called ”globular proteins”). For each family the distribution of
maximal repetitions was calculated and each MR classified as
either SMR, NN or NE (see Figure 1). The relative
populations of each maximal repetition class in each family
are shown in Figure 2. Overall, the distribution of MR classes
appears roughly constant between families: most of the MR are
non-nested (NN), around 20% are nested (NE), and about
25% are true supermaximal repeats (SMR). This distribution
holds irrespectively of the common classification of repeat vs
globular protein family, indicating that the overall pattern of
nesting of multiple repetitions is a general characteristic of all
protein sequences. One clear exception is the Nebulin family,
for which we identify an overabundance of nested repeats. It
was previously reported that the repetitions found in this
family can be described as short repeats within longer
repeats,15 which we identify as nested occurrences (Figure 2).
To test whether the distributions of MR types is random or

differs in some way characteristic for natural protein families,
we constructed three control groups of sequences: RandomAA
is a set of sequences drawn entirely by chance of 20 letters each
with equal probabilities. ScrambledAA is an exhaustive
permutation of the amino acids of one natural family, thus
conserving the natural bias in the amino acid composition16

and Heterogeneous is a set of natural sequences picked at
random from all the families (see Supplementary Methods for

Figure 1. Maximal repetitions (MR) computed for the input string
shown on top (nonrepeating symbols are in red lower case). MR
patterns are classified in disjoint subgroups according to their patterns
of occurrence as super maximal repetition (SMR), non-nested
maximal repetition (NN) and nested maximal repetition (NE).
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details). All three control groups show a common distribution
of abundance of maximal repetitions categories, with super
maximal repetitions being the most prevalent and only a
minority of nested repetitions (Figure 2). For the RandomAA
and the ScrambledAA controls, it can be expected that most of
the maximal repetitions will not be found in the nested
category, as the nesting probability of maximal repetitions
decreases exponentially in random strings,17 and thus super
maximal repetitions will prevail. However, the Heterogeneous
picking of sequences from various families shows a similar
distribution, hinting that the nesting patterns are properties
emerging from the grouping of sequences, and are not found at
the level of individual proteins.
The abundances of distinct types of maximal repetitions in

the families could depend on the length of the MR set under
scrutiny: shorter maximal repetitions are trivially more
prevalent than longer ones in any string. Figure 3A shows

that all of the repetitions of length 1 and 2 amino acids are
nested in longer MR in all families. The fraction of nested
repetitions drops to about 10% at length 5 and then grows to
about 40% for lengths of few decades. The non-nested repeats
are most prevalent at length of 4 to 5 amino acids and the
super maximal repetitions are the most abundant when the
longer MRs are considered. The relative abundance of each
maximal repetitions class shows a complicated length depend-
ence, that we find consistently in each family. It is expected
that super maximal repetitions will have to be the most
prevalent class at the longest lengths, as every nested or non-
nested is ultimately contained within an a larger super maximal
repetitions (Figure 1). The same analysis performed on the
random set indeed shows that super maximal repetitions is the
only class of maximal repetitions at lengths larger than 8 amino
acids, with non-nested being the most prevalent at length 5 and
nested absent above length 7 (Figure 3B, dashed lines). In
contrast, when multiple sequences are grouped into an artificial
control family, non-nested and nested maximal repetitions
persist up to length 100 (Figure 3B, continuous lines).
If there is structure in the architecture of the repetitions in a

finite string, it is expected that not all maximal repetitions will
be equally abundant. We quantified the total number of
different patterns in all the maximal repetitions classes in all
families. As can be seen in Figure 3 C, all of the maximal
repetitions of size 1 (20 single amino acids) are present in all
families, and every occurrence is nested in longer MRs. From
the millions of distinct maximal repetitions found in each
family, most of them have lengths between 4 and 8 amino
acids, being the most prevalent SMR and NN types of 4 to 6
amino acids. Notably, for MR longer than 10 residues, the
distribution appears to follows a power law whereMRTotal Number
≈ a*MRlength

γ . The γ exponent is about −2.6 regardless of the
maximal repetition class. This value for γ is clearly not the case
for the control randomized set, where there are no MRs larger
than 12 amino acids and the γ exponent is about −10 (Figure 3
D, dashed lines). When multiple sequences are grouped into
an artificial control family (Figure 3 D, continuous lines) γ is
around −3.8. The γ exponent appears to be similar for each
and every protein family (Figure S1).
To set the length scale for maximal repeat evaluation, we

calculated the fraction of the possible strings that are present as
MR in natural sequences. Every single and all possible pairs
and triplets of amino acids can be found in the natural data set,
and these are typically nested in longer MRs (Figure 4A). As
the possible number of amino acid sequences grows with

Figure 2. Fraction of MR in each class for all protein families
analyzed. Nested maximal repeats (NE, green), non-nested maximal
repeats (NN, blue) and supermaximal repeats (SMR, red) were
computed in each natural family of either globular or repeat-protein
classes. Ctrls indicates the three control groups of artificial families
(see main text).

Figure 3. Distribution of MR patterns in each subset. The MRs were
calculated for each family and the mean and standard deviation of all
families is shown. The relative abundance at different lengths is shown
in part A and the total abundance in part C. Equivalent calculations of
the control families are shown in parts B and D.

Figure 4. Coverage of the sequence space. The MRs were calculated
for each family and the fraction of the total possible patterns is shown
for each subset. The mean and standard deviation of all families is
shown in part A and for control groups in part B.
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length as 20N, the coverage of the sequence space precipitously
drops and only a few of the possible MRs of length longer than
6 can be found. Both control sets show a slightly higher
coverage of the sequence space than the natural families, and
super maximal repetition and non-nested are found in larger
proportions than the nested ones at length 5 amino acids
(Figure 4B). Notably, both the random and the artificial family
sets display equivalent coverage of the possible sequences at
short sequence length, suggesting that natural proteins look
effectively random at lengths shorter than 4 amino acids. The
artificial grouping of sequences in the Heterogeneous control set
explores the sequence space equally well as the random set, up
to a length of 7 amino acids (Figure 4B).
Sequence Coverage and Familiarity. In general, all of

protein families that were analyzed display a similar
distribution of maximal repeat patterns in terms of the lengths
and of the repetitions MR class (Figure 3). Nevertheless, the
specific sequences of the MR sets for each family can be very
different, as they account for an almost insignificant proportion
of all the possible amino acid strings for lengths than are larger
than 6 residues (Figure 4). To evaluate how for the distinct
MR sets can go in accounting for the occurrence of specific
patterns in natural protein sequences, we developed two
continuous evaluation functions which we call coverage and
familiarity.11 Briefly, the function Σ* × Σ* → coverage: ( )
is defined for any sequence s and any set of sequences R
through the relation:

=
#{ ∃ ∈ ∃ ∈ [ + | | − ] = }

| |


coverage s R
j i r R s i i r r

s

( , )
: , , .. 1

(1)

We see that coverage(s,R) is a rational number between 0
and 1. Figure 5A shows coverage(s,R) evaluated on the string of

the natural protein IκBα of H. sapiens with distinct MR subsets.
The sequence can be covered fully with most short MRs, and
coverage(s,R) is larger than 0.9 for all MR subsets originating
from the ANK family up to minimum pattern length 10. In
contrast, coverage(s,R) for IκBα drops to zero at minimum
pattern 7 amino acids when the MR sets are originated from
the ABCTran family. This result is not surprising as IκB
proteins have been annotated as containing ankyrin repeat
regions (grouped in the ANK family), and no ABCtran family
regions.18

The familiarity function Σ* × Σ* →  measures how much
of a sequence is covered by a set of MRs. For any two
sequences s and t, the familiarity of the pair is given by

∑

=
+ | |

+
=

| |−

familiarity s t
coverage s t coverage s t s

coverage s t i

( , )
( , ( , 0)) ( , ( , ))

2

( , ( , ))
i

s

1

1

(2)

where t n( , ) denotes the set of MRs from t of lengths
greater than or equal to n. t( , 0), by definition, returns all
the blocks of the sequence t. Computing familiarity requires
finding the values of the coverage s t i( , ( , )) for each i in [0..|
s|], which we find is enough to limit to [0..10]. This allows for
a robust comparison of sequences s of different lengths.11

familiarity(s,t) is thus a rational number between 0 (when not a
single part of s can be covered by MRs of t, only possible for
disjoint alphabets) and 10 (when the whole s can be covered
with MRs of t). As the second argument t of the familiarity
function we denote the concatenation of all the sequences of a
group separated by the distinguished symbol (+) (Definition
2).
Figure 5B shows the values for the familiarity evaluated over

10 natural test sequences from the Ankyrin family with
different sets of maximal repeats. All of these sequences score
over 6 in familiarity when the MR set t originates from the
ANK family, as expected, as these sequences are annotated to
have ankyrin regions (Table S1). However, the familiarity is
around 6 when t is constructed from the control sequences.
These values of familiarity originate from the common
underlying structure of the patterns of both natural and
random sequences up to a length of 5 amino acids (vide supra).
Both nested and non-nested subsets account for these
distinctions and the values spread for the super maximal
repeats subsets (Figure 5B). Thus, these sequences can be
similarly well described with the structural patterns of the
nested and non-nested subsets.
Natural protein sequences often encode distinct functional

domains. These domains are usually reflected as common
structural patterns that persist over evolutionary times, and
may be sometimes artificially decoupled along the amino acid
strings.19 These biological lumping must be related to the
maximal repeat patterns found in the sequence descriptions.
To investigate how the maximal repeat patterns of the natural
protein families differ from those of random strings, we
computed familiarity(s,t) for 10 test sequences that have been
annotated to belong to each of the 46 families under scrutiny,
but that are not present in t. To evaluate the maximal repeat
subsets on common grounds, we compare the Z-scores of the
familiarity(s,t) distributions of the test sequences with respect
to those for the random sets Z-score = ( familiarity(s, t) −
AVG( familiarity(ScrambledAA_test,t)))/STD( familiarity(-
ScrambledAA_test,t)) where ScrambledAA_test are the ten test
synthetic proteins from ScrambledAA control family (Figure 6).
Both the non-nested and nested subsets are excellent at
distinguishing the test protein sets from the random sequences,
as the mean Z-score is above 10 for most families. In most
cases, both nested and non-nested are as good as the whole
maximal repeat set. Some families show consistently larger Z-
scores (Nebulin and PPLlike), with a somehow larger mean

Figure 5. Evaluating coverage(s,R) and familiarity(s,t) functions on
natural proteins. (A) Values for coverage for the sequence s
corresponding to the natural protein IκBα of Homo sapiens, with
distinct MR subsets t. (B) Values for familiarity for 10 natural protein
sequences s annotated to have Ankyrin repeats, evaluated with
different MR subsets from the ANK family and three control groups.
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values for the families grouped as repeat-proteins (Figure 6).
For all families, the Z-scores of the super maximal repeat
subsets is lower, indicating that the test sequences cannot be
well explained with these patterns. To analyze if combinations
of the maximal repeat subsets significantly alter the familiar-
ity(s,t) scoring, we constructed all pair-combinations of non-
nested, nested, and super maximal repeat in t and found that
none of these significantly perturb the results (Figure 6).
To investigate the way maximal repeat patterns between the

families overlap, we computed familiarity(s,t) for 460 test
sequences, 10 s for each of the 46 t families under scrutiny
(Table S1). In Figure 7 the unique Uniprot sequence entries
have been ordered according to the presence of at least one
PFAM domain. The strong diagonal of high familiarity(s,t)-
values thus reflects that the PFAM grouping is consistent with
the definitions, the computation and the scorings we propose.
Some families display consistently low values of familiarity

toward all sequences (Nebulin), and some consistently higher
values (HelicaseC). It is also apparent that some families are
clearly related (LdlReceptA and LdlReceptB), even when their
historical naming differs for the two families (ARM and
HEAT). In some cases, a given sequence displays significant
familiarity to more than one single family, hinting at the
presence of multiple biological domains in that sequence. In
some other cases, groups of test sequences only display
familiarity toward one single family (TSP). The multiple
”bands” that are apparent in the representation of the data in
Figure 7 are probably not random but a manifestation of some
deeper structure in the original data, which deserves further
investigation but is out of the scope of the present report. We
note that the results are robust to the choice of the subsets of
MRs that were used to compare the sequences and
combinations thereof (Figure S2).

Figure 6. Evaluating familiarity(s,t) for natural sequences with random MR subsets. Familiarity(s,t) was computed for ten s sequences of each
natural protein family and the set t of ScrambledAA control group. The mean and standard deviation of the Z-score distributions are shown,
computed with the NN, NE, and SMR subsets and all the pair-unions of these, SMR∪NN, SMR∪NE, and NN∪NE.

Figure 7. Evaluating familiarity(s,t) for natural sequences and natural families. Familiarity(s,t) was computed for 460 test sequences s and 46 t
families with the SMR∪NN subsets of MR. The unique Uniprot entries are ordered according to the presence of at least one PFAM domain.
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■ DISCUSSION

For genetic information to be a meaningful modern concept,
natural protein sequences cannot be just random strings of
amino acids.20−22 Spontaneous, fast and robust folding of
polypeptide chains is the organic way in which structural
patterns emerge from amino acid sequences in certain
environments.23 The search for underlying folding codes to
de/construct the folding energy landscapes involves the
realization that at some level natural sequences are
fundamentally distinguishable from random strings,24 yet the
actual correspondences are clearly complex, as they involve a
myriad of small, nonlocal, interactions. Effective ways of
reverse engineering folding have been achieved at different
levels of description using clever heuristics.25−27 This fact
indicates that it is possible to deconvolute the physical
phenomenon of biological molecules without directly studying
them at the fundamental quantum mechanical level. Searching
for the historical footprints in the extant sequences has led to
useful approximations for the exploration of the energy
landscapes of structural7 as well as the sequence spaces.28

All known terrestrial proteins can be described as linear
repetitions of amino acids. We searched for patterns and
groupings of patterns in natural protein sequences using a
mathematically rigorous definition for the concept of
“repetition” (MR, Definition 1), an efficient algorithmic
implementation (Supporting Information, code2) and a robust
scoring system for repetitions that did not require introducing
any adjustable parameters.11 We propose that the maximal
repeat set computed for a group of sequences can be well-
separated into disjoint classes (Figure 1). Each maximal repeat
is either supermaximal (SMR), nested (NE), or non-nested
(NN) according to the patterns of occurrence in a given set of
sequences. The relative populations of each MR class in natural
protein families are similar in all families but population of
repetitions class are clearly distinguishable from the random-
ized control groups of sequences (Figure 2). When natural
sequences are randomly grouped into artificial families, one
finds similar total maximal repeat fractions as for controls in
which the sequences themselves are randomized. This
observation indicates that the nesting patterns of the
repetitions are the main objects underlying the distributions
found in the natural sets. Indeed, the frequency of occurrence
of repeats shorter than 5 amino acids is equivalent in both the
natural and the artificial randomly constructed sets of
sequences (Figure 3), covering the sequence space as expected
for the exhaustive exploration of patters in random sets of
similar, finite, size (Figure 4).29 As the sequence space grows
exponentially with string length, almost none of the full
sequence space can be covered by repetitions larger than 5
amino acids. Nevertheless, the occurrence of patterns of
repetitions in natural sequences is clearly not random in any
family and most of the changes in the distributions of maximal
repeats occurs between 5 and 10 amino acids (Figure 3).
Perhaps it is not a coincidence that regular secondary structure
elements first made their appearance at this length scale.30 This
length also signals the critical size window at which good
structure prediction heuristics work and where foldons have
been predicted to emerge.31 The patterns of repetitions that
are larger than 10 amino acids can be crudely described by a
power law distribution for all natural protein families. The γ
exponent is about −2.6 for all families and maximal repeat
subsets (Figure 3 and Figure S1). This apparent scale invariant

distribution of structure in natural proteins has previously been
hold at the tertiary level, and has been alleged to the fractal
geometries of natural folds.32−35 Comparable exponents were
also reported for the distribution of voids in the interior of
protein swiss-cheese globules.36 Thus, there is an apparent
common structure of amino acid patterns larger than 10
residues that can be detected in the primary structure of
protein families and at the tertiary level of individual folded
proteins.
Searching for MRs and matching them to sequences can be

efficiently used to characterize the structure of any sequence s
with respect to a set of sequences t, by computing the
familiarity(s,t) function.11 Both the nested and non-nested
subsets of maximal repeats are good descriptors of familiar-
ity(s,t) as is the whole maximal repeat set (Figure 6). The
overall patterns of repetitions shorter than 10 residues is
enough to account for the differences between natural and
random sequences by more than 10 standard deviations
(Figure 6). The scoring we put forward is robust to the
combinations of maximal repeat subsets, and the exhaustive
search of the SMR∪NN subset can be implemented with an
algorithm whose computational complexity is O(n) (Suppl.
code2).
Natural protein sequences encode functional domains of

finite size.19 The biological accretion of functional information
can be expected to be detectable at the lengths scales at which
proteins differ from the occurrence of patterns in random
strings.37 Computing the familiarity(s,t) for groups of existing
proteins indeed reveals exciting patterns of common structure
that are discernible at the length scales of 5−10 amino acids
(Figure 7). The familiarity(s,t) distributions are robust to the
MR subsets used and indicate that PFAM grouping is
consistent with the definitions, the computation and the
scorings we propose (Figure S2). In some cases, a given
sequence displays significant familiarity to more than one
family, hinting to the presence of multiple biological domains.
In some other cases, groups of test sequences score consistent
familiarity toward one single family. Presumably evolutionary
relationships between groups of sequences can also be detected
as groups that score consonant between PFAM families
(Figure 7). Since familiarity(s,t) is a well-defined continuous
function and the maximal repeat search can be exhaustively
carried out with existing computers, familiarity analysis could
be used as a general tool to explore the biological relationships
between arbitrary groups of sequences. Developing appropriate
metrics in the sequence space38 together with efficient search
strategies can hint at the length scales at which the natural
coding of biological information originates.39−42
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