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Nonsymmetric curved beams having a symmetric caustic
skeleton are presented. They arise from a finite jump in
the symmetric spectral phase that breaks the symmetry
of the beam intensity without altering its associated caustic
curve. These nonsymmetric beams can be represented as a
superposition of two caustic beams whose wave fields have
well-defined even and odd symmetries with weight coeffi-
cients dependent on the phase jump. In this approach, the
phase jump acts as a measure of the beam asymmetry degree
that can be easily controlled in experiments. This scheme is
a promising step towards optical cryptography and quan-
tum optics applications. © 2018 Optical Society of America
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The main feature of curved beams, also called accelerating
beams, is that their main intensity peak follows a curved spatial
trajectory as the beam propagates. The most famous curved
beam is the Airy beam [1], whose observation in 2007 [2] gave
rise to a rapid growth in the theoretical and experimental
investigation on curved beams. Nowadays this matter became
one of the central topics in beam propagation and design and
derived branches [3–7]. The curved trajectory is due to the in-
tensity distribution that follows a spatial curve called caustic. It
can be interpreted as the skeleton of the beam. Within an un-
dulatory context, the caustic is the frontier between evanescent
and propagating waves while, within a geometric approach, it is
the envelope of families of rays forming a curve or a surface
where light focuses [8–10]. There exists a direct relationship
between the spectral phase of the curved beam and the geom-
etry of its caustic skeleton: the symmetry and the power of
the spectral phase define the type of caustic and the degree
of caustic curvature, respectively [11]. In a bidimensional space,
an antisymmetric spectral phase defines a fold caustic [8–10]
whose skeleton and its spatial intensity pattern are both
symmetric with respect to the Fourier transverse plane [11].
The greatest exponent is the Airy beam itself [1,2]. In return,

a symmetric spectral phase defines a cusp caustic [8–10] whose
skeleton and its spatial intensity pattern are both symmetric
with respect to the propagation coordinate [11]. Representative
examples are the Pearcey beam [12] and the symmetric Airy
beam (SAB) arisen from the cubic phase symmetrization
[13,14]. A signature of caustic beams is that the symmetry
of the intensity pattern follows the symmetry of its caustic skel-
eton. This feature was observed for curved beams in �1� 1�D
[15–18], and for abruptly autofocusing beams [19,20] and
tailoring beams [21] in �2� 1�D. However, it will be demon-
strated here that there are beams having a nonsymmetric inten-
sity pattern on a symmetric caustic skeleton, breaking the above
“golden rule.” These peculiar beams arise from a jump of finite
size in the symmetric spectral. This simple phase modification
breaks the intensity symmetry while preserving the symmetry
of the caustic skeleton. In this Letter, we develop an approach
to characterize this class of curved beams whose asymmetry de-
gree is fully controlled by the size of the spectral phase jump.
We perform a numerical analysis showing its main propagation
properties and suggest potential applications of such a peculiar
phenomenon.

A �1� 1�D curved beam propagating along the z-axis is
described by the wave field E � E0 u ei�2π∕λ�z with amplitude
E0, wavelength λ, and dimensionless wave function [13],

u�s, ξ� � eiξk2

2π

Z �∞

−∞
A�K �eiψ�K � e−iξK 2∕2 eiK sdK , (1)

that is expressed in terms of a K -symmetric real spectral
amplitude A�K � and a two times differentiable spectral phase
ψ�K �. The other terms of the integrand of Eq. (1) are the
paraxial propagator eiξ�k2−K 2∕2� and the Fourier transform factor
eiK s. The dimensionless spatial frequency K and transverse co-
ordinate s � x∕x0 are conjugate variables where x0 is a trans-
verse scale characterizing the beam size. The dimensionless
propagation coordinate is ξ � zλ∕�2πx20�, and k � �2π∕λ�x0
is the normalized wavenumber. The curved beam has associated
a caustic that can be viewed as the structural skeleton of the
beam along which most of the light intensity is distributed.
It is well known that ψ�K � determines the form of this skeleton
structure [11,18] through the first and second K -derivatives of
the full phase of the integrand of Eq. (1) equated to zero,
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ψ 0�K � − ξK � s � 0, (2a)

ψ 0 0�K � − ξ � 0: (2b)

Equation (2a) evaluates the stationary points representing fam-
ilies of rays with linear trajectories in the sξ plane. The number
of solutions of Eq. (2a) coincides with the number of rays
intersecting at a given point (s, ξ). Equation (2b) indicates that
the projection of the ray surface onto the sξ-space gives rise to
singularities identified as caustics. By eliminating K from
Eqs. (2), one obtains the explicit equation for the caustic curve
in the sξ-space associated to the beam with the wave field given
by Eq. (1). As a remark, there exist noncurved caustics parallel
to the propagation axis that are associated to nondiffracting
solutions of Helmholtz equations [22] that are not tied to
the maximum of the intensity pattern. This type of caustic is
not tackled by means of Eqs. (2).

Let us now introduce a finite gap of size β in half of the space
K on a symmetric phase ψ . The modified phase is

ψ̃�K � �
�
ψ�K � if K ≥ 0

ψ�K � � β if K < 0,
(3)

giving rise to a new field ũ�s, ξ� that only differs from u�s, ξ� by
the phase jump. The first and second derivatives of ψ̃ coincide
with the first and second derivatives of ψ for all K except at
K � 0, where a singularity exists. However, this is an avoidable
singularity since the lateral limits of ψ̃ 0�K � and ψ̃ 0 0�K � result in
the following:

lim
K→0�

ψ̃ 0�K � � lim
K→0−

ψ̃ 0�K � � ψ 0�0�: (4a)

lim
K→0�

ψ̃ 0 0�K � � lim
K→0−

ψ̃ 0 0�K � � ψ 0 0�0�: (4b)

Therefore, both derivative functions can be redefined at K � 0
to be continued functions with values ψ̃ 0�0� � ψ 0�0� and
ψ̃ 0 0�0� � ψ 0 0�0�. This renormalization ensures the equivalence
between the first and second derivatives of ψ̃ and ψ . Hence,
curved beams represented by wave fields u and ũ possess identical
caustic curves. Any finite jump β in the phase leaves invariant the
caustic skeleton. Thereby, the antisymmetric Airy beam (ASAB),
having an antisymmetric wave field [23], and the SAB, having
a symmetric wave field, both differing by a π-jump in the
cubic–symmetric spectral phase, possess the same cusp skeleton.

In Ref. [23], it was demonstrated that any beam emerged
from a π-jump in the symmetric phase has an odd wave field
with respect to s because it can be represented by a sine Fourier
transform on that variable. Thereby, any pair of wave fields hav-
ing even and odd s-symmetry, say ue and uo, possess jumps of size
β � 0 and π in the phase [Eq. (3)]. They can be viewed as “pure
parity states,” and their s-parity is evident when the wave fields
are expressed in terms of sine and cosine Fourier transforms [23],

ue�s, ξ� �
eiξk2

π

Z
∞

0

A�K �eiψ�K � e−iξK 2∕2 cos�K s�dK , (5a)

uo�s, ξ� �
ieiξk2

π

Z
∞

0

A�K �eiψ�K � e−iξK 2∕2 sin�K s�dK , (5b)

where ψ is the nonjump symmetric phase. The phases with
β ≠ 0, π yield a wave field with no defined parity, i.e., a “mixed
or nonpure parity field.” This asymmetry in the wave field
implies a mandatory asymmetry in the beam intensity pattern.

In spite of this, the symmetric caustic skeleton corresponding to
β � 0, π holds for these nonsymmetric beams as it was proved
through Eqs. (2)–(4). This breaks down the established idea for
curved beams about how symmetric caustic skeletons necessarily
lead to symmetric intensity patterns.

From the above, it is clear that the jump size β can be
interpreted as a measure of parity degree of the wave field ũ,
controlling the beam symmetry. Then, it is proper to express
ũ as a linear combination of linearly independent pure symmet-
ric and antisymmetric fields given by Eqs. (5),

ũ�s, ξ� � Ce�β�ue�s, ξ� � Co�β�uo�s, ξ�, (6)

where coefficients Ce�β� and Co�β� give a measure of the
weight that each pure field has on ũ. The aim is thus to find
the explicit dependence of these coefficients on β and, thereby,
to know the full dynamic of the nonsymmetric curved beams.
This dependence is a key experimental matter since the param-
eter β can be fully controlled in a spatial light modulator
(SLM). In order to derive Ce and Co, we separate the integral
[Eq. (1)] with spectral phase given by Eq. (3) into two parts, for
K < 0 and for K > 0. Then, by expressing eiK s in terms of sine
and cosine and by accounting the even parity of A�K � and
ψ�K �, one finally obtains

ũ�s, ξ� �
�
1� eiβ

2

�
ue�s, ξ� �

�
1 − eiβ

2

�
uo�s, ξ�: (7)

Equation (7) highlights the explicit β-dependence of the parity
coefficients Ce � �1� eiβ�∕2 and Co � �1 − eiβ�∕2 and is the
tool to analyze the dynamic of nonsymmetric curved beams.
We restrict the analysis to the principal value β ∈ �−π, π�. It
fulfills that β � 0 leads to Ce � 1 and Co � 0 such that
ũ � ue , while for β � �π leads to Ce � 0 and Co � 1 being
ũ � uo, as expected. Any other β-value yields to a nonsymmet-
ric wave field with nonzero coefficients Ce and Co. The radi-
ation intensity Ĩ�s, ξ; β� � jũ�s, ξ; β�j2 is constituted by three
terms: the intensity of even and odd fields, I e and I o respec-
tively, plus the interference or cross intensity, I cr. Explicitly,

Ĩ�I e�I o�I cr

�jCej2juej2�jCoj2juoj2�2RefCeC	
o ei�arg�ue�−arg�uo��gjuejjuoj,

(8)

where jCej2 � cos2�β∕2�, jCoj2 � sin2�β∕2�, and CeC	
o �

i�sin β�∕2. Necessarily, I e , I o ≥ 0, while I cr is given by

I cr�β� � − sin�β� sin�arg ue − arg uo�juejjuoj: (9)

For β � 0, I � I e , while for β � 
π, I � I o, as expected.
Since I e , I o are even functions on both, s and β, the sum
I e � I o remains invariant for s → −s and β → −β. In return,
the behavior of the cross intensity is quite different. This is
an odd function on s and on β, so that it necessarily yields
a symmetry rupture of the beam intensity with respect to both
parameters. The beam possessing the greatest asymmetry cor-
responds to β � �π∕2 because jI crj reaches its maximum
value. Only in this regime I e and I o are equi-weighted �jCej2 �
jCoj2 � 1∕2�. As an example, let us analyze the symmetry
breaking on SAB and ASAB [13,23]. We numerically simulate
I cr as a function of �s, ξ�. Figure 1 shows a density map of I cr
versus �s, ξ� for β ∈ �0, π� [subfigure (a)] and for β ∈ �−π, 0�
[subfigure (b)]. Notice that one map is the s-inversion of the
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other one, as expected by the antisymmetry of I cr on β. It is
evident that for β ∈ �−π, 0�, positive values of I cr predominate
for s < 0 and negative values dominate for s > 0, while the in-
verse happens for β ∈ �0, π�. This behavior determines where
the total intensity will be enhanced and depleted, and therefore,
it marks the dynamics of the asymmetry.

In order to deepen the analysis, we look to the behavior of
the intensity distribution by varying the jump of the symmetric
cubic phase, ψ � jK j3∕3. The amplitude is assumed to be
A � exp�−aK 2� with a � 0.08. We evaluate the wave field
through Eq. (1), where the phase was accounted by Eq. (3).
In another way, we calculate u from the linear superposition
of pure fields [Eq. (7)]. Thus, the intensity I � uu	 was evalu-
ated from Eq. (1) and from Eq. (8), obtaining an identical
result. This confirms the robustness of the wave field viewed
as a superposition of symmetric and antisymmetric states. The
numerical simulations are presented in Fig. 2. The sideway
subfigures correspond to SAB and ASAB, whose phase jumps
are 0 and 
π, respectively. The inside subfigures depict
nonsymmetric beams from nonpure parity fields. The first
row of Fig. 2 emphasizes how the negative values of β enhance
the total intensity for the main lobe at s < 0 while depleting the
main lobe at s > 0. The maximum asymmetry is yielded at
β � −π∕2, where the I cr-term has its maximum contribution.
Besides, for −π∕2 < β < 0, jCej2 > jCoj2 such that the weight
of I e is greater than the weight of I o, and the resultant beam will

have more resemblance with the SAB. This is visualized for β �
−π∕4 in Fig. 2. In return, for −π < β < −π∕2, jCoj2 > jCej2
such that the resultant beam will have more resemblance with
the ASAB (what is visualized for β � −3π∕4). Looking for the
second row where the intensities were obtained from positive
phase jumps, a specular behavior of the intensity happens in
relation to the ξ axis: the right-hand lobe is enhanced in detri-
ment of the left-hand lobe in agreement with the antisymmetry
of I cr, shown in Fig. 1. In this manner, one can easily switch
the intensity distribution with respect to the ξ axis by commut-
ing the sign in the phase jump. In summary, Fig. 2 makes
clear the feasibility of a succession of nonsymmetric curved
beams within a symmetric caustic skeleton by only varying β.
Notice that modulations in the spectral amplitude can yield
interesting changes in the intensity pattern [24,25]. However,
the asymmetry effect, in the approach studied here, is exclu-
sively produced by the phase jump.

The predetermined manipulation of the phase jump β leads
to a full control of the beam asymmetry through its intensity
measured at any transverse plane, which could be useful in sev-
eral applications. For instance, Fig. 3(a) shows the normalized
intensity versus s for several values of β > 0 at the autofocusing
plane. The huge on-axis intensity gap, ranged from the maxi-
mum value for the SAB to a null value for the ASAB, is appar-
ent. Figure 3(b) shows the intensity profile at a further plane.
A huge peak intensity gap between the right-hand side and left-
hand side lobes is feasible, and they can be switched by β → −β
(not shown in the figure) in a binary-like behavior. These
results could be of interest since small changes in β give rise to
huge changes in the intensity profile, which can be easily de-
tected experimentally. We emphasize the potential usefulness in
quantum optics and optical encryption. For the first, we refer to
the generation of spatial qudits through a single SLM by using
binary gratings [26]. This scheme presents a limit of the maxi-
mum intensity due to the low diffraction efficiency. Hence, the
phase jump approach could be efficient due to the wide inten-
sity range available. Moreover, it could avoid the use of a spatial
filtering in the amplitude characterization of the quantum
states since the intensity variations are fully controlled by
the phase jump. For the second, the phase jump approach
could be a powerful tool in optical information encryption

Fig. 1. Density plot of I cr versus �s, ξ� for β � 
π∕2. The maps for
β and −β are inverted regarding s � 0. The dashed curve is the cusp
caustic skeleton for SAB and ASAB.

Fig. 2. Density plot of I versus (s, ξ) for nonsymmetric beams having a β-jump in the phase. The sideways subfigures represent the SAB and
ASAB. The cusp caustic skeleton is represented by the dashed lines.
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in generating asymmetric keys [27] from the lobe intensity pat-
terns controlled by the jump.

On the other hand, the above formalism, not limited to the
symmetric cubic phase studied in this Letter, is valid for any
beam arisen from any symmetric phase. For instance, the analy-
sis could be performed on phases with powers less than two, as
presented in Ref. [18], leading to peculiar families of nonsym-
metric beamswithin unusual fold and cusp symmetric skeletons.
Besides, the results presented here can be straightforwardly
extended to two transverse dimensions due to the rectangular
symmetry of all these beams.

Finally, one might ask what happens with a β-jump for an
antisymmetric phase as it corresponds to the classical Airy beam.
For such a case, the intensity is not more s-symmetric but
ξ-symmetric [11,18]. As Eqs. (2)–(4) are valid no matter the phase
symmetry, the caustic skeleton from an antisymmetric phase is also
β-invariant. In the variable ξ, the field cannot be represented as a
superposition of pure fields. Thereby, the parity degree concept is
meaningless for beams arisen from a antisymmetric phase.
Moreover, the ξ-symmetry of the beam is conserved regardless
the β-jump, so that there is not breaking in the intensity symmetry
with respect to that variable. It only produced an additional
secondary interference pattern along the propagation axis that
does not significantly alter the original beam.

In summary, a new class of curved beams having a nonsym-
metric spatial intensity pattern within a symmetric caustic
skeleton was presented. These beams arise from a finite jump
in the symmetric spectral phase, and their dynamics are fully
controlled by the parameter β. It was demonstrated that such a
jump breaks down the spatial distribution of symmetry within
the invariance of the caustic skeleton. These nonsymmetric
beams exhibit peculiar features: they can be represented as a
superposition of two caustic beams, one having a symmetric
wave field and the other having an antisymmetric one. In this
manner, the phase jump controls the parity degree of the beam
and its dynamic just varying the β-value with a SLM. All these
results can be directly extended to two transverse dimensions.

The approach versatility along with its easy implementation
opens the possibility to employ these beams in useful applica-
tions as optical encryption and quantum optics.
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