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Abstract

We prove that the representation dimension of a selVnjective algebra of euclidean type is equal to three, and give

an explicit construction of the Auslander generator of its module category.
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1. Introduction

The homological dimensions are useful algebraic invariants, measuring how much an algebra or a module

deviates from a situation considered to be ideal. The representation dimension of an Artin algebra was introduced

by Auslander in the early seventies [10]. It measures the least global dimension of the endomorphism rings of

modules which are at the same time generators and cogenerators of the module category, thus expressing the

complexity of the morphisms in this category. Part of the interest in this invariant comes from its relation with

the Vnitistic dimension conjecture: it was proved by Igusa and Todorov that, if the representation dimension is

at most three, then its Vnitistic dimension is Vnite [24]. Iyama has shown that the representation dimension of

any algebra is Vnite [25] and Rouquier has shown that, for any positive integer n, there exists an algebra having n
as representation dimension [33]. There were several attempts to understand this invariant and to compute it for

classes of algebras, see for instance [6, 4, 17, 20, 29, 32]. In particular, it was shown in [16] that the representation

dimension of the trivial extension of an (iterated) tilted algebra equals three, and in [21] that the representation

dimension of a special biserial algebra is at most three.

In the present paper, we are interested in tame algebras. It was shown by Auslander that an algebra is

representation-Vnite if and only if its representation dimension equals two [10]. Because Auslander’s expecta-

tion was that this invariant would measure how far an algebra is from being representation-Vnite, it is natural to

conjecture that the representation dimension of a tame algebra is at most three.

Among the best known and most studied classes of tame algebras are the tame selVnjective algebras, see [38].

In fact, it is shown in [12] that the selVnjective algebras socle equivalent to weakly symmetric algebras of euclidean

type have representation dimension three. Our objective here is to determine the representation dimension of

selVnjective algebras of euclidean type (over an algebraically closed Veld). We recall that, if
#»

∆ is an euclidean

quiver, then an algebra A is called selVnjective of type
#»

∆ whenever there exists a tilted algebra B of type
#»

∆ and an

inVnite cyclic admissible groupG of automorphisms of the repetitive category B̂ of B such that A � B̂/G. Because of

the main result of [36], this class of algebras coincides with the class of representation inVnite domestic selVnjective

algebras which admit simply connected Galois coverings, in the sense of [8]. We prove the following theorem.

Theorem. Let A be a selVnjective algebra of euclidean type. Then the representation dimension of A is equal to three.
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Our strategy is the following. We start by considering a class of algebras which we call domestic quasitube

algebras, and prove that their representation dimension equals three. These algebras are considered as building

blocks for the repetitive category of a tilted algebra of euclidean type, which we obtain from them (and from the

tilted algebra) by successive gluings. Therefore, we show how to glue domestic quasitube algebras between them

or to tilted algebras of euclidean type and prove that this does not change the representation dimension. Finally,

using Galois coverings, we prove our main theorem. At each step, our proof is constructive: we give explicitly the

generator-cogenerator of the module category for which the representation dimension is attained.

The paper is organised as follows. After an introductory section devoted to Vxing the notation and recalling

useful facts about the representation dimension, section 3 is devoted to domestic quasitube algebras and section 4

to the gluings of such algebras. We next recall in section 5 the necessary facts about the selVnjective algebras of

euclidean type, then prove our main theorem in section 6.

2. The Representation Dimension

2.1. Notation

Throughout this paper, k denotes an algebraically closed Veld. By algebra A is meant a basic, connected, as-

sociative Vnite dimensional k-algebra with an identity. Thus, there exists a connected bound quiver (QA, I) and
an isomorphism A � kQA/I. Equivalently, A may be considered as a k-category with object class A0 the set of

points in QA, and with set of morphisms A(x, y) from x to y the quotient of the k-vector space kQA(x, y) of linear
combinations of paths in QA from x to y by I(x, y) = I ∩ kQA(x, y), see [15]. A full subcategory C of A is convex if,

for each x0
// x1

// · · · // xn in A with x0, xn ∈ C0, we have xi ∈ C0 for each i. The algebra A is triangular if QA is

acyclic.

Here, A-modules will mean Vnitely generated right A-modules. We denote by modA the category of A-modules

and by indA a full subcategory consisting of a complete set of representatives of the isomorphism classes (isoclasses)

of indecomposable A-modules. For a point x in QA, we denote by P(x) (or I(x), or S (x)) the indecomposable projec-

tive (or injective, or simple, respectively) A-module corresponding to x. The projective (or injective) dimension of

a module M will be denoted by pdM (or id M, respectively) and the global dimension of A by gl. dim.A. For a mod-

ule M, the notation addM stands for the additive full subcategory of modA with objects the direct sums of direct

summands of M. For two full subcategories C ,D of indA, the notation HomA(C ,D) = 0 means HomA(M,N) = 0
for all M in C , N in D . We then denote by D ∨ C the full subcategory of indA having as objects those of C0 ∪D0.

Finally, we denote by D = Homk(−, k) the usual duality between modA and modAop.

A path in indA from M to N is a sequence of non-zero morphisms

M = M0
// M1

// · · · // Mt = N (*)

with all Mi indecomposable. We then say that M is a predecessor of N, or that N is a successor of M.

We use freely properties of the Auslander-Reiten translations τA = D Tr and τ−1
A = Tr D and the Auslander-

Reiten quiver Γ(modA) of A for which we refer to [11, 7]. We identify points in Γ(modA) with the corresponding

A-modules and (parts of) components in Γ(modA) with the corresponding full subcategories of indA. For tubes,
tubular extensions and coextensions, we refer the reader to [30], and for tame algebras we refer to [37, 34, 35].

2.2. Representation dimension

The notion of representation dimension was introduced in [10] to which we refer for the original deVnition.

Hence, we use as deVnition the following characterisation, also from [10].

DeVnition. Let A be a non-semisimple algebra. Its representation dimension rep. dim.A is the inVmum of the global

dimensions of the algebras EndM, where the module M is at the same time a generator and a cogenerator of modA.

Note that, if M is a generator and a cogenerator of modA, then it can be written as M = A ⊕ D A ⊕ M′, where
M′ is an A-module. If M is such a module and moreover rep. dim.A = gl. dim.EndM, then M is called an Auslander

generator of modA.
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For studying the representation dimension, it is convenient to use a functorial language. A contravariant functor

F : (addM)op −→ Ab is called Vnitely presented, or coherent, if there exists a morphism f : M1 → M0, with M1, M0

in addM, which induces an exact sequence of functors

HomA(−,M1)
HomA(−, f ) // HomA(−,M0) // F // 0.

It is shown in [10] that the category FM of Vnitely presented functors from (addM)op to Ab is equivalent to

mod EndM and, in particular, is abelian.

In this paper, we are particularly interested in algebras of representation dimension 3. We recall that an algebra

A is representation-Vnite if and only if rep. dim.A = 2, see [10]. Therefore, if A is representation-inVnite, then

rep. dim.A > 3. We have the following well-known characterisation of algebras with representation dimension 3,

see [10, 16, 21, 39].

Lemma. Let M be an A-module which is a generator and a cogenerator of modA. Then gl. dim.(EndM) 6 3 if and

only if, for each A-module X, there exists a short exact sequence

0 // M1
// M0

// X // 0

with M0, M1 ∈ addM, such that the induced sequence of functors

0 // HomA(−,M1) // HomA(−,M0) // HomA(−, X) // 0

is exact in FM . In this case, rep. dim.A 6 3.

In the situation of the lemma, not only does M generate X, but also HomA(−,M) generates HomA(−, X). This
leads to consider the case where the morphism HomA(−,M0)→ HomA(−, X) is a projective cover. It was proved in

[6](1.4) that if X is generated by M, then there exists an epimorphism f0 : M0 → X, where M0 ∈ addM, such that

HomA(−, f0) : HomA(−,M0)→ Hom(−, X) is a projective cover.

Accordingly, a short exact sequence 0 //M1
//M0

f0 //X //0 such that HomA(−, f0) : HomA(,M0)→ Hom(−, X)
is a projective cover, is called an FM-resolution of X.

In this terminology, the previous lemma says that, if M is a generator-cogenerator ofmodA, then gl. dim.(EndM) 6
3 if and only if each A-module admits an FM-resolution.

2.3. Approximations

An equivalent language is useful. Let M be any A-module. Given an A-module X, a morphism f0 : M0 −→ X
with M0 ∈ addM is an addM-approximation if, for any morphism f1 : M1→ X there exists g : M1 → M0 such that

f1 = f0g:
M1

g

��

f1

++❱❱❱❱
❱❱❱❱

❱❱❱❱

X .

M0

f0
33❤❤❤❤❤❤❤❤❤❤❤❤

Equivalently, f0 : M0 −→ X is an addM-approximation if and only if HomA(−, f0) : HomA(−,M0) −→
Hom(−, X) is surjective in addM.

Note that, if X is generated by M, then any addM-approximation f0 : M0 → X of X is surjective. Indeed, let

f1 : M1 → X with M1 ∈ addM be surjective. Then there exists g : M1 → M0 such that f1 = f0g. The surjectivity of

f1 implies that of f0.
An addM-approximation is (right) minimal if each morphism g : M0 → M0 such that f0g = f0 is an isomor-

phism. Because of [11](I.2.1), if there exists an addM-approximation, then there exists an addM-approximation

which is minimal and is then called a minimal addM-approximation.

A short exact sequence

0 // M1
// M0

f0 // X // 0

3



with M1, M0 ∈ addM is an addM-approximating sequence if f0 : M0 → X is an addM-approximation of X. It is a
minimal addM-approximating sequence if moreover f0 is minimal. We need [4](1.7) which we reprove here because

it is central to our considerations.

Lemma. Let M, X be A-modules. If there exists an addM-approximating sequence of X, then there exists a minimal

addM-approximating sequence which is moreover a direct summand of any addM-approximating sequence.

Proof. Let M, X be A-modules and 0 //M1
//M0

f0 //X //0 be an addM-approximating sequence. Be-

cause of [11](I.2.1), there exists a minimal addM-approximation f ′0 : M′0 → X. Also, f ′0 is surjective as observed

above. Let M′1 = Ker f ′0. Because each of f0, f ′0 is an addM-approximation of M, we get a commutative diagram

with exact rows

0 // M′1
//

u

��

M′0
f ′0 //

v

��

X // 0

0 // M1
//

u′

��

M0
f0 //

v′

��

X // 0

0 // M′1
// M′0

f ′0 // X // 0 .

Because f ′0 is minimal, v′v is an isomorphism. Hence, so is u′u. Therefore, u and v are sections.

2.4. Approximating sequences and FM-resolutions

We now prove that these two terminologies are equivalent.

Lemma. Let M, X be A-modules and 0 //M1
//M0

f0 //X //0 be exact with M1, M0 ∈ addM. Then this sequence

is an FM-resolution if and only if it is a minimal addM-approximating sequence.

Proof. It suXces to prove that an addM-approximation f0 : M0 → X is minimal if and only if HomA(−, f0) :
HomA(−,M0)→ HomA(−, X) is a projective cover in FM .

Indeed, HomA(−, f0) is a projective cover if and only if, for any epimorphism HomA(−, f ′) : HomA(−,M′) →
HomA(−, X) with M′ ∈ addM, there exists a retraction HomA(−, g) : HomA(−,M′) → HomA(−,M0) such that

HomA(−, f0) HomA(−, g) = HomA(−, f ′). This is equivalent to saying that there exists a retraction g : M′ → M0

such that f0g = f ′, or to saying that among all addM-approximations of X, f0 is the one whose domain M0 has

least length. Because of [11](I.2.2), this is the same as requiring that f0 is minimal.

2.5. Tilted Algebras

We recall the deVnition of a tilted algebra. Let A be an algebra. A module TA is said to be a tilting module if

pdT ≤ 1, Ext1A(T, T ) = 0 and there exists a short exact sequence 0 //AA
//T ′A

//T ′′A
//0 with T ′A, T ′′A in addT . Let

H be a hereditary algebra. An algebra A is tilted of type H if there exists a tilting H-module T such that A = EndTH .

If H is the path algebra of a Dynkin (or euclidean, or wild) quiver Q, then we say that A is tilted of Dynkin (or

euclidean, or wild, respectively) type Q. For tilting theory we refer the reader to [7].

Tilted algebras are characterised by the existence of slices in their module categories. We recall from [31](Appendix)

that a class Σ in indA is called a complete slice if:

(1) Σ is sincere, that is, if P is any projective A-module, then there exists U ∈ Σ such that HomA(P,U) , 0;

(2) Σ is convex, that is, if U0
//U1

// · · · //Ut is a path in indA with U0, Ut ∈ Σ then Ui ∈ Σ for all i;

(3) if 0 //U //V //W //0 is an almost split sequence, then at most one of U , W lies in Σ. Moreover, if an

indecomposable summand of V lies in Σ, then U or W lies in Σ.

It is shown (see, for instance, [30]) that an algebra is tilted if and only if it contains a complete slice Σ. In this

case, the module T =
⊕

U∈Σ U is a tilting module called the slice module of Σ. We need the following fact from [6].
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Lemma. Let A be a tilted algebra, and T the slice module of a complete slice. Then

(a) for any A-module X generated by T , there exists a minimal add(T ⊕ D A)-approximating sequence for X of the

form

0 //T1
//T0 ⊕ I0

//X //0

with T1, T0 ∈ addT and I0 injective;

(b) the module M = A ⊕ D A ⊕ T is an Auslander generator for modA and rep. dim.A 6 3.

Proof. (a) Existence of a minimal add(T ⊕ D A)-approximation follows from [6](1.4) and [11](I.2.2). That the

kernel of this approximation lies in addT follows from [6](2.2)(f).

(b) This is [6](2.3).

3. Domestic Quasitube Algebras

3.1. The deVnition

In this section, we deVne domestic quasitube algebras and prove that their representation dimension is 3. First,

we recall that a family of pairwise orthogonal generalised standard components C = (Ci)i∈I in the Auslander-Reiten

quiver of an algebra A is called a separating family of components if the indecomposables not in C split into two

classes P and Q such that:

(a) HomA(Q,P) = 0, HomA(Q,C ) = 0 and HomA(C ,P) = 0, and

(b) any morphism from P to Q factors through add C.

We thus have indA =P ∨ C ∨Q.

For the admissible operations, we refer to [9] or [27].

Given a tame concealed algebra C, an algebra A is a quasitube enlargement of C if A is obtained from C by an

iteration of the admissible operations ad 1), ad 1*), ad 2), ad 2*) either on a stable tube of Γ(modC) or on a quasitube

obtained from a stable tube by means of the operations done so far. A quasitube enlargement A of C is a domestic

quasitube enlargement provided A is a domestic algebra.

DeVnition. An algebra A is a domestic quasitube algebra provided A is a domestic quasitube enlargement of a tame

concealed algebra such that all projectives, and all injectives in its quasitubes are projective-injective.

Thus, a quasitube in a domestic quasitube algebra becomes a stable tube after deletion of the projective-injectives

and all arrows incident to them.

From now on, and until the end of the paper, we use the term quasitube algebra in this particular restricted

sense.

Specialising theorems 3.5, 4.1 and Corollary 4.2 of [9] to our situation, we get the following structure theorem

for domestic quasitube algebras and their module categories.

Theorem. Let A be a domestic quasitube algebra obtained as a quasitube enlargement of a tame concealed algebra C.

Then:

(a) A has a sincere separating family C of quasitubes obtained from the stable tubes of C by the corresponding

sequence of admissible operations;

(b) there is a unique maximal branch coextension A− of A which is a full convex subcategory of A, and which is a

tilted algebra of euclidean type;

(c) there is a unique maximal branch extension A+ of A which is a full convex subcategory of A, and which is a

tilted algebra of euclidean type;
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(d) indA = P ∨ C ∨ Q, where P is the postprojective component of Γ(modA−) while Q is the preinjective

component of Γ(modA+).

We may observe that an algebra A is a domestic quasitube algebra if and only if it is a domestic algebra with a

separating family of quasitubes: this indeed follows easily from Theorems A and F of [28].

It follows easily from the description of the theorem that A− is the left support algebra of A, while A+ is its right
support algebra, in the sense of [3]. We recall that support algebras of subcategories have been used in [6, 4] in

order to calculate the representation dimension. It is then natural to use them in our context.

Example. Let A be given by the quiver

1 2
δoo 3

βoo
γ

oo 4
αoo

λ

ww♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣

5

µ

gg◆◆◆◆◆◆◆◆◆◆◆◆◆◆

bound by αβ = 0, βδ = 0, αγδ = λµ. In this example A− and A+ are the full subcategories of A with object classes

A−0 = A0 \ {4} and A+0 = A0 \ {1}, respectively. Both are tilted of type Ã. The Auslander-Reiten quiver Γ(modA) has
the form

3
2

��✷
✷✷

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

3
2
1

��✻
✻✻

5

��✹
✹✹
✹

4
3
2

��✷
✷✷

3
2

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

2
1

��✷
✷✷
✷

��

3
522
1

��✻
✻✻

��

· · ·
33
22
1

DD✟✟✟

��✻
✻✻

3
25
1

EE✡✡✡✡
//

��✹
✹✹

4
35
2
1

// 435
2

FF☞☞☞
4
33
22

FF☞☞☞

· · ·
4

335
2

!!❉
❉❉

❉❉

��

4
3

��✴
✴✴
✴

1

GG✎✎✎✎

��✸
✸✸

25
1

==③③③③③

��✺
✺✺

3
22

��✹
✹✹
✹

33
225
1

DD✟✟
3
2

EE✡✡✡
4
35

FF☞☞☞☞

��✼
✼✼

4

5
1

CC✞✞✞
2

99rrrrrrr

��✽
✽✽

· 3

DD✠✠✠
4
5

EE☛☛☛

3
22
1

99ttttttt

RR

· · · · · ·
4
33
2

CC✝✝✝

NN

where the indecomposables are represented by their Loewy series. The shown quasitube is obtained by identifying

along the vertical dotted lines.

Some additional remarks are in order. Let A be a domestic quasitube algebra. In the notation of the theorem,

the postprojective component P of Γ(modA) coincides with the postprojective component of Γ(modA−). Now, we
know that A− is a branch coextension of a tame concealed algebra, and is also a tilted algebra of euclidean type.

Therefore, P contains a complete slice Σ− of mod A−. However, Σ− is clearly not a complete slice in mod A, because
the quasitubes of the family C generally contain projective-injectives. It is a right section in the sense of [2]. We

recall the deVnition. Let Γ be a translation quiver. A full subquiver Σ of Γ is called a right section if

(1) Σ is acyclic;

(2) for any x ∈ Γ0 such that there exist y ∈ Σ0 and a path from y to x in Γ, there exists a unique n > 0 such that

τnx ∈ Σ0;

(3) Σ is convex in Γ.

Dually, one deVnes left sections. A subquiver which is at the same time a right and a left section is called a

section, see [7].

It follows easily from its deVnition that Σ− is a right section in the postprojective component P of Γ(modA)
and that A− = A/AnnΣ−, where AnnΣ− =

⋂
U∈Σ− AnnU .

Dually, the preinjective component Q of Γ(modA) contains a complete slice Σ+ in modA+, which is not a slice

in modA, but rather a left section. Moreover, A+ = A/AnnΣ+.
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3.2. Restriction of injectives

When dealing with a module over a domestic quasitube algebra, we need to consider its restriction to A−, that
is, the largest A−-submodule of this module. We recall from theorem 3.1 that each of A− and A+ is a full convex

subcategory of A, with A− closed under successors and A+ closed under predecessors. The following lemma is

useful.

Lemma. Let A be an algebra, B a quotient of A, I an indecomposable injective A-module having socle in modB. Then
the largest B-submodule I′ of I is an indecomposable injective B-module.

Proof. Let f : X → Y be a monomorphism and g : X → I′ be a morphism in modB. Let also j : I′ → I denote

the canonical inclusion. Then we have a diagram as shown in modA. Because I is injective in modA, there exists a
morphism h : Y → I such that h f = jg. Because Y is a B-module, h(Y) ⊆ I′. That is, there exists h′ : Y → I′ such
that h′ f = g.

0 // X
f //

g

��

Y

h′
yy

h

��

I′

j

��
I

3.3. Constructing the approximating sequence.

Let A be a domestic quasitube algebra. As seen before, there exist a right section Σ− in the postprojective

component of Γ(modA) and a left section Σ+ in the preinjective component. Moreover, Σ− and Σ+ are respectively

complete slices in mod A− and mod A+. Let T− and T+ denote the respective slice modules of Σ− and Σ+. We may

choose the slice Σ+ in such a way that every preinjective indecomposable A-module with support lying completely

in the extensions branches of A+ is a successor of Σ+. This is possible because there are only Vnitely many such

indecomposables. As an easy consequence, the restriction to A− of any preinjective predecessor of Σ+ is nonzero.

We then set

M = A ⊕ D A ⊕ T− ⊕ T+ ⊕ D A−

We prove, in theorem 3.4 below, that M is an Auslander generator for mod A.
Also useful is the module N = A− ⊕ T− ⊕D A−. Indeed, we recall that, because of lemma 2.5, every indecompos-

able A−-module admits a minimal add N-approximating sequence.

Proposition. Let A be a domestic quasitube algebra and X be an indecomposable A-module whose restriction Y to A−

is nonzero. Let also

0 // L
r // N0

q // Y // 0

0 // L′
i′ // P

p′ // X/Y // 0

be respectively a minimal addN-approximating sequence and a projective cover of X/Y in modA. Then there exists an

A-module K such that we have exact sequences

0 // K
s // N0

t // X // 0

0 // L
ℓ // K

ℓ′ // L′ // 0.

Moreover, K � L ⊕ L′. In particular, K ∈ addN.
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Proof. Let 0 //Y
i //X

p //X/Y //0 be exact. Because P is projective, there exists a morphism g : P → X such

that pg = p′. We now claim that t = (iq, g) : N0 ⊕ P → X is an epimorphism. Let x ∈ X. Because p′ is surjective,
there exists z ∈ P such that p(x) = p′(z) = pg(z). Therefore, x − g(z) ∈ Ker p = Im i = Im iq because q is surjective.

This establishes our claim.

Let (K, s) denote the kernel of t. The snake lemma yields a commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // L

r //

ℓ

��

N0
q //

k=( 1
0)

��

Y //

i
��

0

0 // K
s //

ℓ′

��

N0 ⊕ P
t=(iq,g) //

k′=(0 1)
��

X //

p
��

0

0 // L′
i′ //

��

P
p′ //

��

X/Y //

��

0.

0 0 0

Now observe that K is an A−-module. Indeed, because of lemma 2.5, L ∈ addN and, in particular, is an A−-module.

On the other hand, L′ is the largest A−-submodule of P. Because of lemma 3.2, L′ is actually an injective A−-module.

This establishes our claim.

Because A− is a projective A-module, applying the exact functor HomA(A−,−) to the middle row of the above

diagram yields an exact sequence

0 // K
s // N0 ⊕ L′

t′ // Y // 0

in modA−, where we have used that K is an A−-module, hence s(K) ⊆ N0 ⊕ L′. We deduce a commutative diagram

with exact rows

0 // L
r //

ℓ

��

N0
q //

k
��

Y // 0

0 // K
s // N0 ⊕ L′

t′ // Y // 0

where we have used that k(N0) ⊆ N0 ⊕ L′. Because t′ : N0 ⊕ L′ → Y is a morphism from a module in addN to

Y , while q is a minimal addN-approximation, there exists k′′ : N0 ⊕ L′ → N0 such that we have a commutative

diagram with exact rows

0 // L
r //

ℓ

��

N0
q //

k
��

Y // 0

0 // K
s //

ℓ′′

��

N0 ⊕ L′
t′ //

k′′

��

Y // 0

0 // L
r // N0

q // Y // 0

where ℓ′′ is deduced by passing to the kernels. Minimality of q yields that k′′k is an isomorphism. Therefore, so is

ℓ′′ℓ. In particular, ℓ is a section and the short exact sequence

0 // L
ℓ // K

ℓ′ // L′ // 0

splits, that is, K � L ⊕ L′. Finally, K ∈ addN because L ∈ addN, while L′ ∈ add DA− ⊆ addN.
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3.4. Representation dimension

Theorem. Let A be a domestic quasitube algebra. Then rep. dim.A = 3.

Proof. Because A is representation-inVnite, it suXces to show that rep. dim.A 6 3. Let M be as in 3.3 above.

Let X be a postprojective A-module (thus postprojective A−-module). Because of lemma 2.5, there exists a

minimal add(A− ⊕ T− ⊕ D A−)-approximating sequence

0 // M1
// M0

// X // 0.

Because projective A−-modules are also projective A-modules, we have M1, M0 ∈ addM. Let f : M′ → X be a

nonzero morphism, where we may assume, without loss of generality, that M′ is an indecomposable summand of

M. If X is a predecessor of Σ−, then M′ is projective and trivially f lifts to a morphism M′ → M0. If X is a successor

of Σ−, then M′ ∈ add(A−⊕T−⊕D A−), hence f factors through T−. This shows that we have an addM-approximating

sequence.

Let now X be a nonpostprojective A-module whose restriction Y to A− is nonzero. In particular, this is the case

for all indecomposables which belong either to the separating family of quasitubes or to the predecessors of Σ+ in

the preinjective component (this is due to our special choice of the slice Σ+ deVning T+). Because of proposition
3.3, there exists an exact sequence

0 //K
s //T0 ⊕ I0 ⊕ P

t //X //0

with K, T0⊕ I0⊕P ∈ add(A−⊕T−⊕D A−). We show that it is an addM-approximating sequence. Let f : M′ → X be

a nonzero morphism with M′ ∈ addM indecomposable. Because f , 0, we have M′ < add(T+ ⊕ D A+). Therefore,
M′ ∈ add(A ⊕ T− ⊕ D A−). If M′ is projective then f trivially lifts to a morphism M′ → T0 ⊕ I0 ⊕ P. If M′ ∈
add(T− ⊕ D A−), then f (M′) lies in the restriction Y of X to A−. Therefore, f lifts to a morphism M′ → T0 ⊕ I0 and

consequently to a morphism M′ → T0 ⊕ I0 ⊕ P.
Let Vnally X be a successor of T+. Because of lemma 2.5, there exists a minimal add(T+ ⊕ D A+)-approximating

sequence

0 //T ′1
//T1 ⊕ I1

//X //0.

Because A+-injectives are also A-injectives, we have T ′1, T1 ⊕ I1 ∈ addM. Let f : M′ → X be a nonzero morphism

with M′ ∈ addM indecomposable. If M′ ∈ add(T+ ⊕ D A+), then clearly f lifts to a morphism M′ → T1 ⊕ I1. If

M′ < add(T+ ⊕ D A+), then f must factor through T+ and thus also lifts to a morphism M′ → T1 ⊕ I1. This Vnishes

the proof.

Example. In example 3.1, we may take Σ− =
{

2
1 ,

2 5
1 , 2,

3
2 2
1

}
and Σ+ =

{
4
3 ,

4
3 5 , 3,

4
3 3
2

}
. Indeed, the only indecompos-

ables with support in the extension branch which are preinjective, namely 4
5 and 4, are successors of Σ+.

On the other hand, D A− =
3
2 5
1
⊕ 3 3

2 ⊕ 3⊕ 5, so that the Auslander generator is

M = 1⊕ 2
1 ⊕

5
1 ⊕

3
2 2
1
⊕

4
3
2 5
1
⊕

4
3 3
2
⊕ 4

3 ⊕
4
5 ⊕ 4⊕ 3⊕ 5⊕ 2⊕ 2 5

1 ⊕
3

2 5
1
⊕ 3 3

2 ⊕
4

3 5 .

4. Gluings of Algebras

4.1. Finite gluings

The purpose of this section is to show how to glue together algebras having representation dimension three in

order to construct larger algebras having the same representation dimension. We need to introduce a notation. Let

A be a representation-inVnite algebra, having a right section Σ in a postprojective component, or a left section, also

denoted by Σ, in a preinjective component of Γ(modA). We denote by
#»

Σ the set of all indecomposable A-modules

X which are predecessors of Σ, that is, such that there exist Y in Σ and a path in modA from X to Y . Dually, we
denote by

#»

Σ the set of all indecomposable A-modules which are successors of Σ.

DeVnition. We say that an algebra A is a Vnite gluing of two algebras B and C, in symbols A = B ∗ C, if

9



(FG1) Γ(modB) has a unique preinjective component QB containing a left section Σ+B and Γ(modC) has a unique

postprojective component PC containing a right section Σ−C ;

(FG2) Γ(modA) has a separating component G such that:

(1) G contains a left section isomorphic to Σ+B and the indecomposable A-modules in G which precede it

are exactly those of
#»

Σ
+

B ∩QB,

(2) G contains a left section isomorphic to Σ−C and the indecomposable A-modules in G which succede it

are exactly those of
#»

Σ
−
C ∩PC ,

(3) (
#»

Σ
+

B ∩QB) ∪ (
#»

Σ
−
C ∩PC) is coVnite in G ;

(FG3) the remaining indecomposable A-modules belong to one of two classes:

(1) those which precede G are the indecomposable B-modules in
#»

Σ
+

B \QB,

(2) those which succede G are the indecomposable C-modules in
#»

Σ
−
C \PC .

Thus we have

indA = (
#»

Σ
+

B \QB) ∨ G ∨ (
#»

Σ
−
C \PC).

The component G is called the glued component of Γ(modA). The latter may be visualised as

#»

Σ
+

B \QB
#»

Σ
+

B ∩QB Σ
+

B Σ
−
B

#»

Σ
−
C ∩PC

#»

Σ
−
C \PC

G

GF ED

@A BC

Example. Let B be the domestic quasitube algebra given by the fully commutative quiver

2
xx♣♣♣

♣♣♣
4

��✁✁
✁✁
✁✁
✁✁

oo

1 6

ff◆◆◆◆◆◆

xx♣♣♣
♣♣♣

3

ff◆◆◆◆◆◆
5

^^❂❂❂❂❂❂❂❂
oo

and C be the hereditary algebra given by the quiver

4 7
xx♣♣♣

♣♣♣

6
xx♣♣♣

♣♣♣

ff◆◆◆◆◆◆

5 8

ff◆◆◆◆◆◆

Then the algebra A given by the quiver

2
xx♣♣♣

♣♣♣
4

��✁✁
✁✁
✁✁
✁✁

oo 7
xx♣♣♣

♣♣♣

1 6

ff◆◆◆◆◆◆

xx♣♣♣
♣♣♣

3

ff◆◆◆◆◆◆
5

^^❂❂❂❂❂❂❂❂
oo 8

ff◆◆◆◆◆◆

bound by rad4 A = 0, two zero-relations of length three from 7 to 3 and from 8 to 2, respectively, and all possible

commutativity relations is a Vnite gluing of B and C. We draw below the central part of the glued component of
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Γ(modA)

7
6

4 5
2

!!❈
❈❈

❈❈
❈❈

4 5
3

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻

6
4 5
2

��✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸

==④④④④④④④ 7
6

4 5

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

8
6 6
4 5

��✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾
✾

6
4 4 5
2 3

$$■
■■

■■
■

5

""❊
❊❊

❊❊
❊❊

❊
6
4

##❍
❍❍

❍❍
❍❍

7 8
6 6

4 5 5

%%❑❑
❑❑

❑❑
❑❑

❑

· · ·

BB✆✆✆✆✆✆✆✆✆✆✆✆✆✆✆

99sssssssss

��✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾
✾

%%❑❑
❑❑

❑❑
❑❑

6
4 4 5 5

2 3

DD✠✠✠✠✠✠✠✠✠✠✠

;;✈✈✈✈✈✈✈

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

##❍
❍❍

❍❍
❍❍

6
4 5

EE☛☛☛☛☛☛☛☛☛☛☛☛

<<②②②②②②②

��✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸

""❊
❊❊

❊❊
❊❊

7 8
6 6 6

4 4 5 5

CC✟✟✟✟✟✟✟✟✟✟✟

::✉✉✉✉✉✉

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

$$■
■■

■■
■

· · ·

6
4 5 5
2 3

::✉✉✉✉✉✉
4

<<②②②②②②②② 6
5

;;✈✈✈✈✈✈✈ 7 8
6 6

4 4 5

99ssssssss

4 5
2

Σ
+

B

CC✟✟✟✟✟✟✟✟✟✟✟✟
6

4 5
3

EE☛☛☛☛☛☛☛☛☛☛☛☛

!!❈
❈❈

❈❈
❈❈

8
6

4 5

DD✠✠✠✠✠✠✠✠✠✠✠
7

6 6
4 5

BB✆✆✆✆✆✆✆✆✆✆✆✆✆✆

Σ
−
C8

6
4 5
3

==④④④④④④④

/. -,

() *+

/. -,

() *+

4.2. Representation dimension of gluings

We now prove that a Vnite gluing of two algebras having representation dimension three also has representation

dimension three under a reasonable hypothesis.

Proposition. Let A = B ∗ C. We assume that rep. dim.B = 3, rep. dim.C = 3 and the slice module Σ−C is a direct

summand of an Auslander generator for mod C. Then rep. dim.A = 3.

Proof. We introduce some notation. Let M denote an Auslander generator for modB, and N denote an Auslander

generator for C having the slice module of Σ−C as a direct summand. Finally, let L denote the direct sum of the

(Vnitely many) indecomposable modules in the glued component of Γ(modA) which are successors of Σ+B and

predecessors of Σ−C . We claim that

MA = A ⊕ D A ⊕ L ⊕ M ⊕ N

is an Auslander generator for modA.
Let indeed X be an indecomposable A-module. Assume Vrst that X ∈

#»

Σ
+

B. In particular, X is an indecomposable

B-module and has a minimal addMB-approximating sequence

0 // M1
// M0

// X // 0

with M1, M0 ∈ addM ⊆ addM. We claim that this sequence is also an addM-approximating sequence in modA.
Let f : M′ → X be a nonzero morphism with M′ ∈ addM indecomposable. Because f is nonzero, M′ ∈

#»

Σ
+

B \QB.

Therefore M′ ∈ addM. But then f lifts to a morphism M′ → M0.

Let X ∈ addL, then there is nothing to show.

Finally, let X ∈
#»

Σ
−
C . Then X is a C-module and has a minimal addNC-approximating sequence

0 // N1
// N0

// X // 0

with N1, N0 ∈ addN ⊆ addM. We claim that this sequence is also an addM-approximating sequence. Let f : M′ →
X be a nonzero morphism with M′ indecomposable. If M′ is not a successor of Σ−C , then the morphism f lifts to a

morphism M′ → N0. If M′ is a successor of Σ−C in addM, then M′ is an indecomposable C-module. So f lifts to a

morphism M′ → N0 because the above sequence is an addN-approximating sequence.

11



4.3. Induction

Let A = B ∗C be a Vnite gluing of B and C as above. If A has a unique preinjective component containing a left

section Σ+A , then we can deVne in the same way a Vnite gluing of A with an algebra D having a unique postprojective

component containing a right section. Inductively, assuming that B1, · · · Bn are a Vnite sequence of algebras having

a unique preinjective component containing a left section Σ+Bi
and a unique postprojective component containing a

right section Σ−Bi+1
, for 1 ≤ i < n, then we say that A = B1∗· · ·∗Bn is a Vnite gluing of the Bi if A = (B1∗· · ·∗Bn−1)∗Bn.

Corollary. Let A = B1∗ · · ·∗Bn where we assume that rep. dim.Bi = 3 and the slice modules of Σ+Bi
, Σ−Bi+1

for 1 ≤ i < n
are direct summands of an Auslander generator for mod Bi+1. Then rep. dim.A = 3.

Proof. This is done by induction on n > 2, the case n = 2 being Proposition 4.2.

4.4. Duplicated and replicated algebras

We end this section with an application of gluing to a class of algebras of Vnite global dimension, which are

closely related to selVnjective algebras. Let B be an algebra and consider the matrix algebra

B =

(
B 0

D B B

)

with the ordinary matrix addition and the multiplication induced from the bimodule structure of D B.
This algebra is called the duplicated algebra of B, see for instance [1].

Proposition. Let B be a tilted algebra of euclidean type.

(a) If B admits a complete slice in its postprojective component, then there exist domestic quasitube algebras C1,C2

such that B = B ∗ C1 ∗ C2.

(b) If B admits a complete slice in its preinjective component, then there exist domestic quasitube algebras C1,C2

such that B = C1 ∗ C2 ∗ B.

In particular, rep. dim.B = 3.

Proof. We only prove (a), because the proof of (b) is similar. We use the description of Γ(modB) given in [1].

Let Σ be a complete slice in Γ(modB). Then Σ embeds as a section in the stable part of the Auslander-Reiten

quiver of the trivial extension T (B) = B ⋉ D B of B by its minimal injective cogenerator bimodule. Then, an exact

fundamental domain for Γ(modT (B)) inserts in between the predecessors and the successors of D B in Γ(modB) to
yield Γ(modB). Thus Γ(modB) has the following shape

B

Σ
+

B
Σ

Σ
−

Σ+ Σ
−

Σ

P B

CB X 1 X 2C1 C2

Q2

Q C1

C1
C2

where the diamonds represent possible occurrence of projective-injectives. It thus consists of:

(a) a postprojective component PB which is the postprojective component of Γ(modB);

(b) a separating tubular family of (extended) tubes CB, which are the tubes in Γ(modB);

(c) a transjective component X1 generally containing projective-injectives and having Σ as left section. The

predecessors of Σ in X1 are exactly the predecessors of Σ in the preinjective component of Γ(modB);

(d) a separating family of quasitubes C1;

(e) a second transjective component X2 also generally containing projective-injectives;

12



(f) another separating family of quasitubes C2;

(g) a preinjective component Q2 having a left section isomorphic to Σ. The successors of this left section in Q2

are exactly the successors of Σ in the preinjective component of Γ(modB).

Thus we have ind B =PB ∨ CB ∨X1 ∨ C1 ∨X2 ∨ C2 ∨Q2.

Let C1 be the support algebra of the family C1 of quasitubes inside B. That is, C1 is the full subcategory of B
consisting of those x ∈ B0 such that there exists a module M in C1 satisfying M(x) , 0. Because every C1-module is

also a B-module, C1 is a separating family of quasitubes in modC1 and moreover C1 is domestic. Therefore, C1 is a

domestic quasitube algebra. Similarly, the support algebra C2 of the family C2 of quasitubes is a domestic quasitube

algebra.

We now show how to realise B as a Vnite gluing of B, C1 and C2. As observed, there exist a Vnite number of

projective-injectives in the component X1. First, let Σ
+

B denote the left section isomorphic to Σ in X1. It precedes

all the projective-injectives. Let next Σ−C1
be any right section in X1 which succedes these projective-injectives.

Similarly, let Σ+C1
and Σ−C2

be respectively a left section and a right section in X2, preceding and following the

projective-injectives in that component. Looking at the deVnition of Vnite gluing now shows that B = B ∗ C1 ∗C2.

As for the last assertion, it follows directly from the main result of [6], theorem 3.4 and corollary 4.3, that

rep. dim.B = 3.

The preceding proposition can easily be generalised. For n > 2

B(n)
=



B1 0 0
E1 B2

E2 B3

. . .
. . .

0 En−1 Bn



be the lower triangular matrix algebra, where Bi = B and Ei = D B for each i. The addition is the usual addition of

matrices and the multiplication induced from the bimodule structure of D B and the morphisms D B ⊗B D B −→ 0.
This algebra is called the n-replicated algebra of B. It is easily shown, as in the proposition above, that, if B is tilted

of euclidean type, then rep. dim. B(n)
= 3 for any n.

5. Orbit Algebras of Repetitive Categories

5.1. Repetitive categories

The selVnjective algebras of euclidean type are orbit algebras of repetitive categories. In this section, we recall

the deVnitions and results on these algebras that are needed in the proof of our main theorem.

Let B be a basic and connected algebra and {e1, · · · , en} a complete set of primitive orthogonal idempotents for

B.
Following [23], the repetitive category B̂ of B is the category having as objects em,i with (m, i) ∈ Z × {1, · · · , n}

and where the morphism spaces are deVned by

B̂(er,i, es, j) =



e jBei ifs = r

D(eiBe j) ifs = r + 1

0 otherwise.

The repetitive category is a connected locally bounded selVnjective category. A group G of automorphisms of

B̂ is called admissible if G acts freely on the objects of B̂ and has Vnitely many orbits.

We deVne the Nakayama automorphism νB̂ of B̂ to be the automorphism deVned on the objects by

νB̂(em,i) = em,i+1

for every (m, i) ∈ Z × {1, . . . , n} and in the obvious way on the morphisms. Then the inVnite cyclic group (νB̂)
generated by νB̂ is an admissible group of automorphisms of B̂.

Let now ϕ be an automorphism of the category B̂. Thus ϕ is said to be:
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(a) positive if, for each (m, i) ∈ Z × {1, . . . , n}, we have ϕ(em,i) = ep, j for some p > m and j ∈ {1, 2, . . . , n}.

(b) rigid if, for each (m, i) ∈ Z × {1, . . . , n}, we have ϕ(em, j) = em, j for some j ∈ {1, 2, . . . , n}.

(c) strictly positive if it is positive but not rigid.

For instance, νB̂ is a strictly positive automorphism of B̂.
The following structure theorem for admissible groups of automorphisms is a consequence of the results of [13,

14, 36].

Theorem. Let B be a tilted algebra of euclidean type and G be a torsion-free admissible group of automorphisms of B̂.
Then G is an inVnite cyclic group generated by a strictly positive automorphism of one of the forms

(a) σνk
B̂
for a rigid automorphism σ and some k > 0, or

(b) µϕ2k+1 for a rigid automorphism µ, a strictly positive automorphism ϕ such that ϕ2
= νB̂ and some k > 0.

Note that, if B is tilted of type Ẽ, then B̂ does not admit a strictly positive automorphism ϕ such that ϕ2
= νB̂,

see [26]. We refer to [13, 14] for a complete description of the repetitive categories B̂ of the tilted algebras B of

types Ã and D̃ with ϕ2
= νB̂ for some strictly positive automorphism ϕ of B̂.

5.2. Orbit categories and the Auslander-Reiten quiver of a repetitive category

We now deVne orbit categories [22]. Let B be a basic and connected algebra and G be an admissible group of

automorphisms of B̂. The orbit category B̂/G has as objects the G-orbits of objects of B̂. Given a, b ∈
(
B̂/G

)
0
, the

morphism space B̂/G(a, b) is deVned as

B̂/G(a, b) =


( fyx) ∈

∏

(x,y)∈a×b

B̂/G(x, y) | g
(
fyx

)
= fg(x),g(y), for all g ∈ G, x ∈ a, y ∈ b


.

In this situation, there exists a natural functor F : B̂ → B̂/G called the associated Galois covering functor, which

assigns to any object x ∈ B̂0 its G-orbit Gx, and maps a morphism ξ ∈ B̂(x, y) to the family Fξ such that

(Fξ)h(y),g(x) =


g(ξ) if h = g

0 if h , g.

Moreover, the functor F induces k-linear isomorphisms
⊕

Fx=a

B̂(x, y) � B̂/G(a, Fy) ;
⊕

Fy=b

B̂(x, y) � B̂/G(Fx, b)

for all x, y ∈ B̂0; a, b ∈
(
B̂/G

)
0
. Because G is admissible, B̂/G is a category with Vnitely many objects and we may

(and shall) identify it to the Vnite dimensional algebra
⊕(

B̂/G
)
which is the sum of all the morphism spaces in

B̂/G.

For instance, the orbit algebra of B̂ by the (admissible) automorphism group (νB̂) generated by the Nakayama

automorphism νB̂ is the trivial extension T (B) of B by D B.
Now we consider B̂-modules. We denote by modB̂ the category of all the contravariant functors from B̂ to

modk, which we call Vnite dimensional B̂-modules. An admissible group G of automorphisms of B̂ also acts on

modB̂ by
gM = Mg−1

for all B̂-modules M and all g ∈ G.

The Galois covering F : B̂ −→ B̂/G induces the so-called pushdown functor Fλ : modB̂ −→ modB̂/G such that

(FλM) (a) =
⊕

x∈a

M(x)

14



for all B̂-modules M and all a ∈ (B̂/G)0, see [15, 22].

Assume that the group G is torsion-free. Because of [22], the functor Fλ preserves almost split sequences and

induces an embedding from the set of G-orbits
(
ind B̂

)
/G of isoclasses of indecomposable B̂-modules into the set

ind
(
B̂/G

)
of isoclasses of indecomposable B̂/G-modules.

The density theorem proved in [18, 19] says that Fλ is dense whenever the category B̂ is locally support-Vnite,

that is, for each a ∈ B̂0, the full subcategory B̂a of B̂, given by the supports of all M in ind B̂ such that M(a) , 0, is
Vnite.

If Fλ is dense, then it induces an isomorphism between the orbit quiver Γ(modB̂)/G of Γ(modB̂) under the
action of G and the Auslander-Reiten quiver Γ

(
mod

(
B̂/G

))
of B̂/G.

Moreover, we are able to describe the Auslander-Reiten quiver of the repetitive category of a tilted algebra of

euclidean type [5].

Theorem. Let B be a tilted algebra of euclidean type
#»

∆ . Then the Auslander-Reiten quiver of B̂ is of the form

Γ(modB̂) =
∨

q∈Z(Xq ∨ Cq) where for each q ∈ Z,

(a) Xq is an acyclic component whose stable part is of the form Z
#»

∆ ,

(b) Cq is a family (Cq,λ)λ∈P1(k) of quasitubes,

(c) νB̂(Xq) =Xq+2 and νB̂(Cq) = Cq+2,

(d) Xq separates
∨

p<q(Xp ∨ Cp) from Cq ∨
(∨

p>q(Xp ∨ Cp)
)
,

(e) Cq separates
∨

p<q(Xp ∨ Cp) ∨Xq from
∨

p>q(Xp ∨ Cp).

The description of the previous theorem is said to be the canonical decomposition of Γ(modB̂).

5.3. Structure of the repetitive category

We need one more concept from [23]. Let B be a triangular algebra, then B̂ is also triangular. We identify B
with the full subcategory of B̂ with object set

{
ei,0 | i ∈ {1, . . . , n}

}
. Let now i be a sink in QB. The reWection S +i B of

B at i is the full subcategory of B̂ given by the objects e0, j with j ∈ {1, . . . , n} \ {i} and e1,i = νB̂(e0,i). In this case, the

quiver σ+i QB = QS +i B of S +i B is called the reWection of QB at i. Observe that B̂ = Ŝ +i B.
A reWection sequence of sinks is a sequence i1, . . . , it of points in QB such that, for each s ∈ {1, . . . , t}, the point is

is a sink in the quiver σ+is−1
· · ·σ+i1QB.

Finally, for a sink i in QB, we denote by T+i B the full subcategory of B̂ having as objects those of B and e1,i =

νB̂(e0,i). We note that T+i B is isomorphic to the one-point extension B[I(i)B] of B by the indecomposable injective

B-module I(i) at the point i.
We are now able to state the following result [5].

Theorem. Let B be a tilted algebra of euclidean type
#»

∆ and let

Γ(modB̂) =
∨

q∈Z

(Xq ∨ Cq)

be the canonical decomposition of Γ(modB̂). For any q ∈ Z, we have:

(a) The support algebra Bq of Cq is a domestic quasitube algebra, which is a quasitube enlargement of a tame

concealed full convex subcategory Cq of B̂.

(b) Γ(modBq) =PBq ∨Cq ∨QBq , where PBq and QBq are respectively a postprojective and a preinjective compo-

nent, both of euclidean type, and Cq separates PBq from QBq .

(c) The support algebra B−q of PBq is a domestic tubular coextension of Cq and the support algebra B+q of QBq is a

domestic tubular extension of Cq.
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(d) There is a reWection sequence of sinks i1, . . . , ir of QB−q (possibly empty) such that B+q = S +ir · · ·S
+

i1
B−q and

Bq = T+ir · · ·T
+

i1
B−q .

(e) There is a reWection sequence of sinks j1, . . . , js of QB+q (nonempty) such that B−q−1 = S +js
· · · S +j1 B+q−1 and Dq =

T+js
· · ·T+j1 B+q−1 is the support algebra of Xq. Hence, Xq contains at least one projective module.

(f) There is a coVnite full translation subquiver X −
q = (−N)

#»

∆ of PBq which is a full translation subquiver of Xq

closed under successors.

(g) There is a coVnite full translation subquiver X +

q = N
#»

∆ of QBq which is a full translation subquiver of Xq+1

closed under predecessors.

In particular, B̂ is locally support-Vnite.

6. SelVnjective Algebras of Euclidean Type

DeVnition. A selVnjective algebra A is said to be of euclidean type if there exist a tilted algebra B of euclidean type

and an admissible inVnite cyclic group G of automorphisms of B̂ such that A = B̂/G.

Examples of selVnjective algebras of euclidean type are provided by trivial extensions of tilted algebras of eu-

clidean type.

It has been proven in [36] that a selVnjective algebra is of euclidean type if and only if it is representation-inVnite,

domestic and admits a simply connected Galois covering (in the sense of [8]).

We are now able to prove the main result of the paper.

Theorem. Let A be a selVnjective algebra of euclidean type. Then rep. dim.A = 3.

Proof. Because A is representation-inVnite, it suXces to prove that rep. dim.A 6 3. Let B be a tilted algebra of

euclidean type
#»

∆ and G be an inVnite cyclic admissible group of automorphisms of B̂ such that A = B̂/G. Because

of theorem 5.1, G is generated by a strictly positive automorphism g of B̂ and, because of theorem 5.2, Γ(modB̂)
admits a canonical decomposition

Γ(modB̂) =
∨

q∈Z

(Xq ∨ Cq).

Furthermore, for each q ∈ Z, we have algebras B−q , Bq and B+q which satisfy the conditions of theorem 5.3.

Because G also acts on the translation quiver Γ(modB̂), there exists m > 0 such that g(Xq) = Xq+m and

g(Cq) = Cq+m for each q ∈ Z. Then it follows from the deVnitions of B−q , Bq, B+q that we also have

g(B−q ) = B−q+m, g(Bq) = Bq+m and g(B+q ) = B+q+m

for each q ∈ Z.
Because of theorem 5.3, we may chose in PBq = P

B−q an euclidean right section Σ−q of type
#»

∆ such that the

full translation subquiver X −
q of PBq given by all successors of Σ−q in PBq consists of modules having nonzero

restrictions to the tame concealed full convex subcategoryCq, and is a full translation subquiver of Xq closed under

successors.

Similarly, we may chose in QBq = Q
B+q an euclidean left section Σ+q of type

#»

∆ such that the full translation

subquiver X +

q of QBq given by all predecessors of Σ+q in QBq consists of modules having nonzero restrictions to Cq,

and is a full translation subquiver of Xq+1 closed under predecessors.

We may assume that g
(
Σ
−
q

)
= Σ

−
q+m and g

(
Σ
+

q

)
= Σ

+

q+m. Consequently, g(X −
q ) = X −

q+m and g(X −
q ) = X +

q+m for

each q ∈ Z.
For a given q ∈ Z, denote by Yq the Vnite translation subquiver of Xq consisting of all modules which are

successors of Σ+q−1 and predecessors of Σ−q . Observe that every projective module of Xq lies in Yq. Moreover, we

have g(Yq) = Yq+m for any q.
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Now, for each q, let Mq denote the direct sum of all modules in Yq, all injective B−q -modules lying in Cq and all

projective B̂-modules lying in Cq. Then, clearly
gMq = Mq+m for any q ∈ Z.

Finally, we set M =
⊕m−1

i=0 Mi.

Let Fλ : modB̂ → modA be the pushdown functor associated to the Galois covering F : B̂ → B̂/G = A. We

shall prove that Fλ(M) is an Auslander generator for A.
First, note that A is a direct summand of Fλ(M). Indeed, any indecomposable projective A-module is of the form

Fλ(P), for some indecomposable projective B̂-module P. By deVnition of M, there exists r ∈ Z such that P is a direct

summand of gr
M. But then Fλ(P) is a direct summand of Fλ(gr

M) = Fλ(M). We now prove that gl. dim.EndM 6 3,
which will complete the proof.

Let Z be an indecomposable A-module which is not a direct summand of Fλ(M). Because the pushdown functor

is dense, there exists i such that 0 6 i < m and an indecomposable module X ∈ (X −
i \ Σ

−
i ) ∨ Ci ∨ (X +

i \ Σ
+

i ) such
that Z = Fλ(X). Moreover, if X ∈ Ci, then X is neither a projective Bi-module, nor an injective B−i -module. Because

of theorem 3.5, there exists an addMi-minimal approximating sequence

0 //U
u //V

v //X //0

in modB̂. Applying the exact functor Fλ yields an exact sequence

0 //Fλ(U)
Fλ(u) //Fλ(V)

Fλ (v) //Fλ(X) //0

with Fλ(U), Fλ(V) ∈ addFλ(M). We recall also that Fλ(X) = Z. We claim that Fλ(v) : Fλ(V) → Z is an addFλ(M)-
approximation. Let h : Fλ(M) → Fλ(X) = Z be a nonzero morphism. The pushdown functor Fλ : modB̂→ modA
is a Galois covering of module categories. In particular, it induces a vector space isomorphism

HomA(Fλ(M), Fλ(X)) �
⊕

r∈Z

HomB̂(gr
M, X).

Therefore, for each r ∈ Z, there exists a morphism fr : gr
M → X, all but Vnitely many of the fr being zero, such that

h =
∑

r∈Z Fλ( fr).
We claim that, for any r > 1, we have HomB̂(gr

M, X) = 0. Indeed, X ∈Xi ∨Ci ∨Xi+1 for some i with 0 6 i < m.

On the other hand, for r > 1, the module gr
M is a direct sum of modules lying in

∨m−1
j=0 (X j+mr ∨ C j+mr). This

establishes our claim.

Let now fr : gr
M → X be a nonzero morphism in modB̂ for some r > 0. Applying theorem 5.2, we conclude

that fr factors through a module in addMi. Because v is an addMi-approximation, there exists a morphism wt :
gr

M → V in modB̂ such that fr = vwr . But then Fλ( fr) = Fλ(v)Fλ(wr) with Fλ(wr) : Fλ(M) → Fλ(V) because
Fλ(gr

M) = Fλ(M). Summing up, there exists a morphism w : Fλ(M)→ Fλ(V) such that h = Fλ(v)w. This concludes
the proof.

6.1. Example

Let B be the algebra given by the quiver Q

8

̺

��✺
✺✺

✺✺
✺✺

✺✺
7

δ

��

6
γ

zz✈✈
✈✈
✈✈

ξ

��

η

��✺
✺✺

✺✺
✺✺

✺✺

5
β

zz✈✈
✈✈
✈✈

2
α

$$❍
❍❍

❍❍
❍ 3 4

1

bound by the relations ̺α = 0 and δα = 0. Then B is a tilted algebra of euclidean type D̃7, being the one-point

coextension of the hereditary algebra H = K
#»

∆ of type D6, given by the full subquiver
#»

∆ of Q formed by the points
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2, 3, 4, 5, 6, 7, 8, by the (uniserial) simple regular module

R =
6
5
2

lying on the mouth of the unique stable tube of ΓH of rank 4. Then 1, 2, 3, 4, 5, 6, 7,8 is a reWection sequence of

sinks in QB = Q such that

• S +1 B is the algebra given by the quiver σ+1 Q of the form

1′
ε

$$■
■■

■■
■

8

̺

��✺
✺✺

✺✺
✺✺

✺✺
7

δ

��

6
γ

zz✉✉✉
✉✉
✉✉

ξ

��

η

��✺
✺✺

✺✺
✺✺

✺✺

5
β

zz✉✉✉
✉✉
✉✉

2 3 4

bound by the relations εξ = 0 and εη = 0, which is a tilted algebra of type D̃7, being the one-point extension

of H by the simple regular module R;

• S +4 S +3 S +2S +1 B is the algebra given by the quiver σ+4σ
+

3σ
+

2σ
+

1 Q of the form

2′

θ

��✟✟
✟✟
✟✟
✟✟
✟✟

λ

��

α′

$$❏
❏❏

❏❏
❏ 3′

ω

��

4′

µ

��✞✞
✞✞
✞✞
✞✞
✞✞

1′
ε

$$❏❏
❏❏

❏❏
❏

8 7 6
γ

zzttt
tt
tt

5

bound by the relations ωγ = 0 and µγ = 0, which is a tilted algebra of type D̃7, and isomorphic to B;

• S +5 S +4 S +3S +2 S +1 B is the algebra given by the quiver σ+5σ
+

4σ
+

3σ
+

2σ
+

1 Q of the form

5′
β′

zzttt
tt
t

2′

θ

��✟✟
✟✟
✟✟
✟✟
✟✟

λ

��

α′

$$❏
❏❏

❏❏
❏ 3′

ω

��

4′

µ

��✞✞
✞✞
✞✞
✞✞
✞✞

1′
ε

$$❏❏
❏❏

❏❏❏

8 7 6

bound by the relations β′θ = 0 and β′λ = 0, which is a tilted algebra of type D̃7, and isomorphic to S +1 B;

• S +8 S +7 S +6S +5 S +4 S +3 S +2S +1 B is the algebra given by the quiver σ+8σ
+

7σ
+

6σ
+

5σ
+

4σ
+

3σ
+

2σ
+

1 Q of the form

8′

̺′

��✼
✼✼

✼✼
✼✼

✼✼
✼ 7′

δ′

��

6′
γ′

zzttt
tt
t

ξ′

��

η′

��✼
✼✼

✼✼
✼✼

✼✼
✼

5′
β′

zzttt
tt
t

2′
α′

$$❏
❏❏

❏❏
❏ 3′ 4′

1′
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bound by the relations ̺′α′ = 0 and δ′α′ = 0, which is a tilted algebra of type D̃7, and isomorphic to B.

The repetitive category B̂ of B is given by the quiver

. . .
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. .
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✉✉✉✉✉✉ ... . . .
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bound by the relations

θm̺m = λmδm = αm+1εmγmβm, γm+1βm+1αm+1εm = ξm+1ωm = ηm+1µm, ̺mαm = 0, ̺mλm−1 = 0, δmαm = 0,

δmθm−1 = 0, βmθm−1 = 0, βmλm−1 = 0, εmξm = 0, εmηm = 0, ωmγm = 0, ωmηm = 0, µmγm = 0, µmξm = 0,

for allm ∈ Z. We identify the algebra Bwith the full subcategory of B̂ given by the objects (0, i), i ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
Let ϕ : B̂→ B̂ be the automorphism of the category B̂ given by

ϕ
(
(m, 1)

)
= (m, 5), ϕ

(
(m, 2)

)
= (m, 6), ϕ

(
(m, 3)

)
= (m, 7), ϕ

(
(m, 4)

)
= (m, 8),

ϕ
(
(m, 5)

)
= (m + 1, 1), ϕ

(
(m, 6)

)
= (m + 1, 2), ϕ

(
(m, 7)

)
= (m + 1, 3), ϕ

(
(m, 8)

)
= (m + 1, 4),

ϕ(αm) = γm, ϕ(βm) = εm, ϕ(γm) = αm+1, ϕ(ξm) = λm,

ϕ(ηm) = θm, ϕ(δm) = ωm, ϕ(̺m) = µm, ϕ(λm) = ξm+1,

ϕ(θm) = ηm+1 ϕ(εm) = βm+1, ϕ(ωm) = δm+1, ϕ(µm) = ̺m+1,

for all m ∈ Z. Observe that ϕ2
= νB̂.
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The orbit algebra A1 = B̂/(ϕ) is the algebra given by the quiver

3

δzz✈✈
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5
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α
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ξ
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η

$$❍
❍❍
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❍

4
̺

dd❍❍❍❍❍❍

bound by the relations

αβαβ = ξδ = η̺, ̺α = 0, δα = 0, βξ = 0, βη = 0, δη = 0, ̺ξ = 0.

We note that A1 is a symmetric one-parametric algebra.

The orbit algebra A2 = B̂/(ϕ2) = B̂/(νB̂) = T(B) is the algebra given by the quiver
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β
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4

µ
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bound by the relations

θ̺ = λδ = αεγβ, ξω = ηµ = γβαε, ̺α = 0, ̺λ = 0, δα = 0, δθ = 0,

βθ = 0, βλ = 0, εξ = 0, εη = 0, ωγ = 0, ωη = 0, µγ = 0, µξ = 0.

We note that A2 = T(B) is a 2-parametric symmetric algebra.

The orbit algebra A3 = B̂/(ϕ3) is the algebra given by the quiver
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jj
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??
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??

̺
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��
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jj

bound by the relations

θ̺ = λδ = α′εγβ, αβ′α′ε = ξ′ω = η′µ, γβαβ′ = ξδ′ = ηδ′,

̺α = 0, δα = 0, ̺ξ′ = 0, δη′ = 0, βξ′ = 0, βη′ = 0,

εξ = 0, εη = 0, ωγ = 0, ωη = 0, µγ = 0, µξ = 0, ̺′α′ = 0,

δ′α′ = 0, ̺′λ = 0, δ′θ = 0, β′θ = 0, β′λ = 0.

We note that A3 is a 3-parametric selVnjective algebra of euclidean type, which is not weakly symmetric.

More generally, for any positive integer r ≥ 3, the orbit algebra Ar = B̂/(ϕr) is an r-parametric selVnjective

algebra of euclidean type, which is not weakly symmetric.
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We mention that every domestic quasitube convex subcategory of B̂ is the algebra ϕr(T+1 B), for some r ∈ Z, and
T+1 B is given by the quiver
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1

bound by the relations ̺α = 0, δα = 0, εξ = 0 and εη = 0. The algebras ϕr(T+1 B), r ∈ Z, are the support algebras of

the families Cq = (Cq,λ)λ∈P1(K), q ∈ Z, of quasitubes of Γ(modB̂), described in theorem 5.2.

We also note that the support algebras of the acyclic components Xq, q ∈ Z, of Γ(modB̂), described in theo-

rem 5.2, are of the forms ϕr(T+4 T+3 T+2 S +1 B), r ∈ Z, where T+4 T+3 T+2 S +1 B is given by the quiver
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✼✼

✼✼
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β
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bound by the relations θ̺ = λδ = α′εγβ, εξ = 0, εη = 0, ωγ = 0,ωη = 0, µγ = 0 and µξ = 0. Moreover, T+4 T+3 T+2 S +1 B
is a gluing of the tilted algebras S +1 B and S +4S +3 S +2 S +1 B.
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