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A numerical investigation is carried out to study the effects of an insoluble surfactant on the dip

coating of a flat substrate. Predictions of both the film thickness and the concentration of surfactant

in the film as a function of the capillary number compare well with the solutions of a simpler

asymptotic model based on the lubrication approximation. Streamline patterns confirm the

existence of a stagnation point located in the bulk phase in the region of the dynamic meniscus—a

conjecture postulated forty years ago. The evolution of the flow patterns and the interfacial

variables shows how the classical result of Landau and Levich is recovered as the coating speed is

augmented. Finally, we show that the effect of inertia forces cannot be neglected when the

viscosity of the coating liquid is low. VC 2011 American Institute of Physics.

[doi:10.1063/1.3589346]

I. INTRODUCTION

Dip coating has probably been the most extensively

studied coating flow since the pioneering work carried out

by Landau and Levich.1 This process deposits a thin uniform

film on a solid by withdrawing it at a constant speed from a

pool of the liquid to be coated. Landau and Levich were the

first to obtain an approximate solution to predict the thick-

ness of the film formed at very small substrate speeds, i.e.,

when viscous and capillary forces balance each other; thus,

dip coating is usually referred to as the Landau-Levich prob-

lem. Thereafter, numerous works have been performed to

assess the influence on the film thickness of usually present

forces that were not considered in their analysis (viz., grav-

ity,2,3 inertia,4 Marangoni stresses due to the adsorption of

surface active agents on the interface,5 etc.).

With regards to the presence of surfactant on the pro-

cess, it must be remarked that soluble surfactants have been

much more studied than insoluble ones. In most of the exper-

imental studies published on the subject, the coating fluid is

an aqueous solution of surfactant and the substrate is either a

cylindrical fiber 5,6 or a flat plate.7 All those works show that

the film tends to thicken when a surfactant is added to the

original clean system. The common explanation to the above

observation is the so called Marangoni effect: the nonuni-

form distribution of surfactant, which is a consequence of

the surface stretching, gives rise to surface tension gradients

that generate a traction that pulls more liquid into the film

region. The experiments of Krechetnikov and Homsy7

(K&H) were conducted at a parameter range where the

adsorption of surfactant from the bulk to the interface is fast

enough to compensate the dilution produced by the stretch-

ing of the free surface and, consequently, Marangoni stresses

are not likely to be responsible for the observed film thicken-

ing. In an attempt to disclose the underlying mechanisms

involved in the thickening process under the operating condi-

tions assumed by K&H, we carried out a numerical analysis8

to mimic their experiments; the study is based on the hydro-

dynamic modeling of the surfactant effect and shows predic-

tions of the thickening factor (i.e., the ratio between the

thickness of the contaminated system and the Landau-

Levich1 for a uniformly distributed surfactant) in very good

agreement with the experimental ones. The numerical solu-

tions show that the elastic effects of the surfactant reduce the

interfacial curvature all along the dynamic meniscus; thus,

the pressure gradient (i.e. the gradient of the capillary pres-

sure) that opposes the action of viscous forces is also

reduced, and more liquid is pulled towards the film region.

The changes detected in the flow field near the interface

associated with the surfactant are another interesting feature

of that work.

The influence of an insoluble surfactant has been studied

by Park9 in the limit of very small capillary number (i.e., low

coating speeds). He used the method of matched asymptotic

expansions to obtain equations for the film thickness and the

interfacial distribution of the surface active agent in the fol-

lowing two cases. One, relevant to the preparation of Lang-

muir Blodgett films, corresponds to relatively high

concentration of surfactants with small spatial variations. The

other one, typical of surface contamination, assumes that the

concentration of surfactant is low but its spatial variation can

be large. The results of the analysis show that the surfactant

affects the film thickness of the entrained film within a range

of capillary number that depends on the magnitude of the

elasticity parameter (see the definition of b in Sec. II A). In

fact, within that range, the thickening factor is a nonmono-

tonic function of the capillary number: at the lowest end, sur-

face diffusion is important enough to produce a uniform

distribution of surfactant, while at the other end, viscous

forces overcome surface elasticity. Therefore, in both limits

the film thickness can be well approximated by the Landau-

Levich law and the thickening factor is equal to 1. In between
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those extremes, the thickening factor first increases and then

decreases as the capillary number is augmented. Park also

found that the maximum value of that parameter is equal to

42/3. It is worthy to note that Ratulowski and Chang10 in their

analysis about the effects of surfactants on the film left

behind by a large bubble displacing a liquid in a capillary

tube predicted that the film could increase by the same maxi-

mum factor when the transport of surfactant in the film is lim-

ited by a bulk concentration gradient existing in that region.

Up to our knowledge, there is not an analysis of the dip

coating process under the effects of an insoluble surfactant

based on the solution of the full hydrodynamic problem;

however, Krechetnikov and Homsy11 in their numerical

work on the effects of a soluble surfactant on the Landau-

Levich problem argue that the presence of an insoluble sur-

face active agent has no effect on the film thickness. Their

assertion is based on numerical solutions—not presented in

the paper—that show that the stagnation point lying on the

interface of a clean system remains on the interface when an

insoluble surfactant is adsorbed. Thus, the surfactant is swept

away by convection from the interface.

The objective of the present work is two-fold. On the

one hand, our goal is to corroborate the results obtained by

Park; on the other hand, we aim at extending those results by

considering inertia forces and gaining a better comprehen-

sion about the mechanisms by which insoluble surfactants

act upon dip coating processes. For that purpose, we numeri-

cally solve the Landau-Levich problem when an insoluble

surfactant is adsorbed at the interface.

We found that the trend followed by the film thickness as

a function of the capillary number and the elasticity parame-

ter of the surfactant are qualitatively similar to those reported

by Park in his asymptotic analysis and thus are in contradic-

tion with the assertion of Krechetnikov and Homsy.11 In fact,

the numerical solutions reported here show that the stagnation

point present at the interface of a clean system is displaced

towards the bulk and thus the surfactant remains adsorbed

confirming the hypothesis of Groenveld.12 We also discuss

the changes experienced by the flow patterns near the menis-

cus and the solid wall when the coating speed is augmented

up to a value at which the film thickness of the system can be

approximated by the Landau-Levich law. In addition, when

the values of the physical parameters used by Park are con-

sidered, we show that the influence of inertia forces is not

negligible; therefore, they must be taken into account when

insoluble surfactants are present in the dip coating process.

The paper is organized as follows. In Sec. II, we present

the governing equations and their boundary conditions and

we briefly outline the numerical technique employed to solve

them. In Sec. III, we discuss the effects of an insoluble sur-

factant on the Landau-Levich problem, first when inertia is

neglected and then when this force is considered. Finally,

Sec. IV is devoted to the conclusion.

II. MODEL FORMULATION

A. Governing equations and boundary conditions

We consider the two dimensional flow produced when a

solid plate moves out of a large liquid bath at a constant

speed, U. The viscosity, l, and density, q, of the coating liq-

uid are constant and the air above is regarded as inviscid, its

pressure is constant and set equal to zero. In Figure 1, a sche-

matic representation of the problem and the system coordi-

nate adopted are illustrated. There is an insoluble surfactant

adsorbed along the free surface whose concentration is kept

constant and equal to CREF at x¼ 0, y¼ yF. Therefore, the

flow is governed by continuity and Navier-Stokes equations

which in the coordinate system adopted are

ux þ vy ¼ 0; (1)

Re uux þ vuy

� �
¼ � 1

Ca
px þ uxx þ uyy �

1

Ca
; (2)

Re uvx þ vvy

� �
¼ � 1

Ca
py þ vxx þ vyy: (3)

In the above expressions, subscripts denote partial derivatives

and the variables are written in dimensionless form using the

following scales: U for velocities, lC¼ (rREF/q g)1/2 for

lengths, and rREF/lC for pressures; Re¼ qUlC=l is the Reyn-

olds number and Ca ¼ lU/rREF is the capillary number; and

rREF is the surface tension at (0,yF). Boundary conditions are

as follows:

(a) The fluid adheres to the moving plate, then u¼ 1 and

v¼ 0 at y¼ 0.

(b) At the film exit boundary which is located far away from

the meniscus (x¼ xF, 0� y � h0), the flow becomes uni-

directional and the film thickness is uniform and equal to

h0; thus, we impose ux¼ vx¼ 0 and uy¼ 1/Ca (y�h0) as

Neumann boundary conditions.

(c) At the bottom of the domain (x ¼ �H/lC, y � 0), the

flow does not change along the x-coordinate; therefore,

ux and vx are set equal to zero. Also, a uniform pressure

is weakly imposed along this boundary. This pressure is

equal to the pressure at the lowest right corner of the do-

main and is obtained by introducing an additional equa-

tion in the numerical code that sets the slope of the free

FIG. 1. Sketch of the flow domain and coordinate system adopted.
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surface equal to zero at (0, yF). The difference between

the calculated and the hydrostatic pressure does not

exceed 0.01%. (See Ref. 8 for more details).

(d) At the lateral boundary of the domain which is located

far away from the moving plate (�H/lC� x� 0, y ¼ yF),

the surface becomes flat and the flow does not change

along the y-coordinate; thus, uy and vy are set equal to

zero.

The free surface is a material surface; therefore, the

usual form of the kinematic condition applies, that is,

v � n ¼ 0; (4)

where n being the unit normal vector to the free surface

pointing toward the gas phase. When there are surfactants in

the system and the interface is regarded as Newtonian, the

coefficients of the surface stress tensor (i.e., surface viscos-

ities and surface tension) depend on the local concentration

of surfactant. In this work, we assume that both surface vis-

cosity coefficients are negligible; thus, the traction vector

along the interface results as follows:

� 1

Ca
pnþ n � rvþ rvð ÞT

h i
¼ 1

Ca

d r tð Þ
ds

; (5)

where s is the arc length along the interface measured from

(0, yF) to (xF, h0), t is the unit tangent vector to the free sur-

face pointing in the direction of increasing s, and r is the

local value of the surface tension measured in units of rREF

and depends on the concentration of surfactant. Following

Park, we assume a linear relationship between the surface

tension and the interfacial concentration of surfactant

r ¼ 1� b C� 1ð Þ: (6)

In the above expression, C is dimensionless concentration of

surfactant measured in units of CREF and b ¼ � CREF

rREF

@r
@C

� �
CREF

is the elasticity number.

The transport equation for the surfactant on the free sur-

face is13

rS � CvS
� �

� 1

PeS
r2

SC ¼ jn; (7)

where v
S is the surface velocity, PeS ¼ U lC/DS is the surface

Péclet number, DS being the surface diffusion coefficient of

the surfactant, and jn is the flux of surfactant between the

bulk and the free surface. In the present case, jn¼ 0 because

the surfactant is insoluble.

Finally, the following boundary conditions complete the

formulation of the problem

C¼ 1;
dyFS

ds
¼ 0 at s¼ 0; and

dxFS

ds
¼ dC

ds
¼ 0 as s¼ sf :

(8)

In the above expression, xFS and yFS stand for the x and y
coordinates of the free surface, respectively. In addition,

s¼ 0 is located at a distance yF from the moving substrate;

this distance is large enough to assume that the free surface

is already flat. Also, at this location the concentration of

surfactant is fixed. At first glance, this last condition might

seem arbitrary; however, it represents the only feasible

“steady state” experiment in a finite bath. In fact, if the con-

centration of solute is not fixed, its value will continuously

diminish due to the convective transport of surfactant

towards the film region and no steady state will be achieved.

Equation (8) also establishes that far away from x¼ 0 (in the

thin film region), the free surface is parallel to the solid

surface.

B. Solution method

A description of the numerical scheme used to solve

Eqs. (1)–(8) can be found in Ref. 8. Therefore, in this Sec-

tion, we will discuss the tests carried out to establish the

appropriateness of the domain extension as well as the num-

ber of the elements and their distribution in the computa-

tional grid.

The location of the bottom boundary must guarantee

that the flow normal to the plane x¼�H/lC does not appre-

ciably changes with x, and the position of the upper bound-

ary must assure the fulfillment of the conditions there

imposed to the flow as well as to the interfacial concentra-

tion of surfactant and the interface. Since those are the

same criteria adopted when the effects of a soluble surfac-

tant were studied,8 similar numerical tests were carried out

in the present case. From those tests, H/lC¼�80 and

xF¼ 30 proved to be adequate for the computations dis-

cussed in this work.

In the hypothetical case of a perfect insoluble surfactant

and when the mass transport is dominated by convection, the

solution is sensitive to the location of the yF coordinate; in

fact, the inflow of surfactant to the system depends on its

concentration and on the surface velocity at s¼ 0. In our for-

mulation, the former variable is fixed and the latter depends

on the distance to the solid wall. The criterion adopted in

this work to establish the extension of the flow domain in the

y-direction is that the magnitude of the derivative of the sur-

factant concentration at s¼ 0 be smaller than 2� 10�3 for

the largest capillary number used in the simulations when

Re¼ 0. Tests carried out show that if yF is equal to 100, the

above requirement is satisfied. It is worth to note that the

largest value of dC=dsj js¼ 0 detected in the computations

does not exceed 0.005 when m¼Re/Ca¼ 52 500 and

b¼ 0.01 or 0.1 (see Fig. 2).

To select a finite element mesh, we looked for the

invariance of the solution with the number of grid ele-

ments. In particular, we require that the film thickness be

independent of further refinements with a tolerance smaller

than 1%. The three meshes tested, whose main features are

indicated in Table I, satisfied that criterion even in the

worse conditions, i.e., large Reynolds number and small

elasticity parameter. Moreover, in most of the numerical

tests carried out, changes in h0 did not exceed 0.1% when

results corresponding to the three meshes were compared.

In view of the above facts and considering the computa-

tional cost, all numerical solutions reported in this work

were computed with M2.
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III. RESULTS AND DISCUSSION

The most relevant result of a dip coating study is the

prediction of the film thickness of the coated layer as a func-

tion of the physical parameters of the process, particularly its

dependence on the substrate speed.

To study the effect produced by an insoluble surfactant

on the thickness of the coated layer, we firstly define the sys-

tem to be analyzed by fixing the physical properties of both

the liquid and the surfactant. Once the governing equations

are solved for a certain substrate speed, the latter is incre-

mented by a convenient amount and the dimensionless num-

bers that depend on U are recalculated accordingly.

We use values proposed by Park for the physical param-

eters of the system, that is, liquid viscosity and liquid density

are set equal to 10�3 Pa s and 103 kg m�3, respectively; the

reference surface tension is 0.030 N m�1 and the surface dif-

fusion coefficient is 10�9 m2 s�1. For the selected values of

the physical variables and within the range of capillary num-

ber (i.e., coating speeds) considered, the surface Péclet num-

ber varies between 525 and 5.25� 105; therefore, the

interfacial distribution of surfactant largely depends on the

free surface velocity. Also, under these conditions, the pa-

rameter m defined as the ratio between inertia and surface

forces (i.e., m ¼ Re/Ca¼q rREF lC/l2) is equal to 52 500,

and consequently, the Reynolds number is negligible only

for very small Ca. In order to compare our solutions with

Park’s, we first discuss the predictions computed by setting

Re¼ 0 in the numerical code and then we assess the influ-

ence of inertia by repeating the calculations with the Reyn-

olds number corresponding to each selected Ca. The analysis

of the results for Re¼ 0 is divided into two parts; in the first,

we study the problem when elastic forces are not negligible,

whereas in the second, we consider the behavior of the sys-

tem when those forces are null, i.e., when the film thick-

nesses of the contaminated system can be predicted by the

Landau-Levich law.

A. Re 5 0

1. Non-negligible elastic effects

Numerical predictions for the film thickness as a func-

tion of the Capillary number for b¼ 0.01 and 0.1 are

depicted in Fig. 3. Solutions of the asymptotic model when

b¼ 0.01 and b¼ 0.1 taken from Figure 5 of Park’s paper are

included for comparison. From those curves the following

features are apparent:

(i) The presence of the surfactant gives rise to a thicker

film within a range of Ca that depends on the elastic-

ity number. The range becomes broader as b is

increased.

(ii) For any value of b, the thickness of the film in the

contaminated system can be at most equal to 42/3 the

thickness of the corresponding clean system (dotted

line in Fig. 3).

(iii) As Ca increases, that is, as the ratio between viscous

and surface forces becomes larger, the film thickness

approaches the Landau-Levich law (dashed line in

Fig. 3).

It is evident that the same trend is followed by the solu-

tion of the approximate model; however, a closer comparison

shows that the numerical film thicknesses are below the as-

ymptotic ones and that the differences become larger when

both the capillary and the elasticity number are augmented.

Park in his analysis neglects the effect of gravity and

imposes that the liquid attains the solid speed in the flat film

region; therefore, it is likely that the differences between

both predictions are due to this approximation. This

FIG. 2. dC=dsð Þs¼ 0 as a function of the capillary number for m¼ 52 500

and b¼ 0.01 and 0.1 when yF¼ 100.

TABLE I. Main features of the three meshes tested. E is the number of ele-

ments, Ntotal and N
FS

are the number of nodes in the domain and the free sur-

face, respectively, and NDF is the number of unknowns.

Mesh E Ntotal NFS NDF

M2 18 200 74 482 721 167 646

M3 30 000 121 241 1001 273 501

M4 36 000 145 241 961 327 501 FIG. 3. Dimensionless film thickness as a function of Ca for b¼ 0.01 and

0.1.
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speculation is supported by the fact that discrepancies

increase as the gravity effects become more important, i.e.,

for thicker films deposited at larger values of Ca and b.

The numerical algorithm fails to converge when the sol-

utions of the contaminated system and the Landau-Levich

predictions merge into one curve. A close inspection of the

interfacial variables, in particular of the surface concentra-

tion of surfactant, shows that at that point this variable goes

to zero in the region where the dynamic meniscus meets the

film and thus, the lack of convergence could result from a de-

ficient mesh refinement. This issue will be addressed more

extensively in Sec. III A 2.

Typical flow patterns of the Landau-Levich problem in

the absence of surface active agents show the presence of a

stagnation point at the interface in the dynamic meniscus,

more precisely, where the film thickness is approximately

three times the final film thickness (h0). According to results

depicted in Fig. 3 showing film thickening, that point cannot

be present when an insoluble surfactant is adsorbed along

the interface; otherwise, as long as surface diffusion is negli-

gible, the surface active solute will be convected towards the

ends of the free surface and, consequently, it will not act

upon the dip coating process. This issue that is discussed by

Park and is suggested in a previous work in which we studied

the effects of a soluble surfactant8 will be addressed in this

paper when analyzing the flow fields. Thus, the interfacial

concentration of surfactant diminishes from s¼ 0 toward the

film and this gradient gives rise to Marangoni tractions

Tns ¼ � b
Ca

dC
ds

� �
which in turn pull more liquid into the film

region. Those tractions increase with b and diminish with

Ca; thus, as U is augmented for any value of b viscous forces

first equilibrate and then exceed surface forces reducing the

thickening effect until the thickness of the corresponding

clean system is finally attained.

In a previous paper,8 we showed that the thickening fac-

tors larger than one detected when the coating liquid contains

a soluble surfactant are mainly associated with changes in

both the interfacial shape and the pressure distribution in the

dynamic meniscus and not with the nonzero values detected

in the tangential component of the surface stress.

Typically, in the static meniscus region, the liquid pres-

sure decreases linearly along the x-coordinate (see Fig. 1)

until it matches the dynamic meniscus and then it rapidly

increases with x to reach the air pressure and, consequently,

the pressure gradient presents a maximum. Results reported

in Ref. 8 point out that the Marangoni forces stretch the tran-

sition region and reduce the surface curvature, leading to a

smaller adverse pressure gradient along the dynamic menis-

cus; thus, more liquid is pulled into the film region for a

given Ca when the elasticity number is augmented.

To establish whether or not the same mechanism con-

tributes to the film thickening observed in the present analy-

sis, we evaluated the maximum value of dp/dx for the same

set of parameters as in Fig. 3; results are illustrated in Fig. 4.

We see that also in this case, the presence of the surface

active agent reduces the pressure gradient detected in the

corresponding clean system, larger differences are detected

at lower values of the capillary number where curves for

b¼ 0.1 and 0.01 approach each other in correspondence with

results depicted in Fig. 3 for the film thickness. Numerical

solutions (not reported here) point out that the length of the

dynamic meniscus is stretched by the surfactant; for instance,

it is approximately equal to twice the length of the corre-

sponding clean system when Ca¼ 0.00127 and b¼ 0.1.

Then, thickening factors larger than one resulting from the

adsorption of an insoluble surface active agent are conse-

quence of both a nonvanishing tangential surface stress and a

change in the free surface shape which in turns modifies the

pressure distribution.

Other variable of interest is the concentration of surfac-

tant in the film, this is, particularly true when the surfactant

is an additive which confers specific properties to the coated

layer. In Fig. 5, Csf¼C(s¼ sf) is depicted as a function of Ca
for b¼ 0.01 and 0.1; values computed with Eq. (58)

(b¼ 0.1) or picked from Fig. 6 (b¼ 0.01) of Ref. 9 are also

drawn for comparison. According to Park, that the expres-

sion provides a good approximation to the solution of the as-

ymptotic model when b¼ 0.1 and Ca� 10�3.

FIG. 5. Interfacial concentration of surfactant in the film region as a func-

tion of the capillary number for b¼ 0.01 and 0.1.

FIG. 4. Maximum pressure gradient as a function of Ca for b¼ 0.01, 0.1,

and 0; m¼ 0.
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It is easy to see that numerical and asymptotic predic-

tions follow the same trend: the concentration diminishes as

Ca is augmented and it becomes nearly equal to zero when

the Landau-Levich law is approached. It is remarkable the

good correspondence observed between the solutions of the

full hydrodynamic problem and those calculated with Eq.

(58) when Ca� 10�3 and b¼ 0.1. If results illustrated in

Figs. 3 and 5 are analyzed together, it is concluded that the

best agreement between the simplified and the full models

takes place in the region where elastic effects prevail over

viscous effects. Seemingly, when those forces compete, dif-

ferences between both solutions become more noticeable;

finally, if viscous force rules the behavior of the system, the

lubrication approximation and the 2-D model will draw close

to the Landau-Levich law.

Since the characteristic velocity is the substrate speed,

to put into evidence the influence of this variable on the free

surface velocity, and in turn on the convective transport of

solute, we evaluate the ratio between the magnitude of the

dimensional surface velocity at both ends of the interface for

a given Ca (denoted as V�S ) and the corresponding ones to

the same value of b and Ca¼ 10�5 (denoted as Vref
S ); the

results for b¼ 0.1 are illustrated in Fig. 6. It is worthy to

note that the analogous curves for b¼ 0.01 (not shown here)

are qualitatively similar.

Figure 6 indicates that the dimensional interfacial velocity

in the film region (s¼ sf) increases almost linearly (as

expected) with Ca, i.e., almost in the same proportion as the

substrate speed is augmented. On the other hand, the dimen-

sional velocity at s¼ 0 increases until it reaches a maximum

at Ca � 2.2� 10�3 and thence continuously diminishes to

become negligible near the value of Ca at which the Landau-

Levich expression provides a good approximation for the film

thickness. In other words, as the film increases its velocity

with the substrate speed, the liquid located on the surface of

the pool and far away from the substrate (s¼ 0) presents a

nonmonotonic behavior characterized by a quasistagnant con-

dition at higher capillary values. This behavior strongly affects

the interfacial transport of surfactant; in fact, if interfacial dif-

fusion is neglected, the rate of supply of solute to the film

exclusively depends on the velocity at s¼ 0 where the concen-

tration of solute is kept constant. Therefore, since the inflow

and outflow rates must be equal, previous results point out that

the amount of surfactant per unit time carried out by the liquid

film will attain a maximum when Ca� 2.2� 10�3 and will be

negligible for Ca � 10�2. This feature can be observed in Fig.

7 where the quantity (Ca�Csf), which is a measure of the

mass outflow rate of surfactant, is drawn as a function of Ca.

Results depicted in Fig. 6 show that the difference

between both velocities is almost zero at low values of Ca
but it continuously increases with this parameter at a rate

that is also increasing particularly for values of Ca larger

than 0.0022. Therefore, one might expect larger concentra-

tion gradients as this parameter is augmented.

The interfacial velocity and the distribution of surfactant

along the free surface for b¼ 0.1 and four values of the cap-

illary number illustrated in Figs. 8(a) and 8(b) are in

FIG. 6. Interfacial dimensional velocities at both ends of the free surface

measured in units of the corresponding velocities for Ca¼ 1� 10�5 and

b¼ 0.1.
FIG. 7. (Ca�Csf) vs. Ca for b¼ 0.1.

FIG. 8. Interfacial velocity (a) and distribution of surfactant along the free

surface (b) for b¼ 0.1.
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agreement with the above speculations. In fact, for

Ca¼ 10�5, the velocity is nearly constant along the free sur-

face and so is the concentration of surfactant which in the

film region is approximately equal to 98% of the reference

concentration. A similar behavior is detected for Ca¼ 10�4,

although now the concentration of surfactant in the film and

at s¼ 0 differs by nearly 10%. A closer inspection of those

curves (see Figs. 9(a) and 9(b)) reveals that the maximum of

jdC/dsj always occurs at the dynamic meniscus. In addition,

the maximum of jdC/dsj is a nonmonotonic function of the

capillary number; the largest maximum is detected for Ca �
2.2� 10�3 (see Fig. 9(b)).

If we now look at the curve for Ca¼ 0.0022, we see that

the difference in the concentration of surfactant at both ends

of the interface is more noticeable: Cðsf Þ
�
Cð0Þ � 0:3. In

agreement with this result, the ratio between the dimensional

surface velocity at s¼ sf and at s¼ 0 is approximately equal

to 3.3 (see Fig. 6). The most remarkable changes between

the distribution of surfactant for Ca¼ 0.0022 and those cor-

responding to the lowest values of this parameter considered

in Fig. 8 are the strong reduction in the amount of surfactant

adsorbed in the film region and the slight diminution

detected along the static meniscus; consequently, for

Ca¼ 0.0022, there is a large concentration gradient in the

dynamic meniscus (see Fig. 9(b)).

If the coating speed is further increased, the concen-

tration of surfactant in the film is drastically reduced (see

the curve for Ca¼ 0.009 in Fig. 8(b)) in agreement with

the striking variation experienced by V�Sðsf Þ
�

V�Sð0Þ (Fig.

6); actually, for Ca¼ 0.009, V�Sðsf Þ
�

V�Sð0Þ � 4000 and

Cðsf Þ= Cð0Þ � 0:00025. Also, as the concentration of sur-

factant in the film diminishes, a smoother distribution is

observed along the dynamic meniscus resulting from the

larger gradient that exists in the static region (see the curve

for Ca¼ 0.009 in Fig. 9(b)).

An interesting conclusion that can be drawn from Figs.

6 and 8(a) is that the flow pattern must change significantly

near the free surface as the coating speed is augmented. To

analyze this point, we calculated the stream function and

drew selected streamlines near the interface and the solid

wall for four different values of the capillary number; they

are illustrated in Fig. 10. It should be noticed that the flow

patterns shown pertain to the dynamic meniscus region

which approximately extends from s¼ 99.5 to s¼ 101.0. At

low Ca, i.e., when the interfacial concentration of surfactant

is quite uniform, there is a stagnation point in the bulk

(marked with a dot in the figure) very close to the solid

wall—less than 0.01 lC away from it. The film is mainly

formed by two streams, one is close to the substrate and the

other one is flowing all along the interface. These two

streams give rise to the two inverted V-shape regions shown

in Fig. 10(a) which converge at the stagnation point.

At first when U is progressively augmented, the stagna-

tion point moves downward away from the wall and the

interface (see Fig. 10(b)) and the amount of liquid dragged

by the substrate and the free surface towards the film region

increases; thus, a thicker coating layer is formed. The analy-

sis of a sequence of flow patterns (not shown here) suggests

that the downward motion of the stagnation point is observed

within the range of Ca where V�Sð0Þ increases with the coat-

ing speed.

When Ca is larger than approximately 0.0022, an incre-

ment of this parameter (i.e., of the substrate speed) is accom-

panied by the displacement of the stagnation point towards

the interface and away from the substrate. The size of the

V-shape region located in the vicinity of the free surface is

largely reduced and so is the amount of liquid dragged by

the interface toward the film (see Fig. 10(c)). When the film

thickness approaches the Landau-Levich law, the amount of

liquid flowing parallel to the free surface towards the film

region is so small that the liquid in its vicinity is almost stag-

nant. The length of this low velocity region increases with

the capillary number and ends at a stagnation point located

close to the interface (black dot in Fig. 10(d)). It is likely

that more than one stagnation point exists; nevertheless, that

region is so narrow that we were not able to obtain a more

accurate picture of the flow field in there.

The resulting flow pattern resembles that of a clean sys-

tem, even though in the contaminated case, the surface ve-

locity does not change sign (it is approximately equal to

0.0005 and to 0.02 at s¼ 0 and in the neighborhood of the

bulk stagnation point represented with a black dot in Fig.

10(d), respectively).

2. The Landau-Levich limit

When discussing the above results, we conjectured that

the lack of convergence of the algorithm when the system

approaches the Landau-Levich law could be due to an insuf-

ficient mesh refinement. That hypothesis is based on the evo-

lution of the interfacial variables particularly in the trend

followed by the concentration of surfactant as that limiting

FIG. 9. Free surface velocity (a) and interfacial concentration of surfactant

(b) along the dynamic meniscus when b¼ 0.1. The lines correspond to the

same values of Ca as in Fig. 8, while symbols on each curve represent the

approximate location where the dynamic meniscus joins either the static or

the film region.
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behavior is reached. In fact, curves portrayed in Figs. 7, 8(b),

and 9(b) show that the film is depleted of surfactant for the

particular set of Ca and b at which the film thicknesses of

the contaminated and clean systems are nearly equal. Also,

at this point, results illustrated in Fig. 8(a) show that a large

interfacial region is nearly stagnant. Thus, to follow the evo-

lution of the system in a range of the parameters where vis-

cous forces wipe out the effects of the surfactant, a very fine

mesh in the zone where the concentration of surfactant

becomes zero might be required.

To prove that this is indeed the case, we carried out the

following numerical test. Instead of using a finer mesh, we

computed solutions for b¼ 0.001, i.e., a value of the elastic-

ity number at which the transition takes place at smaller sub-

strate speed. The distribution of surfactant along the

interface is governed by Eq. (7) with jn¼ 0, when the solute

concentration approaches zero, the term rSC � 0. There-

fore, if PeS is very large, the convective nature of the pro-

cess will be strongly reinforced. In correspondence with that

observation, the computed interfacial distribution of the sur-

face active agent presents oscillations when the capillary

number is slightly augmented beyond the limits considered

in Fig. 3 for b¼ 0.01 and 0.1, i.e., immediately before the

algorithm fails to converge. Two common ways to avoid

those unphysical oscillations are to use either a very fine

grid or a stabilizing scheme such as upwinding or Petrov-

Galerkin methods.

When b¼ 0.001, the transition to the Landau-Levich re-

gime takes place at Ca � 2.5� 10�5 and PeS � 1837, that is,

the surface Péclet number is approximately 14 times smaller

than the largest value considered in the computations carried

out for b¼ 0.01; thus, one should expect that diffusion will

be large enough to eliminate (or at least largely reduce) the

oscillations. Results reported in Fig. 11 support our

FIG. 10. Selected streamlines near the

solid wall and the interface for b¼ 0.1,

Ca¼ 1� 10�4 (a); b¼ 0.1, Ca¼ 0.0022

(b); b¼ 0.1, Ca¼ 0.008 (c); and b¼ 0.1,

Ca¼ 0.009 (d). The matching between the

static and the dynamic menisci takes place

at s approximately equal to 99.75 (a),

98.79 (b), 98.39 (c), and 98.20 (d).

FIG. 11. Dimensionless film thickness as a function of Ca for b¼ 0.001.
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conjectures; although in order to confirm them, more exhaus-

tive numerical tests, including the use of a much more

refined mesh when b is equal to 0.01 and 0.1, are required.

For the particular value of b selected, differences between

the film thicknesses numerically obtained and those eval-

uated with the Landau-Levich law are smaller than 1% for

Ca � 2.5� 10�5.

Figure 11 shows for Ca¼ 10�4 and b¼ 0.001 that the

contaminated system is clearly behaving like a pure liquid;

the related streamlines drawn in Fig. 12(a) reveal the pres-

ence of a stagnation point at the interface, as it is expected.

Moreover, if those lines are compared with the streamlines

depicted in Fig. 12(b) for the corresponding clean system, it

is easy to conclude that they are almost identical.

The sequence of flow patterns presented in Fig. 10, in

which the stagnation point is always in the bulk, evidences

that the interfacial velocity does not change sign. Moreover,

when Ca¼ 0.009 (Fig. 10(d)), the liquid is almost stagnant

near the interface between s¼ 0 and the bulk stagnation

point marked with a black dot, as shown in Fig. 8(a). On the

other hand, in a system free of surfactant, the interfacial ve-

locity increases toward both ends of the free surface, i.e., in

the coordinate system adopted in this work it is negative

from s¼ 0 up to the stagnation point and positive from that

point up to s¼ sf. To underline those differences, in Fig. 13,

we illustrate the free surface velocity (a) and the distribution

of surfactant (b) for Ca¼ 1� 10�4 and b¼ 0.001 and 0. It is

interesting to note the two stagnation points that are present

at the interface of the contaminated system: one located

approximately at the same place as in the clean the system (it

is marked with a black dot in Fig. 12(b), while the other one

is placed close to it toward smaller values of s. The analysis

of the free surface velocity for increasing Ca (not shown

here) indicates that for Ca¼ 2.5� 10�5, the region where

that variable is negative is extremely small, but it increases

with Ca becoming—as Fig. 13 shows—about 0.8 of the cap-

illary length for Ca¼ 10�4.

B. The influence of inertia

As we discuss at the beginning of this section, the pa-

rameter m which measures the ratio between inertia and sur-

face forces is equal to 52 500 when the physical quantities

take the values assigned by Park; thus, the Reynolds number

is of order 1 or larger than 1 for Ca> 10�4.

To analyze the influence of that parameter on the pro-

cess under study, we carried out computations for

m¼ 52 500 and for b¼ 0.01 and 0.1, within the range of Ca
previously analyzed; the resulting predictions of the film

thickness are reported in Fig. 14 where values for Re¼ 0 are

also drawn for comparison.

Naturally, the upper (dotted line) and lower (dashed

line) curves of the film thickness are independent of m since

they depict the bounds: 42/3 times Landau-Levich law and

Landau-Levich law, respectively. However, the transition

FIG. 12. Selected streamlines near the solid wall and the interface for

b¼ 0.001 and Ca¼ 10�4 (a); b¼ 0 and Ca¼ 10�4 (b).

FIG. 13. Interfacial velocity (a) and distribution of surfactant along the free

surface (b) for Ca¼ 10�4.
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between those limits takes place in a narrower range of Ca
when m is augmented. Also, this transition is smoother for

smaller b. Another interesting feature of the results depicted

in that figure is that the contaminated system is more sensi-

tive to the influence of inertia forces than the corresponding

clean system. In fact, the upper triangles in Fig. 3 show that

inertia (m¼ 52 500) makes a clean system to deviate from

the Landau-Levich law when Ca is about 2.2� 10�3, while

in Fig. 14 we observe that inertia becomes noticeable at

Ca¼ 5� 10�5 when b¼ 0.01 and at Ca¼ 10�4 when

b¼ 0.1.

The thickness of the coated layer results from the inter-

play of viscous, inertia, and surface forces. At low coating

speeds, the film thickness is determined by the competition

between viscous and surface forces; however, as this variable

becomes larger, h0 will depend more and more on the ratio

of inertia to surface forces, i.e., on the product Re�Ca.

Since this ratio increases with U2 inertia forces will counter-

balance surface forces at lower values of Ca and the Landau-

Levich law will be approached faster.

To underline that concept, in Figure 15, we illustrate

selected interfacial variables for Ca¼ 0.0127 and b¼ 0.1

when inertia is disregarded (Re¼ 0) and when the Reynolds

number is 635 (Re ¼ Ca�m¼ 0.0127� 52 500).

We observe that the velocity of the free surface along

the static meniscus is very small and the transition between

this velocity and the film velocity is very sharp when inertia

forces are taken into account (dashed line in Fig. 15(a)).

We have already mentioned that the interfacial concen-

tration of surfactant is ruled by surface convection; there-

fore, this variable must be closely related to the velocity of

the free surface. Results reported in Fig. 15(b) show that,

even though the difference between the maximum and mini-

mum concentrations is larger when inertia force is com-

puted, its distribution is smoother due to the very low

velocities detected along the static meniscus. As a conse-

quence, the surface traction presents a higher maximum

when the Reynolds number is set equal to zero (see Fig.

15(c)), and thus the effect of the surfactant on the film thick-

ness will be overestimated if inertia is neglected in the

calculations.

In a system free of surfactant, a thicker film is formed

whenever the solid substrate is withdrawn faster; curves

reported in Fig. 14 show that this is not the case when there

is a surfactant adsorbed at the interface. Both for b¼ 0.01

and b¼ 0.1, the film thickness first increases as the substrate

speed is augmented and then diminishes until the Landau-

Levich law is attained. The relative difference between the

ticker film and the thickness computed when the Landau-

Levich law is reached is approximately equal to 7% and 28%

when b is equal to 0.01 and 0.1, respectively. Numerical sol-

utions not presented here show that this difference is an

increasing function of the elasticity number when b is within

the range 0.1–0.2.

IV. CONCLUSION

The goal of this work is the numerical analysis of the

dip coating process when a totally insoluble surfactant is

present; for that purpose, we made slight changes to an al-

ready validated numerical code previously employed to

study the same process with soluble surfactants.8 Our predic-

tions about the film thickness deposited compare well with

those obtained by Park9 who used a simpler one-dimensional

model based on the method of matched asymptotic expan-

sion; this model does not account for inertial effects.

The difference between the film thicknesses predicted

by both models increases as the capillary number reaches a

value large enough so that viscous forces overtake the elastic

ones. Logically, at the point viscous forces wipe out elastic

FIG. 14. Dimensionless film thickness vs. Ca for m¼ 0 and 52 500 and

b¼ 0.01 and 0.1.

FIG. 15. Free surface velocities (a), interfacial concentrations of surfactant

(b), and Marangoni tractions (c) along the free surface near the dynamic me-

niscus for Ca¼ 0.00127 and b¼ 0.1; solid lines are for m¼ 0 and dashed

lines are for m¼ 52 500.
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effects, the thickness ratio becomes one and the Landau-Lev-

ich law is recovered. This transition occurs at higher Ca val-

ues as the strength of the surfactant increases, i.e., as b
increases.

Inertial effects become important in the dip coating pro-

cess when liquids of low viscosities are employed. In such a

case, capillary values as low as 10�3 might imply Re values

as large as 100. Our predictions considering the Re values

arising from the physical properties adopted by Park show

that the inertial forces considerably affect the coating

thickness. In fact, for b¼ 0.1, the values of Ca at which the

Landau-Levich law is recovered are approximately

9.0� 10�3 and 1.4� 10�3 when Re is zero and 73.5,

respectively.

The results presented in this work complete the picture

about the flow pattern appearing in the dip coating process of

a plane substrate. In a previous work,8 we first showed the

streamlines when an inert soluble solute (b¼ 0) is employed,

which are identical to the streamlines produced by a pure liq-

uid; this flow pattern is characterized by the presence of a

single stagnation point located at the gas-liquid interface

where the film thickness is approximately three times the

final film thickness (h0). Then, as we increased the value of

b, we observed that the stagnation point located at the inter-

face moves away from the film region—i.e., toward smaller

values of the arc length—while a second stagnation point

located closer to the film region appears in the bulk. This

second stagnation point is a saddle point which presents a

closed swirl and two liquid streams, one of them is directly

dragged by the solid toward the film region, while the second

one turns around the swirl joining the gas-liquid interface

and moving along the free surface. Both streams joint just at

the saddle point and move together carrying the liquid that

will be deposited on the substrate.

More recently, we studied how the flow pattern just

described changes as the surfactant becomes less soluble.

For that purpose, we continuously reduce the adsorption ve-

locity of the surfactant, which is measured through the Stan-

ton number, until it becomes zero. As the Stanton number is

reduced, the close swirl originated at the saddle point grows

larger and the stagnation point located at the free surface

moves further and further away from the film. Eventually,

the surfactant becomes completely insoluble; at that stage,

the stagnation point at the interface is not longer there, the

liquid velocity is positive all along the interface and the stag-

nation point in the bulk very much resembles the split ejec-

tion streamline pattern observed by Dı́az and Cerro14 in their

study about the transition from Langmuir-Blodgett to dip

coating flow.

Finally, in the present work, we have described how the

flow pattern produced by a totally insoluble surfactant

evolves as the coating speed is augmented, and the classical

result of Landau and Levich is recovered.
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