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We propose a formal resource-theoretic approach to assess
the coherence between partially polarized electromagnetic
fields. From this framework, we identify two resource
theories for the vectorial coherence: polarization-sensitive
coherence and polarization-insensitive coherence. For each
theory, we find the set of incoherent states and a class of
operations that preserve this set (i.e., the incoherent oper-
ations). Both resource theories are endowed with a certain
preorder relation that provides a hierarchy among the
coherence-polarization states; thus, a necessary condition
to consider in deciding whether a quantity is proper to
measure the vectorial coherence is that it respects such a
hierarchy. Finally, we examine most previously introduced
coherence measures from this perspective. © 2018 Optical
Society of America

OCIS codes: (030.1640) Coherence; (260.5430) Polarization;

(000.3860) Mathematical methods in physics.
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Coherence is a basic physical property that emerges in very dif-
ferent contexts, from classical optics to quantum mechanics.
Recently, coherence has been identified as a resource for
novel quantum technologies [1,2]. In classical optics coherence
has two extreme physical manifestations: (i) interference,
when superimposing beams with the same vibration state,
and (ii) polarization, when superimposing beams with orthogo-
nal vibration states. This makes the analysis of coherence for the
superposition of partially polarized waves where interference
and polarization combine an attractive subject to study [3].

The complexity of the subject has motivated the introduc-
tion of several different measures of vectorial-field coherence
that can actually be mutually contradicting [4–17]. In general,
these measures of coherence vanish for different coherent-
polarization states and, even worse, certain fields transforma-
tions decrease, whereas the others increase. So, it emerges that
a meta-theory is needed if we want to apprehend the elusive
concept of coherence in this rather rich context.

We think that a sufficiently comprehensive approach can be
provided by using resource-theoretic formalism, mimicking the

one originally introduced for entanglement and quantum co-
herence [1,18]. Indeed, we have recently applied the powerful
resource theory formalism to the problem of quantifying the
degree of polarization of two- and three- dimensional random
electromagnetic fields [19].

We show that naturally defined incoherent operations en-
dow partial coherence with a preorder relation that must be
respected by all coherence measures. More specifically, our pro-
posal is that any bona fide degree of vectorial coherence must
behave monotonically with respect to the action of incoherent
operations defined by the corresponding theory. Notice that
this is a necessary but not sufficient condition. We test the for-
malism by constructing the corresponding resource theories
that arise when following the two different approaches most
common encountered in the literature about what an incoher-
ent and partially-polarized beam is. That is whether we are
considering polarization-sensitive or polarization-insensitive
coherence. In the first case, we refer to a resource theory for
complete coherence, whereas in the second case, we refer to
a resource theory for interferometric coherence.

For definiteness, we focus on the vectorial electric field E at
two spatial points r1 and r2 with just two nonvanishing com-
ponents at each point, say Ex and Ey. This can be the transverse
electric fields at the pinholes of a Young interferometer. The
complete system is made up of four scalar electric fields that
we will consider in the space-frequency domain El�rj ;ω� with
l � x; y and j � 1; 2. The dependence on the temporal fre-
quency ω will be omitted from now on. Their second-order
statistics will be completely accounted for by the cross-spectral
tensor or coherence-polarization state; this is the 4 × 4
Hermitian nonnegative matrix Γ:

Γ �

0
BBBB@

Γx;x
1;1 Γx;y

1;1 Γx;x
1;2 Γx;y

1;2

Γy;x
1;1 Γy;y

1;1 Γy;x
1;2 Γy;y

1;2

Γx;x
2;1 Γx;y

2;1 Γx;x
2;2 Γx;y

2;2

Γy;x
2;1 Γy;y

2;1 Γy;x
2;2 Γy;y

2;2

1
CCCCA �

�Γ1;1 Γ1;2

Γ2;1 Γ2;2

�
; (1)

where the elements matrix are Γl;l 0
j;j 0 � hEl�rj�E�

l 0 �rj 0 �i with
l;l 0 � x; y and j; j 0 � 1; 2, whereas the angle brackets and
asterisk denote ensemble averaging and complex conjugation,
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respectively. Notice that in the block-matrix representation of Γ
[r.h.s of Eq. (1)], the matrices Γ1;1 and Γ2;2 represent the 2 × 2
Hermitian polarization coherency matrices at r1 and r2, respec-
tively. On the other hand, Γ1;2 and Γ2;1 are the 2 × 2 beam
coherence-polarization matrices [5], which are non-Hermitian
in general but satisfy Γ1;2 � Γ†

2;1. The usefulness of this
representation to the field statistics through Γ, instead of con-
sidering separately the submatrices Γj;j 0 , has been already
exploited in Refs. [12,17,20–22].

Let us observe that, focused to the goal of studying coher-
ence properties, states with the same total intensity given by
the trΓ � trΓ1;1 � trΓ2;2 can be considered as equivalent.
More precisely, let us say that Γ is equivalent (in coherence
sense) to Γ 0, denoted as Γ ∼ Γ 0, if and only if Γ � kΓ 0 for some
k > 0. Accordingly, we may assume without loss of generality
that the coherence-polarization matrices of the form of Eq. (1)
have the same trace. For simplicity we choose equal unit trace
and introduce the set coherence-polarization normalized matri-
ces CP � fΓ ∈ C4×4 :Γ ≥ 0 and trΓ � 1g.

Let us distinguish between two alternative approaches. They
differ on whether we include polarization in the account of co-
herence. Let us call them complete coherence and interferometric
coherence. The key point is that both lead to different resource
theories because they define different classes of incoherent states.

Let us consider a couple of measures of total coherence.
For example, we have [12]

μg�Γ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
tr

��
Γ
trΓ

−
I 4
4

�
2
�s
; (2)

where I 4 is the 4 × 4 identity matrix.
As another possibility, which is motivated by optimum inter-

ferometric resolution and visibility [13,15], we have the measure

μF;max�Γ� �
γ1 − γ4
γ1 � γ4

; (3)

where γ1 and γ4 are the maximum and minimum of the eigen-
values of Γ, respectively. Note that this definition attains its
maximum value μF;max�Γ� � 1 whenever the minimum eigen-
value vanishes γ4 � 0. This holds, for example, when one of the
waves is fully polarized, in which case μF;max does not depend on
the correlation between waves being μF;max�Γ� � 1 even if there
is complete spatial incoherence, i.e., Γ1;2 � 0. This seemingly
peculiar behavior is consistent since this measure focuses on the
maximum metrological resolution that can be extracted by prop-
erly selecting two components via polarizers, and full polarization
ensures that two perfectly correlated components exist.

Regarding the interferometric-only facet of coherence, dif-
ferent measures of coherence have been proposed. Based on the
analysis of the fringe visibility in a Young interference experi-
ment, the following quantity has been introduced as a degree
of coherence [4,5,7]:

μKGW�Γ� � trΓ1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trΓ1;1 trΓ2;2

p : (4)

Accordingly, the interference fringes vanish when
μKGW�Γ� � 0, which represents the incoherence condition.
However, notice that this quantity is not invariant under local
unitary transformations, where by local we mean polarization.
This feature can be solved by looking for its maximum under
local unitary transformations leading to [23,24]

μKGW;max�Γ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 � σ22 � 2jσ1σ2j

trΓ1;1trΓ2;2

s
; (5)

where σ1;2 are the singular values of Γ1;2.
An alternative proposal invariant under local unitary trans-

formations has been proposed as [8,9]

μTSF�Γ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr�Γ1;2Γ

†
1;2�

trΓ1;1trΓ2;2

s
: (6)

This quantity is not completely determined from the visibil-
ity (other measurements are necessaries).

Another approach to measure coherence properties is based
on general invariance properties of Γ under the action of local
nonsingular Jones matrices [10,11]. Hence, the so called intrin-
sic degree of coherence μS�Γ� and μI �Γ� are defined as the
singular values of the normalized matrix [10]

Γ−1∕2
1;1 Γ1;2Γ

−1∕2
2;2 : (7)

The largest intrinsic degree of coherence, say μS�Γ� without
loss of generality, coincides with maximal value μKGW�Γ� under
the action of local Jones matrices [25].

All of these quantities are presented as suitable generalizations
of visibility of interference fringes in the scalar case [26]. This
means that polarization is a kind of technical obstacle that must
be avoided. To this end μKGW�Γ� fully disregards polarization,
whereas μTSF�Γ�, μS�Γ� and μI �Γ� sidestep it via invariance rea-
sonings. In addition, all of them are related, since μKGW;max�Γ�
can be expressed in terms of μTSF�Γ�, μS�Γ� and μI �Γ� [23,24].

Our proposal is to tackle the problem of quantifying the de-
gree of vectorial coherence by appealing to the formalism of
resource theories. A formal resource theory for the vectorial co-
herence has to be built from the following basic components:
(i) the set of incoherent states, say I, (ii) a set of incoherent
operations Λ, and (iii) the partially coherent states. Clearly, these
three concepts are not independent to each other. In general, one
first defines the notion of being incoherent. Then, the notion of
partially coherent state is defined from the negation of an inco-
herent one. Incoherent operations are introduced as those that
leave invariant the set of incoherent states; that is, Λ is an inco-
herent operation iff Λ�Γ� ∈ I for all Γ ∈ I . In other words, the
incoherent set I is closed under the incoherent operations Λ.
At the end, one introduces the coherence monotones as func-
tions that behave in a monotonic nonincreasing manner under
the action of the incoherent operations. We postulate that any
bona fide degree of coherence has to be a coherence monotone
(this is a necessary but not sufficient condition). More precisely,
let us say that μ is a degree of vectorial coherence only if
μ : CP ↦ R and μ�Λ�Γ�� ≤ μ�Γ�; ∀ Γ, Λ. Thus, the intuition
that the incoherent operations do not increase the degree of co-
herence is recovered. In particular, one can introduce a measure
of the degree of coherence in a geometrical way as

μ�Γ� � inf
Γ 0∈I

d �Γ;Γ 0�; (8)

where d �Γ;Γ 0� is a distance or divergence that is contractive
under the action of Λ operations, that is, d �Λ�Γ�;Λ�Γ 0�� ≤
d �Γ;Γ 0�.

Finally, let us note that any coherence monotone will
establish a total order among Γ. However, as this total order
is not intrinsic to the structure of CP, given any two partially
coherent states, there may be different measures that assign
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contradictory values of the degree of coherence to them, that is,
two measures can sort the states in a different way. This is root
of the contradicting behavior of the measures of vectorial coher-
ence even if they vanish for the same incoherent states.

In the sequel, let us apply this formalism for the electromag-
netic beam fields introducing two resource theories: one for
complete coherence and the other one for interferometric co-
herence. In each resource theory, we will use the same symbols,
I , Λ, and ≺, to identify the set of incoherent states, an inco-
herent operation, and a hierarchy among the coherence-
polarization states to be induced by the resource theory,
respectively. Their meanings will be clear from the context.

Following [6,12,27], an incoherent state has to be invariant
under arbitrary unitary transformations. Thus, for an incoher-
ent state, Γ has to be proportional to I 4. As a consequence, the
set of all incoherent states is given by

I �
�
Γ ∈ CP :Γ � I 4

4

�
: (9)

The operations Λ that preserve I are the unital ones, which
satisfy (see, e.g., [28])

Λ�I4� � I 4; (10)

where Λ should be understood as Λ : CP ↦ CP. The unital
condition can be posed in an equivalent way in terms of a ma-
jorization relation between Γ and Λ�Γ� (see e.g., [29]). More
precisely, one has Λ�Γ� ≺ Γ iff Λ is unital [30]. Here, Λ�Γ� ≺
Γmeans that

Pn
i�1 λi ≤

Pn
i�1 γi for n � 1; 2; 3, where fλig4i�1

and fγig4i�1 are the eigenvalues of Λ�Γ� and Γ, respectively,
sorted in nondecreasing order. Moreover, according to
Uhlmann’s theorem [31], one has Λ�Γ� ≺ Γ iff Λ�Γ� �P

kpkU kΓU
†
k , where pk ≥ 0,

P
kpk � 1 and fUkg are 4 × 4

unitary matrices. In other words, operations that do not
increase coherence can be seen as random unitary transfor-
mations. These unitary transformations can be of the differ-
ent nature as it is studied in [17]. For instance, they can
represent a global polarization unitary, local polarization uni-
taries, polarization-independent spatial unitary (e.g., a beam
splitter), polarization-dependent spatial unitary (e.g., a polari-
zation beam splitter) or any convex combination of them (see
[17] for their specific formulations).

Let us note that within this resource theory the coherence-
polarization space is structured by a hierarchy given by the
majorization among the states. However, the majorization
relation does not provide a total order among them, because
there are pairs of states, say Γ;Γ 0, such that neither Γ ≺ Γ 0

nor Γ 0 ≺ Γ are satisfied. Majorization only provides a preorder.
This means that, for every Γ;Γ 0;Γ 0 0 ∈ CP, one has (i) Γ ≺ Γ
(reflexivity), and (ii) if Γ ≺ Γ 0 and Γ 0 ≺ Γ 0 0, then Γ ≺ Γ 0 0 (tran-
sitivity). The antisymmetry property fails in general, but one
has a weaker form, that is, if Γ ≺ Γ 0 and Γ 0 ≺ Γ, then Γ �
UΓ 0U † and Γ 0 � U †ΓU withU a 4 × 4 unitary matrix, where
U should be understood as U : CP ↦ CP.

The coherence monotones within this resource theory are
given by Schur-convex functions, that is, functions that pre-
serve the majorization relation: if Γ 0 ≺ Γ, then μ�Γ 0� ≤ μ�Γ�.
The results in Refs. [16,27] indicate that the measures μg�Γ�
and μF;max�Γ� given by Eq. (2) and Eq. (3), respectively, are
proper coherence monotones after their behavior under ran-
dom unitary transformations and majorization. The behavior
of these measures can be observed in Fig. 1. Indeed, μg�Γ�

has a clear geometric interpretation as the minimum distance
to the set of incoherent states. More precisely, μg�Γ� �ffiffiffiffiffiffiffiffi

4∕3
p

inf Γ 0∈IkΓ − Γ 0kHS, where kΓkHS �
ffiffiffiffiffiffiffiffiffiffiffiffi
trΓΓ†

p
stands

the Hilbert-Schmidt norm of a matrix Γ.
When discussing interferometric coherence, an incoherent

state is one that satisfies the condition Γ1;2 � Γ2;1 � 02, with
02 the 2 × 2 null matrix. A typical physical realization holds in
the case of fully random uniformly distributed relative phases
between field components (see e.g., [26,32]). Accordingly, let
us introduce the set of incoherent states within this resource
theory as the following convex set:

I �
�
Γ ∈ CP :Γ �

�
Γ1;1 02
02 Γ2;2

��
: (11)

Here, the incoherent operations Λ are defined as

Λ�Γ� � V ΓV †

trV ΓV † with V �
�
V 1 02
02 V 2

�
; (12)

where V 1 and V 2 are arbitrary Jones matrices. Notice that un-
like the previous resource theory, the incoherent states are not
necessarily invariant under a global unitary transformation.

The hierarchy of the different coherence-polarization states
are now given by the transformations (12). Let us define
the binary relation: Γ ≺ Γ 0 iff there exists Λ of the form
Eq. (12) such that Γ � Λ�Γ 0�. We show that this binary rela-
tion is indeed a preorder. The reflexivity property trivially holds
because one can always choose V 1 � V 2 � I 2 so that Γ ≺
Γ ∀Γ is satisfied. The transitivity property also holds. Notice
that Γ ≺ Γ 0 and Γ 0 ≺ Γ 0 0 means that Λ 0 and Λ 0 0 incoherent
operations exist such that Γ � Λ 0�Γ 0� and Γ 0 � Λ 0 0�Γ 0 0�. This
implies that Γ ≺ Γ 0 0, because Γ � Λ�Γ 0 0� with Λ � Λ 0 ∘ Λ 0 0

an incoherent operation of the form Eq. (12). Again, the
antisymmetric property is not satisfied in general. Instead, a
weaker form holds: if Γ ≺ Γ 0 and Γ 0 ≺ Γ, then Γ � Λ�Γ 0�
and Γ 0 � Λ−1�Γ�, where Λ is of the form Eq. (12) with V 1

and V 2 nonsingular Jones matrices.

Fig. 1. Contour plots μ�Γ� � c with c ∈ �0; 1� in the diagonal
basis of Γ for (a) μg and (b) μF;max. The tetrahedron (or 3-simplex)
gives a geometric representation of the set of probability vectors γ �
�γ1; γ2; γ3; γ4� given by the eigenvalues of Γ (not necessarily sorted in a
nondecreasing order). The vertices γ1 � �1; 0; 0; 0�, γ2 � �0; 1; 0; 0�,
γ3 � �0; 0; 1; 0�, and γ4 � �0; 0; 0; 1� represent maximally coherent
states, whereas the point γic � 1

4 �1; 1; 1; 1� represents the incoherent
state. Both coherence monotones increase when going from the inco-
herent state to a maximally coherent one. Note that μF;max does not
distinguish γi from any convex mixture of γi, γj, and γk , with i; j; k �
1; 2; 3; 4 (the faces of the tetrahedron). In other words, μF;max�Γ� � 1
whenever one of the eigenvalues is null. Notice that μg �Γ� � 1 iff an
eigenvalue is equal to one (and the others are null).
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Clearly, μg�Γ� and μF;max�Γ� are not coherence monotones
of this resource theory. Let us see that μKGW�Γ� and μTSF�Γ�
are not either, even if they vanish for all incoherent states
belonging to I given by Eq. (11).

First, let us consider μKGW�Γ�. Let Γ be given by the

submatrices Γ1;1 �
�
1∕2 0
0 0

�
, Γ2;2 �

�
0 0
0 1∕2

�
and

Γ1;2 �
�
0 1∕2
0 0

�
. Notice that μKGW�Γ� � 0, but Γ ∉ I .

Even worse, let the incoherent operation Λ defined by

V 1 � I 2, and V 2 �
�
0 1
1 0

�
. It can be shown that

μKGW�Λ�Γ�� � 1 > μKGW�Γ� � 0, so that μKGW�Γ� is not
a coherence monotone.

Now, let us consider μTSF�Γ�. First, let us note that Γ1;2Γ
†
1;2

is a positive definite matrix, so that its trace vanishes iff
Γ1;2 � Γ2;1 � 02. Therefore, unlike μKGW�Γ�, we have that
μTSF�Γ� � 0 iff Γ ∈ I . Now, let Γ be defined by the subma-

trices Γ1;1� I 2∕3, Γ2;2 �
�
1∕3 0
0 0

�
, and Γ1;2 �

�
μ 0
0 0

�
,

with μ > 0. It can be shown that μTSF�Γ� � 3μ∕
ffiffiffi
2

p
. Let the

incoherent operation Λ be given by V 1 � V 2 �
� ffiffiffi

λ
p

0
0 1

�
,

with λ > 0. Then, μTSF�Λ�Γ�� � �3μ
ffiffiffi
λ

p
�∕ ffiffiffiffiffiffiffiffiffiffiffi

1� λ
p

, so that
μTSF�Λ�Γ�� > μTSF�Γ� if λ > 1. Therefore, we find that
μTSF�Γ� is not a coherence monotone either.

The very same Γ and same incoherent operation show that
the optimum μKGW in Eq. (5) is not a coherence monotone.
In fact, μKGW;max�Γ� � 3μ∕

ffiffiffi
2

p
, whereas μKGW;max�Λ�Γ�� �

3μλ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ�1� λ�

p
, so that μKGW;max�Λ�Γ�� > μKGW;max�Γ�

for λ > 1.
Finally, let us examine the intrinsic degrees of coherence

μS�Γ� and μI �Γ�. According to Ref. [25], one has μS�Γ� �
maxΛ μKGW�Λ�Γ��, where Λ are incoherent operations of
the form Eq. (12). It is clear then that μS�Λ�Γ���
maxΛ 0 μKGW�Λ 0�Λ�Γ���≤maxΛ 0 μKGW�Λ 0�Γ���μS�Γ�, given
that the optimization is now performed over a restricted set
of states (see Ref. [33] for a similar result). Moreover, one has
μI �Λ�Γ�� � 0 when Λ is of the form Eq. (12) with V 1 or
V 2 singular, since det�Γ−1∕2

1;1 Γ2;1Γ
−1∕2
2;2 � � μS�Γ�μI �Γ�. In the

case of incoherent operations with nonsingular V 1 and V 2,
both intrinsic degrees of coherence remain invariant [10].
Hence, we have proven that both quantities μS�Γ� and μI �Γ�
are adequate coherence monotones for this resource theory.

As a consequence, any increasing function of the intrinsic
degrees of coherence is also a coherence monotone. This holds
when interpreting coherence as a resource for improving reso-
lution in phase-shift detection and resolution is measured,
for example, via Cramér–Rao bound and Fisher information.
For phase shifts that do not affect polarization, an interferomet-
ric coherence measure directly based on Fisher information
can be introduced leading to [15]

μF �Γ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2S � μ2I − 2μ

2
Sμ

2
I

2 − μ2S − μ
2
I

s
; (13)

which is, indeed, an increasing function of the intrinsic degrees
of coherence. Actually, μF;max in Eq. (3) can be also placed
in this same metrological context as the maximum of μF �Γ�

overall phase-shift schemes, including those affecting polariza-
tion in a nontrivial way, in the spirit of complete coherence.

In summary, we have established two resource theories for
the vectorial coherence adapted to the two cases of polarization-
sensitive and polarization-insensitive coherence. They define
a convenient theoretical framework for the research in this
subject. Furthermore, they provide sound criteria to validate
previously introduced degrees of coherence (see Table 1), as
well as to introduce new ones. In particular, this would rule
out some of the most popular approaches considered so far.
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Table 1. Resource Theories for Vectorial Coherence

Incoherent States Incoherent Operations Monotones
I4
4

P
kpkU kΓU †

k μg ; μF;max�
Γ1;1 02
02 Γ2;2

�
V ΓV †

trV ΓV †, V �
�
V 1 02
02 V 2

�
μS ; μI ; μF
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