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Abstract

We study the interaction between strategy, heterogeneity and growth in a two-agent

model of capital accumulation. Preferences are represented by recursive utility functions

with decreasing marginal impatience. The stationary equilibria of this dynamic game are

analyzed under two alternative information structures: one in which agents precommit

to future actions, and another one where agents use Markovian strategies. In both cases,

we develop sufficient conditions to prove the existence of equilibria and characterize their

stability properties. The precommitment case is characterized by monotone convergence,

but Markovian equilibria may exhibit nonmonotonic paths, even in the long-run.
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1 Introduction

We study the interaction between strategy, heterogeneity and growth in a two-agent model

of capital accumulation, where preferences are represented by recursive utility functions with

decreasing marginal impatience and agents receive different shares of income. The stationary

equilibria of this dynamic game are studied under two alternative information structures:

the precommitment or open-loop model and the Markovian or closed-loop model. In the first

case, agents commit to an entire sequence of choices at the beginning of their interaction. In

the second model, strategies specify a course of action based on the history of past choices.

Compared with neoclassical models of optimal growth, representative agents models

with recursive preferences have certain features that better explain the behavior of actual

economies. For instance, Mantel (1999) proved the existence of finitely many steady states

that are locally asymptotically stable with separate regions of monotone convergence. This

model also shows dependence on initial conditions, and the possibility of falling into poverty

traps. But this is far from a realistic depiction of the diversity found in growth experiences.

On one hand, economic variables do not always exhibit monotone growth paths. On the

other hand, heterogeneous time preferences cannot be easily reduced to a representation

with a single agent. These two features are not unrelated: the mutual influence between

economic agents makes capital paths interdependent, therefore more prone to nonmonotonic

behavior.

Although the model we develop is provided with a number of structural assumptions,

substantial technical challenges are involved. We exploit similarities between the current

framework and models of nonoptimal infinite-horizon economies with capital accumulation.

To paraphrase Greenwood and Huffman (1995): The usual problem in these environments is

that agents fail to take into account how their actions influence the behavior of other agents.

In order to solve an individual’s dynamic program, one needs to know the equilibrium law

of motion governing the aggregate state, but to know this in turn requires knowledge of

individual decision rules. Proving existence of equilibria can then be problematic, since it

can be difficult to establish that the individual and aggregate laws of motion coincide along

an equilibrium path.

Two additional elements complicate the resolution of our model. One of them is the

presence of heterogeneity in preferences and income shares across agents; the other one is

the interdependence of strategy spaces. Despite these difficulties, we are able to prove the

existence of stationary equilibria under precommitment strategies and Markovian strategies,

and give a characterization of these equilibria based on general functional forms. Thus, an

important contribution of this paper is to develop a method for solving stationary equilibria

in a class of capital accumulation games with recursive preferences, particularly for the
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case of equilibria in Markovian strategies (see Section 5). The method we develop results

from a combination of different approaches, which include the dynamical systems approach,

operator methods, and fixed point theory.

More specifically, we introduce sufficient conditions to prove the existence of stationary

equilibria and analyze their stability properties. It is illustrative to compare this equilibria

with the equilibria that agents would obtain by themselves (the “autarky” setting). This

approach gives the model a frame of reference and also allows a heuristic analysis of how

changes in the players’ strategy spaces affect equilibrium outcomes. Assuming that one agent

is uniformly more impatient than the other, the stationary precommitment level of capital

lies below the corresponding levels in autarky. In turn, the stationary level of capital in a

Markovian equilibrium is lower than in the precommitment case, indicating that there is a

price to be paid when agents monitor their actions along the entire equilibrium path.

In a close paper to ours, Camacho et al. (2013) also analyze a strategic growth model

with recursive preferences, in which discount factors are a function of capital held by each

agent, but preferences are homogeneous. Output shares are determined by the proportion of

aggregate capital that each agent holds. Hence, these shares not only differ among agents,

but also vary over time. An important contribution of their paper is that it dispenses with

the assumption of concavity of the value function and applies the methods of supermodular

games to determine the existence of stationary equilibria. It is also shown, via numerical

examples, that open-loop equilibria “tend to be symmetric” and strategic interaction removes

the multiplicity and indeterminacy that may arise in single agent models. Furthermore, the

presence of time-varying output shares does not generate asymmetric equilibria.

The plan of the paper is as follows. The next subsection reviews the literature, both on

recursive preferences in infinite horizon capital accumulation models, and on the methods

used to solve related optimization problems. Section 2 introduces the problem and main

assumptions. An analysis of the space of feasible strategies available to the agents is given

in Section 3, together with a characterization of the autarky problem. Section 4 studies

equilibria in precommitment strategies, including the problems of existence and stability. In

Section 5, the analysis is dedicated to Markovian strategies, again covering different aspects

ranging from the existence of equilibria to the issue of their stability. Section 6 concludes.

1.1 Related Literature

Since Ramsey’s seminal paper, optimal economic growth has been represented by a single

agent that maximizes a time-additive intertemporal welfare function with a constant rate

of time preference. This basic construction has remained the fundamental building block

of models of optimal growth. An alternative to constant discounting was to consider wel-

fare functions with a variable rate of time preference. The theoretical foundation of this
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approach was laid out by Koopmans (1960). Its effects on optimal growth were analyzed

by Beals and Koopmans (1969) and Iwai (1972), and, more recently, Mantel (1993, 1995,

1999), Becker and Mulligan (1997), Das (2003), Stern (2006), and Erol et al. (2011). The

key difference among these approaches lies on how the rate of time preference is modeled as

a function of consumption or capital.

Models that assume increasing marginal impatience were pioneered by Uzawa (1968) with

later contributions by Lucas and Stokey (1984), Epstein (1987), and Obstfeld (1990). These

models have a certain appeal, because their equilibria are globally stable, independently of

initial conditions. On the other hand, following a suggestion of Fisher (1930) in his Theory of

Interest, Mantel (1999) postulated that the degree of impatience (measured as the rate of time

preference) should be a decreasing function of consumption and thus, indirectly, of income.

The lower the income level, the higher the sacrifice of postponing present consumption in

exchange for future consumption. Recent theoretical models and experimental evidence

support decreasing marginal impatience as the most plausible assumption.1

As mentioned earlier, representative agent models with decreasing marginal impatience

generally produce multiple steady states and exhibit dependence on initial conditions, which

includes the possibility of yielding poverty traps.2 The recent work by Erol et al. (2011)

assumes that the rate of time preference is a function of the capital stock. There it is shown

that a poverty trap may arise even with a convex technology. Also, under a convex-concave

technology, the optimal path can exhibit global convergence to a unique stationary point.

Another basic framework for studying optimal growth is the Ramsey equilibrium model

with constant but heterogeneous discount rates. Under homogeneous preferences, the steady

state reflects the degree of impatience of the representative agent. But this approach has an

important shortcoming, since the capital distribution in the economy is indeterminate. In the

case of many agents having different discount rates, stationary equilibria are characterized

by what is known as Ramsey’s conjecture, where only the most patient owns the capital stock

of the economy and all others have none and live off their wage incomes. The distribution

of capital is determinate, but it ends up being concentrated in a single agent. A thorough

review of this literature can be found in Becker (2006) and the references therein.3

1A different way of including variable discount rates has been largely explored in the literature on behavioral
economics. For example, Laibson (1997) postulates that time inconsistent intertemporal choices may lead
agents to have hyperbolic discounting, rather than geometric discounting. Preferences in this paper are time
invariant and satisfy the stationarity postulate from Koopmans (1960), so they are time consistent.

2These properties were actively investigated by the late Rolf Mantel (Mantel, 1967, 1993, 1995, 1999).
Although Mantel’s work along these lines is far less known than his celebrated results on the Sonnenschein-
Mantel-Debreu Theorem in General Equilibrium Theory, it follows from the same foundational concerns. For
a detailed treatment, see Tohmé (2006).

3See also Becker et al. (2014) for an up-to-date study of turnpike properties, monotone income conditions,
and exceptions to the Ramsey equilibrium in discrete time. They point out that continuous time models give
different predictions, another issue that was explored in Mantel (1999).
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In our model, the inclusion of recursive preferences and strategic interaction implies a

non-degenerate stationary capital distribution, so the Ramsey equilibrium result is avoided.

An alternative in this direction has been given by Sorger (2002, 2008), assuming that agents

eventually realize that they exercise some market power in the capital market, but still

behave competitively in the labor market. This leads to open-loop equilibria in which all

agents in the economy own positive amounts of capital. Pichler and Sorger (2009) extend

the analysis to Markovian equilibria. However, they are not able to obtain analytical results.

Based on numerical simulations, they show that a Markov perfect equilibrium can be affected

by preferences, while the open-loop equlibrium is determined by technology alone. They also

find some evidence of nonmonotonic behavior.

Dockner and Nishimura (2004) develop a two-agent model with externalities in the form

of knowledge spillovers and heterogeneous technological parameters. Assuming certain spe-

cific functional forms for preferences and technologies, they show that dynamics under open-

loop and Markov equilibria are remarkably similar: they are characterized by a balanced

growth path, a unique stable equilibrium, and monotonic behavior of aggregate variables.

However, when external effects are relatively large, there exist oscillatory paths. On the

other hand, growth rates are larger in Markovian equilibria than in open-loop equilibria.

Another model of strategic growth is given in Dockner and Nishimura (2005), who also

study a two-agent economy with a nonconcave production function. They find that in an

open-loop equilibrium, there is a threshold value for the initial capital stock such that above

the threshold, the solution converges to an efficient steady state, but below the threshold

the capital stock converges to zero. Moreover, there exists a unique interior globally stable

Markov perfect equilibrium. Results for the latter are also obtained with specific functional

forms for preferences and technology.

Recent work by Drugeon and Wigniolle (2015) has brought a novel perspective on this

problem, by introducing temptation motives and self-control costs in a standard Ramsey

model, building on the preference representation developed by Gul and Pesendorfer (2004).

It is shown that when agents are heterogeneous in their discount factors and temptation

motives, equilibria are characterized by nondegenerate long-run distributions of consumption

and wealth. In fact, the most patient individual may end up having lower consumption levels

than the other agents, if their temptation motives are sufficiently low.

In terms of the formal methods applied to finding equilibria in this paper, we build on

an early contribution by Rosen (1965), who studies the existence and uniqueness of n-person

generalized concave games. Each player’s strategy space depends on the strategy of the other

players, like in the abstract economies of Arrow-Debreu and McKenzie. Existence follows

from a generalization of Kakutani’s fixed-point theorem, while uniqueness is ensured by a

property called diagonal strict concavity.
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The dynamical systems approach was developed by Becker and Foias (1998) to analyze

the Ramsey equilibrium under geometric discounting and heterogeneous discount rates. The

construction of an equilibrium is based on the turnpike property. In particular, a functional

equation is derived from the Euler condition of the most patient agent, which defines a

nonlinear operator with a monotonicity property. The solutions are found applying a method

called implicit programming. Becker and Foias (2007) have also applied these methods to

solve a model of strategic growth and find similar dynamics.

We have also mentioned Greenwood and Huffman (1995), who addressed the existence

problem of a nonoptimal stochastic growth model. They follow some innovative work of

Coleman (1991), which has been extended by Coleman (1997, 2000), Datta et al. (2002),

and Mirman et al. (2008). Formally, the aggregate law of motion is a state variable that de-

termines, together with individual state variables, individual decision rules. This interaction

between individual and aggregate behavior is embedded into the Euler equation of the rep-

resentative agent. Imposing consistency between individual and aggregate law of motions,

and working recursively with the Euler equation, yields a monotonic operator. We take some

insights from this approach, and extend some results to include heterogeneity and strategic

behavior.

2 The Environment

Time is discrete and agents are infinitely lived. The economy considered here consists of

two agents, one storable good that can be consumed or used as capital for production, and

a single productive unit. We assume, as in an Arrow-Debreu-McKenzie private ownership

economy, that agents receive a constant proportion of output as income shares. The idea is

to characterize an equilibrium path for this economy as a function of preferences, technology,

initial capital, and income shares.

Throughout the paper, variables and parameters indexed by i correspond to agent i,

while those indexed by j correspond to the other agent, which is always interpreted as

j 6= i = 1, 2. Each agent i has a prospective utility function over nonnegative consumption

sequences ci := {cit}
∞
t=0 given by

(2.1) Wi
0(c

i) =

∞∑

t=0

(
t−1∏

s=0

αi(c
i
s)

)

ui(c
i
t),

where ui(c
i
t) is agent i’s instantaneous utility of consuming cit, and the real-valued function

αi(c
i
t) is the subjective factor of time preference. Then, the one-period discount rate for

agent i can be defined as ρi(c
i
t) := 1/αi(c

i
t)− 1.
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The following assumptions describe prospective utility in terms of instantaneous utility

and the discount factor for each i = 1, 2.

(U1) αi : R+ → R++ is continuous, strictly increasing and strictly concave on R+, twice

continuously differentiable on R++ with α′′
i (c) < 0 < α′

i(c) for all c > 0,

(U2) αi(0) > 0; supc>0 αi(c) = αi, for some constant 0 < αi < 1,

(U3) ui : R+ → R+ is continuous, strictly increasing and strictly concave on R+; and twice

continuously differentiable on R++ with u′′i (c) < 0 < u′i(c) for all c > 0,

(U4) ui(0) = 0; limc→0+ u
′
i(c) = +∞; limc→+∞ u′i(c) = 0,

Since αi(c
i
t) is increasing in consumption, it can also be thought as being increasing in

income. Hence, ρi(c
i
t) decreases with consumption and income, satisfying the property of

decreasing impatience. Under these assumptions, prospective utility defines a welfare path

{Wi
t}

∞
t=0 by solving the following difference equation:

Wi
t = ui(ct) + αi(ct)W

i
t+1, t = 0, 1, . . .(2.2)

given the initial condition (ci0,W
i
0). The function on the right-hand side of (2.2) is called

an utility aggregator, in this case defined as Ui(c,Wi) := ui(c) + αi(c)W
i. This utility

aggregator is continuous, increasing in its arguments, and satisfies a Lipschitz condition of

order one. Moreover, assumptions (U1)–(U4) imply that successive approximations of Ui

converge uniformly to a unique prospective utility.4

Agents are endowed with (ki0, k
j
0) units of capital at the beginning of the first period.

There is a single productive unit in the economy where both agents pool their capital to

produce output. Aggregate capital is denoted by kt := kit + kjt for every t. Technology

consists of a neoclassical aggregate production function f which satisfies the following:

(T1) f : R+ → R+ is continuous, strictly increasing and strictly concave on R+; and twice

continuously differentiable on R++ with f ′′(k) < 0 < f ′(k) for all k > 0,

(T2) f(0) = 0; limk→0+ f
′(k) > max

{
αi(0)

−1, αj(0)
−1
}
; limk→+∞ f ′(k) < 1.

It is immediately verified that these properties imply the existence of a maximum sustainable

capital level, i.e., there is a km > 0 such that f(km) = km, f(k) < k for all k > km, and

f(k) > k for all k < km . This fact and (T2), together with (U1)–(U2), guarantee the

existence of an interior stationary equilibrium. For simplicity, we further assume that output

f(k) is net of depreciation and maintenance costs.

4Proofs of these statements can be found in Boyd (1990).

7



The single good in this economy is used both for consumption and accumulation. Agents

make investment decisions separately. Every period t, each agent receives a share θi ≥ 0 of

total output. Income shares are constant over time and satisfy θi + θj = 1. Without loss of

generality, we assume θi > θj throughout the paper. It is further assumed that these shares

are public information, fully enforceable and not open to renegotiation.

In a sequential formulation of the problem, each agent chooses infinite sequences of

consumption and savings to maximize prospective utility, given by (2.1), taking the initial

conditions and the actions of the other player as given. Then, the sequential program for

agent i has the form

max
{cit,kit+1}

∞

t=0

∞∑

t=0

(
t−1∏

s=0

αi(c
i
s)

)

ui(c
i
t)(SPi)

s.t. kit+1 ≤ θif(kit + kjt )− cit, t = 0, 1, . . .

cit ≥ 0, kit+1 ≥ 0, t = 0, 1, . . .

ki0 ≥ 0, given,

where {kjt }
∞
t=0 is the strategy followed by the other player.

A capital path k
i := {kit}

∞
t=0 is said to be feasible from (ki0, k

j
0) ≥ 0, given k

j ≥ 0, if it

satisfies

0 ≤ kit+1 ≤ θif(kit + kjt ), t = 0, 1 . . .

Let Πi
[
(ki0, k

j
0);k

j
]
be the set of all feasible capital paths for player i. A consumption path

c
i := {cit}

∞
t=0 is said to be feasible from (ki0, k

j
0) if there is a sequence k

i in Πi
[
(ki0, k

j
0);k

j
]

such that

0 ≤ cit ≤ θif(kit + kjt )− kit+1, t = 0, 1, . . .

Since preferences are strictly monotone, the first inequality restriction in (SPi) will be

binding. Moreover, Inada conditions guarantee an interior solution for cit and k
i
t+1, for all t.

As a result, (SPi) can be written as

max
{ki

t+1
}∞
t=0

∈Πi[(ki
0
,kj

0
);kj ]

∞∑

t=0

[
t−1∏

s=0

αi

(

θif(kit + kjt )− kit+1

)
]

ui

(

θif(kit + kjt )− kit+1

)

.

Given that the set Πi is compact in the product topology defined over the space of bounded

non-negative sequences k
i, and the objective function is continuous, this problem is well

defined. In a strategic environment, the solution to this problem critically depends on the

information structure of the game. Throughout the paper, we restrict our attention to
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pure strategies under two alternative information structures: precommitment or open-loop

strategies, and Markovian or closed-loop strategies. For the case of precommitment, optimal

strategies are given by individual capital paths, ki and k
j, and the aggregate capital path

that results from these decisions yields an equilibrium in open-loop strategies, or simply, an

open-loop equilibrium.5 In a stationary Markovian equilibrium, strategies are functions of the

state of the system. The state contains all the relevant information from past consumption

and savings decisions, as well as the evolution of the state in previous periods.

As will be shown below, there are certain advantages of using a recursive formulation of

the sequential problem (SPi) for developing the solution methods introduced in this paper.

At the beginning of any period, individual choices are basically constrained by aggregate

capital kt, since past accumulation decisions are of no consequence for current or future

payoffs. In the language of the recursive approach, aggregate capital represents the state

variable of the dynamic optimization problem, while consumption levels cit and cjt are the

decision variables. If the feasible sets for individual consumption are carefully constructed,

then a feasible consumption profile (cit, c
j
t ) immediately implies that the level of aggregate

capital next period kt+1 is also feasible. Thus, keeping track of individual capital holdings

becomes unnecessary. To see this, note that adding up the resource constraints from each

(SPi), and taking nonnegativity constraints into account, yields

cit + cjt ≤ f(kt)− kt+1, t = 0, 1, . . . ,

which will be satisfied with equality along an optimal path. Also, if the equilibrium is

interior, we have that cit > 0, cjt > 0, and 0 < kt+1 < f(kt), and this in turn implies

0 < cit < f(kt)− cjt , for all t.

Given the existence of a maximum sustainable capital km, the state space can be restricted

to the closed interval K := [0, km]. At the beginning of each period, player i chooses ci over

the correspondence [0, f(k) − cj] to solve a dynamic program (DPi) of the form

vi(k) = max
0≤ci≤f(k)−cj

{

ui(c
i) + αi(c

i) vi(f(k)− ci − cj) : k ∈ K, 0 ≤ cj ≤ f(k)
}

,(DPi)

and player j solves an analogous program. A solution to (DPi) yields player i’s best response

to a strategy cj , for a given initial value k of the state variable. Clearly, the strategy space

of each player depends on the strategy followed by the other player, so this is a game that

belongs to the class of generalized games in the sense of Arrow and Debreu (1954) and

McKenzie (1959), also known as games of strategic dependence.6 Furthermore, as players

5In what follows, we use the terms open-loop equilibrium and precommitment equilibrium interchangeably.
6Another branch of the literature –typically related to differential games– refers to this class as “games

with coupled constraints.” This terminology is also used by Rosen (1965).
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share a common technology to produce output, such interdependence is a natural element

of the game. This, however, creates some technical difficulties which are discussed next.

3 The Strategy Space

Let Si ⊂ R+ and Sj ⊂ R+ be the sets of all feasible strategies for players i and j, respectively.

A feasible strategy profile c := (ci, cj) is an element of the product space S := Si × Sj . In

the first part of this discussion we consider a fixed value k ∈ K, so we can apply the static

framework developed by Rosen (1965) for concave n-person games. For this problem to be

well defined, admissible strategies must be selected from a convex, compact subset S ⊂ R
2
+,

and each player’s payoff function ui has to be continuous in (ci, cj) and concave in ci for

each fixed value of the strategy followed by the other player. If P i denotes the projection

of S on R+, Rosen assumes that preferences are defined over the set P = P i × P j , which

is a superset of S. A shortcoming of using P as the strategy space is that it will contain

infeasible strategies.

Banks and Duggan (2004) extended the result obtained by Rosen and solved the problem

of having a strategy space which includes infeasible strategies. The set S is considered a

primitive of the problem, instead of being a construction, and it is assumed to be nonempty,

convex and compact. Preferences are defined only on the set of feasible strategy profiles, and

are represented by a continuous and quasi-concave utility function ui : S → R. Provided

that the feasibility correspondence of each agent is lower hemicontinuous, the authors prove

the existence of a Nash equilibrium from standard results.7

What is the feasible strategy space in our problem? To attempt an answer to this

question, first consider the following auxiliary program related to (SPi) for a single player,

say i. We will refer to this case as player i’s autarky decision problem, and denote it by Ai.

Essentially, this is a world where only player i exists and output is not shared with anyone

else, a problem that can be seen as a single-agent optimal growth model with recursive

preferences. This class of models has been analyzed at length by Mantel (1993, 1995, 1999),

and more recently by Erol et al. (2011), among others. We freely borrow their results to

characterize Ai. The reader is referred to those papers for details.

Let ṽi : K → R denote the value function corresponding to the optimization problem

associated with Ai, with a Bellman equation given by

ṽi(k) = max
0≤xi≤f(k)

{

ui(x
i) + αi(x

i)ṽi(f(k)− xi)
}

.

This value function satisfies ṽi(0) = 0 and ṽi(k) > 0 if k > 0. Moreover, it is strictly

7See also Carlson (2002) on this particular subject.
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increasing and continuous on [0, f(k)] and differentiable on (0, f(k)). Given k0 > 0, an

optimal consumption path satisfies the Euler equation and envelope condition

u′i(c
i
t) + α′

i(c
i
t)ṽi(f(kt)− cit) = αi(c

i
t)ṽ

′
i(f(kt)− cit), t = 0, 1, . . . ,(3.1)

ṽ′i(kt) = [u′i(c
i
t) + α′

i(c
i
t)ṽi(f(kt)− cit)]f

′(f(kt)− cit), t = 0, 1, . . . ,(3.2)

and kt evolves according to kt+1 = f(kt)− cit, for all t. For any optimal stationary point k,

it must be true that f(k) ≥ k, so that k ∈ [0, km]. The continuity of αi, ui, f , and ṽi implies

that if k = limt→∞ kt, then

(3.3) αi(f(k)− k)f ′(k) = 1

must hold. Since 0 < αi(f(k) − k) < 1 for every k ∈ K, it follows that f ′(k) > 1, so the

equilibrium is dynamically efficient.

Our assumptions on preferences (U1)–(U4) and technology (T1)–(T2) imply the existence

of a stationary point k ∈ (0, km). Moreover, if the left-hand side of (3.3) is strictly decreasing

on some interval I ⊆ (0, km) containing k, such stationary point is locally stable and locally

isolated, two properties that will prove useful in this and later sections. Differentiating the

left-hand side of (3.3) and making appropriate substitutions, this condition is equivalent to

(3.4)
α′
i(f(k)− k)

αi(f(k)− k)
(f ′(k)− 1) +

f ′′(k)

f ′(k)
< 0,

for all k ∈ I. To obtain meaningful and comparable results, we will further assume that

discount factors satisfy αi(c
i) ≥ αj(c

i) for all ci = cj ∈ f(I) such that ci = cj = c. Hence,

if they consume equal amounts, agent i is uniformly more patient than player j over f(I).

This assumption will be kept for the remaining of the paper, adjusting the definition of I as

needed.

By looking at (3.3), a stationary point k can be thought as the intersection of the marginal

product curve f ′(k) and the graph of (αi(f(k) − k))−1, as depicted in Figure 1. Points A

and B represent the autarky equilibrium for player i and player j, respectively. Although

these equilibria, by definition, are independent from each other, they can be used as reference

points to characterize equilibria with strategic interactions. Based on geometrical properties,

there is an intuitive interpretation that can be obtained from the stability condition (3.4).

Taking into account that (1/αi)
′ = −α′

i/α
2
i and substituting (3.3) into (3.4), the latter can

be written as

(3.5)
∣
∣f ′′(k)

∣
∣ >

∣
∣
∣

(
αi(f(k)− k)−1

)′
∣
∣
∣ .
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This means that, in absolute value, the slope of the marginal product curve must be larger

than the slope of the curve (1/αi) taken as a function of k.8 The fact that 1/αi ≤ 1/αj ,

together with the strict concavity of f , immediately implies that the agent with a higher

level of patience has more capital in autarky, as can be seen in Figure 1.

Figure 1: Autarky equilibria

Note that the assumption on discount factors can be interpreted as a “sorting condition”

in the sense that marginal utility of (current) consumption is higher for the less patient

player. If we identify an agent’s “type” with impatience, the higher type consumes more

(i.e., accumulates less capital) in equilibrium. This property extends to strategic equilibria,

as will be shown in later sections. The characterization of autarkic equilibria is summarized

in the following lemma, whose proof can be found in Appendix A.

Lemma 3.1. Suppose that I is a subinterval of K such that αj(c
j) ≤ αi(c

i) holds for all

ci = cj = c ∈ f(I). Then, there exist stationary equilibria kia, k
j
a ∈ I for programs Ai and Aj,

respectively. Moreover, 0 < kja ≤ kia and the corresponding equilibrium levels of consumption

satisfy 0 < cja ≤ cia.

Next, we present an intuitive argument for the construction of the strategy space that

makes use of autarky equilibria. For this, fix k ∈ (0, km) in (3.1) and define the functions

LHSi(c
i; f(k)) := u′i(c

i)+α′
i(c

i)ṽi(f(k)−c
i), and RHSi(c

i; f(k)) := αi(c
i)ṽ′i(f(k)−c

i), for all

8In terms of the subjective discount rate, (3.5) can be expressed as |f ′′(k)| > ρi(f(k)− k) |ρ′i(f(k)− k)|.
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ci > 0. Clearly, LHSi is strictly decreasing with LHSi(f(k); ·) = ui(f(k))+α
′
i(f(k))ṽi(0) > 0

and, by the Inada condition in (U4), limci→0+ LHSi(c
i; ·) = +∞. On the other hand, RHSi is

strictly increasing with RHSi(0; ·) = αi(0)ṽ
′
i(f(k)) > 0, and limci→f(k)− RHSi(c

i; ·) = +∞,

given that ṽ′i → +∞ as k → 0+, which follows from the fact that ṽi(0) = 0 and assumptions

(U2) and (U4). These conditions guarantee the existence of an equilibrium consumption

level di ∈ (0, f(k)) at which the graphs of LHSi and RHSi intersect, so di is implicitly

determined by

(3.6) u′i(d
i) + α′

i(d
i)ṽi(f(k)− di) = αi(d

i)ṽ′i(f(k)− di).

An equilibrium for the autarky case corresponds to point D in Figure 2.

Figure 2: The strategy space

Now assume that player j enters the game and chooses a consumption level satisfying

0 < cj < θjf(k). The irruption of player j into the scene has two fundamental effects on

player i’s program: first, i’s total output share falls from one to θi < 1; second, the available

choices of consumption and saving for player i are more restrictive. Ignoring second-order

effects, this can be seen in the graph as horizontal shifts of the LHSi and RHSi curves, and

also a shift of the vertical asymptote of RHSi at f(k) to the left to f(k) − cj . As a result,

there is an unambiguous decrease in consumption from di to di
′

, which is depicted as point

D′ in Figure 2. Note that we have assumed 0 < ci < f(k)−cj to obtain feasible consumption

choices.
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Slightly abusing notation, we can define an implicit function di(k) from (3.6) for all k ∈ K,

which is increasing over that interval. For a fixed level of k, provided that 0 ≤ di(k) ≤ θif(k)

on K, the strategy space for an individual player can be defined as Si := [0, di(k)], a convex

compact subset of R+. Then, preferences defined over the product space S := Si×Sj exclude

infeasible strategies. Now, if k is allowed to vary, there is no guarantee that the resulting

map will be convex in k. One possibility is to define Si as the convex hull of this set over

K. Alternatively, and keeping in mind transitional dynamics, defining an individual strategy

space as Si := [0, di(km)] also seems to be a reasonable compromise.

4 Precommitment Strategies

The game in consideration is a triplet P :=
(
N,S, {Wi

0}i∈N
)
, where N = {1, 2} is the set of

players, S :=
∏

i∈N Si the strategy space, and Wi
0 the payoff function for each player i ∈ N ,

given by (2.1). A precommitment or open-loop strategy for the game P is a sequence of ac-

tions that depend only on the initial state and the date. Both players simultaneously commit

at the beginning of the game to a completely specified list of actions to be played without

any possibility of revision during the entire course of the game. Given an initial condition

(ki0, k
j
0) ≥ 0, each agent chooses an optimal consumption path, taking the strategy of the

other player as given, seeking to maximize the discounted sum of instantaneous utilities.

4.1 Nash Equilibrium

Our approach to construct equilibria is close in spirit to the one developed by Rosen (1965)

for n-person concave games, extended to a dynamic setting. A similar methodology was also

applied by Becker and Foias (1998, 2007), who refer to this as the dynamical system approach,

to solve and characterize an optimal growth problem. One of the main characteristics of this

approach is that it works with Euler equations rather than value functions directly.

Let Wi
0(c

i|cj) denote the discounted utility that player i obtains at t = 0 from following

a strategy c
i when player j’s strategy is given by c

j. A Nash equilibrium is defined next.

Definition 4.1. A feasible strategy profile (ci∗, cj∗) ∈ Πi ×Πj is a Nash equilibrium for the

game in precommitment strategies P if

Wi
0(c

i∗|cj∗) ≥ Wi
0(c

i|cj∗), for each c
i ∈ Πi and j 6= i = 1, 2.
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Consider the modified sequential problem for player i

max
{cit,kt+1}∞t=0

∞∑

t=0

(
t−1∏

s=0

αi(c
i
s)

)

ui(c
i
t)(SP′

i)

s.t. cit ≤ f(kt)− cjt − kt+1, t = 0, 1, . . .

cit ≥ 0, kt+1 ≥ 0, t = 0, 1, . . .

k0 ≥ 0, cj := {cjt}
∞
t=0 given.

A solution to (SP′
i) in open-loop strategies will be constructed from the necessary first-order

conditions for an interior equilibrium, the Euler equation and envelope condition

u′i(c
i
t) + α′

i(c
i
t)vi(f(kt)− cit − cjt ) = αi(c

i
t)v

′
i(f(kt)− cit − cjt ),(4.1)

v′i(kt) =
[

u′i(c
i
t) + α′

i(c
i
t)vi(f(kt)− cit − cjt )

]

f ′(kt),(4.2)

respectively. The second-order condition for optimality is given by

u′′i (c
i
t) + α′′

i (c
i
t)vi(kt+1)− 2α′

i(c
i
t)v

′
i(kt+1) + αi(c

i
t)v

′′
i (kt+1) ≤ 0, and

v′′i (kt) =
[
u′′i (c

i
t) + α′′

i (c
i
t)vi(kt+1)

]
f ′(kt)

2 +
[
u′i(c

i
t) + α′

i(c
i
t)vi(kt+1)

]
f ′′(kt).

Our assumptions on preferences and technology imply that v′i > 0 and v′′i < 0, hence each

player’s value function vi(k), i = 1, 2, is strictly increasing and strictly concave for all k ∈ K.

To ease the notation burden, we define the functions U i : Si × Sj × K → R, and

W i : Si × Sj ×K → R by

U i(cit, c
j
t , kt) := u′i(c

i
t) + α′

i(c
i
t)vi(f(kt)− cit − cjt ),(4.3)

W i(cit, c
j
t , kt) := u′′i (c

i
t) + α′′

i (c
i
t)vi(f(kt)− cit − cjt ).(4.4)

Then, an interior solution for the game P is a feasible sequence {(cit, c
j
t , kt)}

∞
t=0 characterized

by the following three conditions

U i(cit, c
j
t , kt) = αi(c

i
t)U

i(cit+1, c
j
t+1, kt+1)f

′(kt+1),(4.5a)

U j(cjt , c
i
t, kt) = αj(c

j
t )U

j(cjt+1, c
i
t+1, kt+1)f

′(kt+1),(4.5b)

kt+1 = f(kt)− cit − cjt .(4.5c)
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Note that v′i(kt) = U i(cit, c
j
t , kt)f

′(kt), hence the partial derivatives of U i are given by

U i
1(c

i
t, c

j
t , kt) =W i(cit, c

j
t , kt)− α′

i(c
i
t)U

i(cit+1, c
j
t+1, kt+1)f

′(kt+1),(4.6a)

U i
2(c

i
t, c

j
t , kt) = −α′

i(c
i
t)U

i(cit+1, c
j
t+1, kt+1)f

′(kt+1),(4.6b)

U i
3(c

i
t, c

j
t , kt) = α′

i(c
i
t)U

i(cit+1, c
j
t+1, kt+1)f

′(kt+1),(4.6c)

where U i
l denotes de partial derivative of U i with respect to its l-th argument.

By the implicit function theorem, the first-order conditions (4.5) for an equilibrium can

be written as

U i(cit, c
j
t , kt) = αi(c

i
t)U

i(F i(cit, c
j
t , kt), F

j(cjt , c
i
t, kt), F

k(cit, c
j
t , kt))f

′(F k(cit, c
j
t , kt)),(4.7a)

U j(cjt , c
i
t, kt) = αj(c

j
t )U

j(F j(cjt , c
i
t, kt), F

i(cit, c
j
t , kt), F

k(cit, c
j
t , kt))f

′(F k(cit, c
j
t , kt)),(4.7b)

for some differentiable functions F i : Si × Sj ×K → Si and F j : Sj × Si ×K → Sj, where

F k : Si × Sj ×K → K is given by

(4.8) F k(cit, c
j
t , kt) := f(kt)− cit − cjt .

The map F i indicates agent i how much to consume next period, given current period’s

consumption profile (cit, c
j
t ) and capital stock kt, and similarly for F j , whereas F k is the

aggregate resource restriction. We use this formulation of the problem to implicitly define a

discrete dynamical system. Therefore, the equilibrium conditions

cit+1 = F i(cit, c
j
t , kt),

cjt+1 = F j(cjt , c
i
t, kt),

kt+1 = F k(cit, c
j
t , kt),

define a map Φ from Si × Sj ×K into itself, which can also be written as

(4.9) (cit+1, c
j
t+1, kt+1) = Φ(cit, c

j
t , kt),

for all t. An equilibrium path can then be defined in terms of this map.

Definition 4.2. An equilibrium path for the game P is a feasible sequence {(cit, c
j
t , kt)}

∞
t=0

such that (cit, c
j
t , kt) ∈ Si × Sj ×K for all t, and {(cit+1, c

j
t+1, kt+1)}

∞
t=0 = {Φt(ci0, c

j
0, k0)}

∞
t=0,

where Φt is the t-th iterate of Φ.
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4.2 Stationary Equilibrium

It is easily verified that if Φ(ci, cj, k) = (ci, cj, k) for some t, this implies cit = cit+1 = ci,

cjt = cjt+1 = cj, and kt = kt+1 = k, for all t. Hence, a fixed point of Φ on Si × Sj × K

corresponds to a stationary point of the dynamic system given by (4.9). The latter, together

with (4.5), imply that a stationary point (ci, cj, k) is defined by

1 = αi(c
i)f ′(k)(4.10a)

1 = αj(c
j)f ′(k),(4.10b)

k = f(k)− ci − cj.(4.10c)

Local properties of the nonlinear system (4.9) near a hyperbolic stationary point can be

examined based on the stable manifold theorem. Before proceeding, we need some preliminary

calculations. From (4.6), the partial derivatives of U i evaluated at (ci, cj, k) are given by

U i
1 = W i − (α′

i/αi)U
i, U i

2 = −(α′
i/αi)U

i, and U i
3 = (α′

i/αi)U
if ′, where U i = u′i + α′vi > 0

and W i := u′′i + α′′
i vi < 0. Differentiating (4.7a) and (4.7b) we obtain, after appropriate

substitutions, the following system of equations in the unknowns F i
l with l = 1, 2, 3 and

j 6= i = 1, 2,






ωi δi

δj ωj











F i
1 F i

2 F i
3

F j
2 F j

1 F j
3




 =






ωi − ηi −ηi ηif
′

−ηj ωj − ηj ηjf
′




 ,(4.11)

where

(4.12) ωi :=
α′
i

αi
−
W i

U i
> 0, δi :=

α′
i

αi
> 0, ηi :=

α′
i

αi
(f ′ − 1) +

f ′′

f ′
.

Note the relation between ηi and equation (3.4), which determines the stability of the autarky

equilibrium for each player. These conditions have a central role in the upcoming analysis.

The determinant of the coefficient matrix in (4.11) is given by ∆0 := ωiωj − δiδj > 0, so

we can solve the system for F i
l and F j

l , l = 1, 2, 3, which yields

F i
1 =

1

∆0
[ωiωj − (ηiωj − δiηj)] , F j

1 =
1

∆0
[ωiωj − (ωiηj − ηiδj)] ,(4.13a)

F i
2 = −

1

∆0
[δiωj + (ηiωj − δiηj)] , F j

2 = −
1

∆0
[ωiδj + (ωiηj − ηiδj)] ,(4.13b)

F i
3 =

1

∆0
(ηiωj − δiηj) f

′, F j
3 =

1

∆0
(ωiηj − ηiδj) f

′.(4.13c)
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There is a nice symmetry in these formulas: any partial derivative of F j can be obtained by

switching subscripts in the corresponding partial derivative of F i, and viceversa.

It is of interest to determine the signs of the equations in (4.13) to gain some intuition on

the model and analyze strategic interactions. For this, having a framework of reference can

be quite useful. Note that in the limiting case where αi and αj approach constant functions,

the current model will tend to behave like a model with constant discounting, at least in

a qualitative sense. In other words, if we take α′
i → 0, the conditions given in (4.12) will

approximate to

ωi = −u′′i /u
′
i > 0, δi = 0, and ηi = f ′′/f ′ < 0,

and analogously for α′
j → 0.

Using a model similar to ours, but assuming preferences with fixed heterogeneous dis-

count factors, Becker and Foias (2007) proved that these conditions lead to an asymptotic

equilibrium where the most patient player holds all the capital in the economy, and the equi-

librium capital path is eventually monotonic, the so called turnpike property. The novelty

of their result is that optimal paths satisfy the turnpike property with or without strategic

interaction. Our strategy will be to keep the parameter values9 relatively close to the case of

constant discounting, i.e., ωi > 0, ηi < 0, and, if needed for comparison purposes, δi will be

taken to be small, but not zero. In any circumstance, the assumption that discount factors

satisfy αi ≥ αj will remain unchanged.

4.3 Local Regularity and Cross-Marginal Impatience

Note that the sign of all derivatives of F i in (4.13) depend on the term (ηiωj − δiηj). For

certain combinations of these parameters, we are able to determine some of those signs.

In fact, they depend on two factors which we identify with two properties called “local

regularity” and “cross-marginal impatience,”

ηiωj − δiηj =

[
α′
i

αi
(f ′ − 1) +

f ′′

f ′

](
α′
j

αj
−
W j

U j

)

−

(
α′
i

αi

)[
α′
j

αj
(f ′ − 1) +

f ′′

f ′

]

,

=

[
α′
i

αi
(f ′ − 1) +

f ′′

f ′

]

︸ ︷︷ ︸

local regularity

(

−
W j

U j

)

+

(
α′
j

αj
−
α′
i

αi

)

︸ ︷︷ ︸

cross-marginal
impatience

(
f ′′

f ′

)

.(4.14)

In what follows we give formal definitions and characterize these concepts.

9This is a slight abuse of terminology, since δi, ωi and ηi are not exactly parameters, but expressions
derived from the model’s primitives evaluated at a stationary point (ci, cj , k). If we were to assume specific
functional forms for the fundamentals, they would ultimately depend on certain parameters.
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Definition 4.3. A stationary equilibrium (ci, cj, k) ∈ Si × Sj ×K for the game P satisfies

local regularity (LR) if there is an open rectangle Ii × Ij × Ik ⊂ Si × Sj × K containing

(ci, cj , k) such that

(4.15)
α′
i(c

i)

αi(ci)

(
f ′(k)− 1

)
+
f ′′(k)

f ′(k)
< 0, i = 1, 2,

holds for each (ci, cj , k) ∈ Ii × Ij × Ik.

Local regularity is equivalent to ηi < 0, i = 1, 2, which is now a familiar condition. Loosely

speaking, LR states that a stationary equilibrium for the game P lies in a neighborhood of

each player’s autarky equilibrium, in a region where each of the latter are locally stable. This

intuition is confirmed in Section 4.4 with two results. In Proposition 4.5, it is shown that

k lies below the levels of autarky equilibria kia and kja. On the other hand, Proposition 4.6

proves that LR implies that (ci, cj, k) satisfies a (weak) local stability condition.

Cross-marginal impatience (CMI) measures how the marginal rate of intertemporal sub-

stitution between current and future consumption for one player changes in response to a

change in the strategy followed by the other player. Given that the analysis is carried out

in a neighborhood of a stationary point, CMI is defined in terms of discount factors (αi, αj)

only. For this reason, not much is lost if we consider two consecutive periods, and define the

intertemporal substitution between cit and c
i
t+1 for player i as

µit,t+1 :=
U i(cit, c

j
t , kt)

αi(cit)U
i(cit+1, c

j
t+1, kt+1)

, t = 0, 1, . . .(4.16)

For a stationary path, this is simply µi =
[
αi(c

i)
]−1

. The obvious distinction between this

formulation and a constant discount factor, say 0 < β < 1, where the marginal rate of sub-

stitution β−1 is also constant, is that µi decreases with the level of stationary consumption.

Before characterizing CMI, in order to capture various aspects of marginal impatience,

consider the following exercise. Suppose that (4.15) and α′
j(c)/αj(c)− α′

i(c)/αi(c) ≥ 0 hold

for all c in some interval I, so the right-hand side of (4.14) is negative. Next, differentiate

(4.16) and evaluate the result at (ci, cj, k). After substitutions, we have

∂µit,t+1

∂cit
= −

(

2
α′
i

α2
i

−
W i

αiU i

)

< 0,
∂µit,t+1

∂cit+1

=
α′
i

α2
i

−
W i

αiU i
> 0,

∂µit,t+1

∂cjt
= −

α′
i

α2
i

< 0,
∂µit,t+1

∂cjt+1

=
α′
i

α2
i

> 0,

∂µit,t+1

∂kt
=
α′
i

α3
i

> 0,
∂µit,t+1

∂kt+1
= −

α′
i

α3
i

< 0.
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The first line of partial derivatives above reflects the property of decreasing marginal impa-

tience (DMI): agents become less impatient if future consumption is substituted for current

consumption. The second line contains cross-partial derivatives, which are naturally related

to the concept of CMI: they capture each player’s best response to changes in the strategy

of the other player. In this scenario, player i gets more patient as player j gives up future

consumption for current consumption, hence preferences satisfy decreasing cross-marginal

impatience (DCMI). Finally, impatience tends to decrease as current capital replaces future

capital. There is an interesting observation about the size of these effects. From the second

and third lines, note that increasing cjt and cjt+1 (or kt and kt+1) by the same amount has a

null effect on impatience for player i, they simply cancel each other out. Therefore, changes

in these variables that tend to have permanent effects will not affect impatience. But adding

up the values on the first line above implies that equally increasing cit and c
i
t+1 still makes

agent i less impatient (the net effect in absolute value is α′
i/α

2
i ), since the discount factor

increases utility in every future period. We are ready to formally define the second property.

Definition 4.4. Assume that αi, i = 1, 2 satisfy (U1)–(U2). Let I ∈ Si ∩ Sj be an open

interval such that αi(c) ≥ αj(c) for all c ∈ I. It is said that (αi, αj) exhibits non-upward

cross-marginal impatience (NUCMI) if

(4.17)
∂µit,t+1(c)

∂cjt
≥
∂µjt,t+1(c)

∂cit
, all c ∈ I.

The property of non-downward cross-marginal impatience (NDMI) is defined analogously

but with the inequality reversed.10

While DCMI relates to a first-order effect on µit,t+1 from a change in current consumption,

NUCMI measures how cross-marginal impatience varies with the level of impatience, so that

if impatience were a continuous variable, it would be characterized by a second cross-partial

derivative.11 An intuitive way to understand NUCMI, is that when (4.17) holds, then

∣
∣
∣
∣

(
1

αi(ci)

)′∣∣
∣
∣
=
α′
i(c

i)

αi(ci)2
≤
α′
j(c

j)

αj(cj)2
=

∣
∣
∣
∣

(
1

αj(cj)

)′∣∣
∣
∣
, for all ci = cj = c,

that is, in absolute value, the slope of the curve (1/αj) must be larger (i.e., more inelastic)

10A related condition, albeit presented in statistical terms, called non-upward-crossing, has been recently
introduced by Chade and Swinkels (2016) in a study of the first-order approach to the classical moral hazard
problem.

11This should not be confused with the following second cross-partial derivative

∂2µi
t,t+1

∂cjt∂c
i
t

=
U i

12

αiU i

(

1−
α′

i

αi

)

= −
α′

i

α2
i

(

1−
α′

i

αi

)

,

which depends on αi but not on αj .
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than the slope of (1/αi) for equal levels of consumption. See Figure 1 for a graphical

interpretation of this condition.

The following example analyzes the implications of assuming LR and NUCMI on the

model developed in this section. First, we have from (4.13) that ∂cit+1/∂c
i
t = F i

1 > 0, so

future consumption for player i increases after a small increase in cit. Current income does

not change, so capital accumulation kt+1 must fall. As future income f(kt+1) also falls, there

is a negative income effect (in the sense of permanent income) that tends to decrease cit+1. A

lower level of accumulation in turn increases f ′(kt+1), which tends to increase cit+1. It seems

that there should be a rather strong substitution effect for this change to generate incentives

for future consumption. On the other hand, ∂cit+1/∂kt = F i
3 < 0, so future consumption is

negatively related with current capital stock. An increase in kt has a positive income effect

that tends to increase cit+1, but in the current period it can only decrease investment, since

(cit, c
j
t ) remain constant by assumption. Again, we have an income effect and a substitution

effect operating in opposite directions with respect to cit+1. The former should be quite strong

to explain the negative sign. Based on standard income and substitution effects, these two

results can not be reconciled. We are not able to determine the sign of F i
2, unless additional

assumptions are made. And the same applies to F j
l , l = 1, 2, 3.

What distinctive features of our model could help to explain the apparent contradiction

described above? An effect that strengthens the substitution effect between current and

future consumption is the presence of decreasing marginal impatience: higher cit implies a

higher discount factor αi, which favors consumption in future periods. Additional forces

arise from the strategic interaction and its effects on the strategy space. An increase in cit

decreases the marginal rate of substitution for player j, and this tends to decrease future

consumption cjt+1. Taking into account our earlier discussion in Section 3, the strategy space

in (t+ 1) for player i expands as a result of lower cjt+1, which tends to rise cit+1. Moreover,

the future marginal rate of substitution for i increases. Although this effect is more distant

in time, under NUCMI it could be strong enough to increase cit+1. All these effects increase

future consumption, as predicted by the positive value for F i
1. Similar arguments can be

used to explain how these additional channels contribute to a negative sign of F i
3.

There are obviously additional direct and indirect effects not included in the previous

analysis. They all act together in complex intertwined ways. But some of these new channels

offer plausible explanations for the predictions of the model under particular assumptions.

It is worth mentioning that strategy alone without recursive preferences is not enough to

generate long-lived effects from these additional channels, for two reasons. The first one has

to do with the turnpike property (more specifically, Ramsey’s conjecture), since constant

discount factors prevent any cross-marginal effects. Second, the reinforcing effects that arise

from changes in the strategy space will be absent.
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4.4 Discussion

In this section we discuss and extend the previous results to obtain further insight into the

characterization of open-loop equilibria. We begin with a comparison between each player’s

autarky stationary equilibrium and the stationary equilibrium of the precommitment game.

Proposition 4.5. Suppose there is an open interval I ⊂ Si ∩Sj such that αi(c) ≥ αj(c) for

all c ∈ I, and LR is satisfied on Ω := I × I ×K. If the game P has a non-trivial stationary

equilibrium (ci, cj, k) on Ω, then the following holds

(i) ci ≤ cj

(ii) k ≤ kja ≤ kia

(iii) cia ≤ ci and cja ≤ cj,

where (cia, k
i
a) and (cja, k

j
a) are the stationary equilibria for autarky programs Ai and Aj,

respectively.

Figure 3: Open-loop stationary equilibrium

The conclusions of Proposition 4.5 can be illustrated as follows. From the equilibrium

condition (4.10), we can write

ci(k) = α−1
i

(
1

f ′(k)

)

and cj(k) = α−1
j

(
1

f ′(k)

)

,
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where α−1
i (·) and α−1

j (·) denote inverse functions. These functions are well defined since αi,

αj and f ′ are strictly monotone. As a result, ci(k) and cj(k) are both strictly increasing.

Moreover, it is easy to see that ci(k) ≤ f(k)− k for all 0 ≤ k ≤ kia and cj(k) ≤ f(k)− k for

all 0 ≤ k ≤ kja holds. A stationary equilibrium for game P can be represented graphically as

the intersection of two curves: aggregate consumption, defined by c(k) := ci(k) + cj(k), and

aggregate net output, which is f(k) − k. This is depicted as point E in Figure 3, whereas

C and D are the consumption levels ci(k) and cj(k) in such equilibrium. Points A and B

represent a stationary autarky equilibrium for players i and j, respectively, that correspond

to the same points in Figure 1. Note the lower bounds
¯
ki and

¯
kj , which satisfy the following

conditions αi(0)f
′(
¯
ki) = 1 and αj(0)f

′(
¯
kj) = 1.

In a neighborhood of a stationary point k ∈ (0, km) it is easily verified that

(4.18) c′i(k) = −
f ′′(k)/f ′(k)

α′
i(ci(k))/αi(ci(k))

and c′j(k) = −
f ′′(k)/f ′(k)

α′
j(cj(k))/αj(cj(k))

,

therefore NUCMI implies that the ci(k) curve is steeper than cj(k) near k.
12

Before closing this section, we extend to the current framework the approach used to

analyze the local stability of autarky equilibria in Section 3. For the game this is a weaker

notion of stability, because the responses to any perturbation are limited to the discount

factor αi(c
i) and the marginal product of capital f ′(k). To perform a full-fledged stability

analysis, we need to characterize the stable manifold. Later we show that this is a rather

complicated task.

Let (ci, cj , k) be a stationary equilibrium given by (4.10). From the implicit function

theorem, there is an open rectangle Ii × Ij × Ik containing (ci, cj, k), and continuously

differentiable functions ci : I
k → Ii and cj : I

k → Ij such that

αi

[
F i(ci(k), cj(k), k)

]
f ′(k) = 1,

αj

[
F j(cj(k), ci(k), k)

]
f ′(k) = 1,

f(k)− ci(k)− cj(k) = k.

Let s(k) := f(k) − ci(k) − cj(k) denote the aggregate savings function. The local stability

condition is obtained in two steps: first, implicitly differentiating the first two lines of the

12Note that LR implies that c′i(k) > (f ′(k)− 1) near k, since by (4.18)

α′

i(ci(k))

αi(ci(k))
c′i(k) +

f ′′(k)

f ′(k)
= 0.

But replacing c′i with (f ′ − 1) above, and letting k vary on Ii, transforms this into a strict inequality, hence
the result follows.
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above system of equations, which yields c′i(k) and c′j(k); and, second, verifying that in a

neighborhood of the stationary point, |s′(k)| < 1 holds. It is readily verified that s′(k) > 0,

so the local stability condition is equivalent to

(4.19)
α′
i

αi

α′
j

αj

(
f ′ − 1

)
+

(
α′
i

αi
+
α′
j

αj

)
f ′′

f ′
< 0.

The following result shows that LR is sufficient for local stability.

Proposition 4.6. Let (ci, cj , k) ∈ Si × Sj ×K be a stationary equilibrium for the game P

that satisfies LR on an open rectangle Ii × Ij × Ik ⊂ Si × Sj × K. Then, the stationary

equilibrium is locally stable.

Proof. See Appendix B.

4.5 Local Stable Manifold

To shorten notation, let xt := (cit, c
j
t , kt) for all t, so for a given initial condition x0 ≥ 0, an

equilibrium path is obtained from successive iterations of the map

(4.20) xt+1 = Φ(xt), t = 0, 1, . . .

We stated earlier that if x = (cj , ci, k) is a fixed point of Φ in X := Si × Sj ×K, then x is a

stationary equilibrium for the game P. The local analysis of a nonlinear dynamical system

determine conditions under which an equilibrium path converges to a stationary point x.

That is, limt→∞Φt(x0) = x, for x0 sufficiently close to this stationary point.

Some additional assumptions besides (U1)–(U4) and (T1)–(T2) are needed for this result,

so we state them in a common notation below:

(P1) ηi < 0 and ηj < 0,

(P2) δi ≤ δj ,

(P3) f ′ − (2ωiωj + (δi − ωi)ηj + ηi(δj − ωj)) ≥ 0.

Note that (P1) and (P2) are local regularity and non-upward cross-marginal impatience,

respectively, introduced in the previous section. Assumption (P3) guarantees that the char-

acteristic polynomial associated to the linearized system Φ in a neighborhood of x has real

roots.

Theorem 4.7. Let x be a stationary equilibrium of (4.20) and assume that (P1)–(P3) are

satisfied. Then, there exists a neighborhood N of x and a continuously differentiable function

φ : N → R
2
+, for which the matrix [φil(x)] has full rank, such that if {xt}

∞
t=0 is an equilibrium

path for P with x0 ∈ N and φ(x0) = 0, then limt→∞ xt = x.
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Details of the proof can be found in Appendix B, so we present an outline of the main

steps. First, we evaluate a linearized version of the dynamical system (4.20) and find the

associated eigenvalues as the roots of a third-degree polynomial. Second, we verify that the

conditions for the stable manifold theorem hold. And third, we briefly explain how the stable

manifold can be characterized.

We begin by taking a first-order approximation of Φ near x and finding the eigenvalues

of the Jacobian matrix DΦ(x). Let A denote the 3× 3 matrix defined by

A := DΦ(x) =









F i
1 F i

2 F i
3

F j
2 F j

1 F j
3

F k
1 F k

2 F k
3









,

where all entries are evaluated at x, which is denoted by placing a bar over each entry.

Note that the first two rows of DΦ are given by (4.13), and the third row is obtained by

differentiating (4.8) and evaluating the result at x, which yields

F k
1 = −1, F k

2 = −1, and F k
3 = f ′(k).

In order to find eigenvalues of A, note that its trace and determinant are

tr(A) =
1

∆0
[2ωiωj − (ηiωj − δiηj)− (ωiηj − ηiδj)] + f ′,(4.21)

det(A) =
ωiωj

∆0
f ′.(4.22)

By the Cayley-Hamilton theorem, the coefficients of the characteristic polynomial can be

expressed in terms of traces of powers of A, one of them being the determinant of A.13 In

particular, for n = 3, the characteristic polynomial is given by

(4.23) p(λ) := λ3 − tr(A)λ2 + 1
2

(
tr2(A)− tr(A2)

)
λ− det(A),

and has the eigenvalues of A as roots.

As shown in Figure 4, the characteristic polynomial satisfies p(−1) < 0, p(0) < 0 and

p(1) > 0. Moreover, it reaches local extrema at points M and m that correspond to a local

maximum at r1 and a local minimum at r2, and a point of inflection at r3 (not depicted)

with 0 < r1 < 1 < r3 < r2. In conclusion, the eigenvalues associated to p(λ) are real and

13The theorem states that any invertible n× n matrix A over the real field satisfies its own characteristic
polynomial.
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satisfy

(4.24) 0 < λ1 < 1 < λ2 < λ3.

The fact that all eigenvalues have moduli different than one implies that x is a hyperbolic

fixed point.

Figure 4: Characteristic polynomial and eigenvalues

Since det(A) 6= 0, this matrix is locally invertible and, given that all elements of DΦ(x)

exist and are continuous in some neighborhood U of x, the map Φ is a local diffeomorphism.14

Consequently, there exists a neighborhood N ⊂ U and a continuously differentiable function

φ : N → R
2. It remains to verify that the Jacobian matrix of φ

Dφ(x) :=






φi1(x) φi2(x)

φj1(x) φj2(x)






has full rank. After lengthy calculations, these derivatives can be solved analytically in terms

of the model’s parameters and the eigenvalues λl, l = 1, 2, 3, but the results turn out to be

long and complicated to characterize. A detailed analysis of the stable manifold is available

in Appendix B.

14Given two manifolds M,N , a differentiable map Φ : M → N is a diffeomorphism if it is a bijection and
its inverse Φ−1 is also differentiable.
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5 Markovian Strategies

The game in Markovian strategies, or simply, the Markovian game, is described by a tuple

M :=
(
N,K, τ, {Ai,Wi}i∈N

)
, whereN = {1, 2} as before,K is the state space, τ a transition

function, and for each i ∈ N , Ai represents the action space, and Wi are the payoff functions.

In particular, we have that K = [0, km], τt := f(kt) − cit − cjt , Ai := [0, θif(km)], and Wi is

given in recursive form by (2.2).

Let gi : K → K denote a stationary Markovian strategy for player i and Vi : K → R+

the value function associated with (DPi) under this information structure. Both functions

belong to the space of real valued C2(K) functions. Optimal strategies are characterized

by the first-order and envelope conditions, which are the analogues to (4.1)–(4.2) in the

precommitment case,

u′i(gi(k)) + α′
i(gi(k))Vi(f(k)− gi(k)− gj(k)) = αi(gi(k))V

′
i (f(k)− gi(k)− gj(k)),(5.1)

V ′
i (k) =

[
u′i(gi(k)) + α′

i(gi(k))Vi(f(k)− gi(k)− gj(k))
] [
f ′(k) − g′j(k)

]
.(5.2)

Note that g′j(k) enters player i’s equilibrium condition, adding a new element of strategic

interaction. It is easy to show that Vi is strictly increasing, which implies f ′(k) − g′j(k) > 0

in equilibrium. Moreover, later we show that g′j(k) > 0 and 0 < f ′(k) − g′j(k) < f ′(k) hold

in a neighborhood of any stationary point, hence the marginal value of an additional unit of

capital for player i, measured by V ′
i (k), decreases compared to the precommitment solution.

The last optimality condition is given by the accumulation equation for aggregate capital,

k′ = f(k)− gi(k)− gj(k), where k
′ denotes next period’s value.

Combining (5.1) with (5.2) and differentiating the result, we obtain the second-order

condition for an optimum

u′′i (gi(k)) + α′′
i (gi(k))Vi(k

′)− 2α′
i(gi(k))V

′
i (k

′) + αi(gi(k))V
′′
i (k

′) ≤ 0,(5.3)

where V ′
i is given by (5.2) and

V ′′
i (k) = [u′′i (gi(k)) + α′′

i (gi(k))Vi(k
′)](f ′(k)− g′j(k))

2

+ [u′i(gi(k)) + α′
i(gi(k))V

′
i (k

′)](f ′′(k)− g′′j (k)).(5.4)

Hence (5.3) is satisfied if the value function is increasing and concave, the latter depending

on the sign of (f ′′(k)− g′′j (k)) at the optimum. In other words, a sufficient condition for the

concavity of player i’s value function Vi is that player j’s optimal strategy gj must be less

concave than the production function f . However, the condition can be relaxed, since the

first term in (5.4) is strictly negative under the current assumptions.
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Optimality conditions can be written in terms of the functionals defined in Section 4.1.

For x ∈ K, y ∈ [0, f(x)], and z ∈ [0, f(y)], use (5.2) to eliminate V ′
i (y) from (5.1), so the

corresponding first-order conditions for each player can be written as

U i(gi(x), gj(x), x) = αi(gi(x))U
i(gi(y), gj(y), y)

[
f ′(y)− g′j(y)

]
,(5.5a)

U j(gj(x), gi(x), x) = αj(gj(x))U
j(gj(y), gi(y), y)

[
f ′(y)− g′i(y))

]
.(5.5b)

There is no obvious method of attack on this particular system of differential functional

equations. Proving existence seems quite challenging and raises an interesting issue which

might be worth exploring in future research. Here we describe an approach that seems

suitable for the problem at hand and has not been applied in economics, at least that we are

aware of. The first step consists in transforming (5.5) into a system of integral equations.

Then, a solution is obtained as a coupled fixed point of a nonlinear multivalued mapping on

an appropriately defined space.

The concept of a coupled fixed point was introduced by Guo and Lakshmikantham (1987),

and the theory of coupled fixed points in ordered metric spaces is a growing research field,

recently developed by Gnana Bhaskar and Lakshmikantham (2006), Nieto et al. (2007), and

Lakshmikantham and Ćirić (2009). Recent applications to the solution of nonlinear integral

equations can be found in Van Luong and Thuan (2011) and Petruşel et al. (2013). The

theory combines elements from contractive applications and monotone operators, both of

which are commonly used in fixed point theory. It also points out some directions for the

solution methods developed in Section 5.1.

Given that f(0) = 0 by (T2) and assuming gi(0) = gj(0) = 0, it is possible to express

the system given in (5.5) as

gj(y) = f(y)−

∫ y

0

U i(gi(x), gj(x), x)

αi(gi(x))U i(gi(s), gj(s), s)
ds,

gi(y) = f(y)−

∫ y

0

U j(gj(x), gi(x), x)

αj(gj(x))U j(gj(s), gi(s), s)
ds,

which has the form of a system of nonlinear Volterra integral equations in gi(y) and gj(y),

with (gi(x), gj(x), x) taken as given.15 Let C(K) be the space of bounded and continuous

functions defined on the closed interval K. Now define a couple of operators on the product

15A nonlinear Volterra integral equation is a functional equation of the form

u(t) = φ(t) +

∫ t

a

K(t, s, u(s)) ds, t ∈ [a, b],

where u(t) is the function to be determined.
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space, V i : C(K)× C(K) → C(K) and Vj : C(K)× C(K) → C(K) as

V i[gi, gj ](y) = f(y)−

∫ y

0

U i(gi(x), gj(x), x)

αi(gi(x))U i(gi(s), gj(s), s)
ds,(5.6a)

Vj[gj , gi](y) = f(y)−

∫ y

0

U j(gj(x), gi(x), x)

αj(gj(x))U j(gj(s), gi(s), s)
ds.(5.6b)

These belong to a class of nonlinear integral operators known as Volterra operators. Suppose

there exists a metric d such that (C(K), d) is a complete metric space, and endow the product

space C(K)×C(K) with an order relation denoted by �. A solution to the system of integral

equations (gi, gj) ∈ C(K)× C(K) is called a coupled fixed point of the operators V i and Vj

in the product space if gi = Vj [gi, gj ] and gj = V i [gj , gi].

It is apparent that any fixed point of (5.6) will be a function of both current and future

values of the aggregate state, i.e., x and y, something that may restrict the applicability

of this method to characterize a solution. In fact, solving a system of nonlinear Volterra

integrals often requires numerical methods. We will circumvent these difficulties by extending

the solution approach introduced in Section 4 for the precommitment game. Specifically, we

construct a map relating current consumption and capital holdings with future consumption,

keeping the Markovian information structure intact.

5.1 A Solution Method Based on First-Order Conditions

The solution method proposed in this section combines different elements and techniques

from the literature that were mentioned earlier, such as implicit programming, the dynamical

system approach to concave games, and, particularly, some results from equilibria of non-

optimal economies in dynamic general equilibrium. But, as far as we know, this is a novel

approach to solve dynamic games with heterogeneous players.

Let Gi : K×K → Si be a function representing current consumption for player i when the

current state is k and the state next period is expected to follow a stationary rule k′ = g(k),

and let Gi
l denote the derivative of Gi with respect to its l-th argument, with l = 1, 2,

and j 6= i = 1, 2. In this and the following two sections, we characterize these functions

and perform a stability analysis of the dynamical system. More precisions on the aggregate

savings function g will be given later in Section 5.3. We begin by transforming (5.5) into a

system of nonlinear partial differential equations. For this, we replace gi(x) with Gi(x, y),

gi(y) with G
i(y, z), and g′i(y) with G

i
1(y, z) for i = 1, 2

U i(Gi(x, y), Gj(x, y), x) = αi(G
i(x, y))U i(Gi(y, z), Gj(y, z), y)[f ′(y)−Gj

1(y, z)],(5.7a)

U j(Gj(x, y), Gi(x, y), x) = αj(G
j(x, y))U j(Gj(y, z), Gi(y, z), y)[f ′(y)−Gi

1(y, z)].(5.7b)
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Given that we consider stationary strategies, aggregate states y ∈ [0, f(x)] and z ∈ [0, f(y)]

satisfy the following conditions for each x ∈ K,

y = f(x)−Gi(x, y)−Gj(x, y),(5.8)

z = f(y)−Gi(y, z)−Gj(y, z).(5.9)

Here we can see how the implicit programming approach is being applied to the current

problem. For instance, equation (5.8) determines the evolution of the aggregate state from

x to y, which in turn also depends on an endogenous variable, because y is an argument of

the players’ Markov strategies. To sum up, (5.7), (5.8), and (5.9), represent the optimality

conditions when players take the values of (x, y, z) as given.

In order to define a stationary equilibrium forM, we implicitly define the savings function

g : K → K, by replacing y with g(x) and z with g2(x) := g(g(x)) in (5.8)–(5.9), which implies

g(x) = f(x)−Gi (x, g(x)) −Gj (x, g(x)) ,(5.10)

g2(x) = f(g(x)) −Gi
(
g(x), g2(x)

)
−Gj

(
g(x), g2(x)

)
.(5.11)

Note that if Gi and Gj are continuous on K ×K, then (5.11) is implied by (5.10). These

conditions allow us to define a map

(5.12) Ψ
[
k, g(k), g2(k)

]
= 0, for all k ∈ K,

so that a stationary Markov equilibrium can be characterized in terms of this map as a

function g(k) satisfying (5.10). The following result shows that a fixed point of g on K is a

stationary point of the dynamical system induced by equilibrium Markov strategies. For a

proof, see Appendix C.

Proposition 5.1. If g(k) is a continuous function satisfying (5.12), then g has a stationary

point k∗ ∈ K defined by

αi

(
Gi(k∗, k∗)

)
[f ′(k∗)−Gj

1(k
∗, k∗)] = 1,(5.13a)

αj

(
Gj(k∗, k∗)

)
[f ′(k∗)−Gi

1(k
∗, k∗)] = 1,(5.13b)

f(k∗)−Gi(k∗, k∗)−Gj(k∗, k∗) = k∗,(5.13c)

where Gi(k, k′) and Gj(k, k′) are solutions to (5.7) on some open rectangle I × I ′ ⊂ K ×K

containing the point (k∗, k∗).

Characterizing equilibria and their stability properties in this way, as we have seen with
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open-loop equilibria, involves substantial notation and a significant number of preliminary

calculations. For this reason, and to allow comparison with previous results, we use the same

definitions and notation introduced in Section 4. However, a word of caution is in order:

variables with the same functional form may have different underlying structures, depending

on whether they are defined in terms of an open-loop equilibrium or a Markovian equilibrium.

We will attempt to avoid any ambiguity, trying to keep the advantages of having a common

notation for both types of equilibria.

In the remaining of this section, we show that for (k, k′) sufficiently close to a stationary

point (k∗, k∗), Markov optimal strategies Gi, Gj can be restricted to the space of C2(I × I)

functions that satisfy the following properties:

(M1) Gi(k, k′) ≥ 0, Gj(k, k′) ≥ 0, and at least one inequality is strict,

(M2) Gi(k, k′) +Gj(k, k′) < f(k),

(M3) 0 < Gi
1(k, k

′) < f ′(k), 0 < Gj
1(k, k

′) < f ′(k).

The partial derivatives of U i have the same functional form as in (4.6), but the functions vi

must be replaced by Vi. Then, evaluated at a stationary point k∗ ∈ K, we have

U i
1 =W i −

α′
i

αi
U i < 0, U i

2 = −
α′
i

αi
U i < 0, and U i

3 =
α′
i

αi
U if ′ > 0,

where U i := u′i + α′
iVi and W

i := u′′i + α′′
i Vi.

We begin by differentiating (5.7) with respect to x and evaluating the result at x = y =

z = k∗. After substitutions, this leads to a system of equations in the unknowns Gi
1 and Gj

1,

whose coefficients are functions of the model’s primitives evaluated at a stationary point,16






δi + ωi δi

δj δj + ωj











Gi
1

Gj
1




 =






δif
′

δjf
′




 .

Let ∆1 be the determinant of the coefficient matrix given by ∆1 := ωiωj + δiωj + ωiδj. It is

clear that ∆1 > 0, so the solution is

Gi
1 =

δiωj

∆1
f ′ =

δiωj

ωiωj + δiωj + ωiδj
f ′,(5.14a)

Gj
1 =

ωiδj
∆1

f ′ =
ωiδj

ωiωj + δiωj + ωiδj
f ′.(5.14b)

16Recall that δi = α′

i/αi and ωi = α′

i/αi −W i/U i.
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Since δi > 0 and ωi > 0, it follows that 0 < Gi
1 < f ′ and 0 < Gj

1 < f ′, as claimed in (M3).

We can think that Gi
1 and Gj

1 represent (in terms of output) direct effects of the strategic

interaction between i and j, so that (f ′ − Gj
1) is the “net marginal benefit” for player i of

investing in capital, taking into account player j’s best response to this increase in k. A

similar interpretation can be given to (f ′ −Gi
1) for player j. We will refer to Gi

1 and Gj
1 as

first-order effects, since they depend exclusively on the primitives of the model.

Next, differentiate (5.7) with respect to y, which gives a way to solve Gi
2 and Gj

2 in terms

of Gi
1 and Gj

1. This requires the introduction of some new parameters defined as

(5.15) νij :=
α′
i

αi
(f ′ − 1) +

f ′′ −Gj
11

f ′ −Gj
1

and νji :=
α′
j

αj
(f ′ − 1) +

f ′′ −Gi
11

f ′ −Gi
1

.

Note the similarity between νij, νji and ηi, ηj , respectively, which we used extensively to

characterize equilibria in open-loop strategies. This will be explored further in Section 5.4.

The system of linear equations in the unknowns Gi
2 and Gj

2 is given by






δi + ωi δi

δj δj + ωj











Gi
2

Gj
2




 =






ωi δi

δj ωj











Gi
1

Gj
1




−






δi + νij

δj + νji




 .

The partial derivatives Gi
2 and Gj

2 may be interpreted as the response of each player to a

change in expected future returns to capital induced by a change in current returns (brought

by a change in the current level of k). We call these second-order effects, because they are

combinations of Gi
1, G

j
1, G

i
11, and G

j
11. Using (5.14) to eliminate Gi

1 and Gj
1, the solution to

this system of equations is given by

Gi
2 =

[δiωiω
2
j + δiδj(ωiωj − δiωj + ωiδj)]

∆2
1

f ′ −
[δiωj + (δj + ωj)νij − δiνji]

∆1
,(5.16a)

Gj
2 =

[ω2
i δjωj + δiδj(ωiωj + δiωj − ωiδj)]

∆2
1

f ′ −
[ωiδj − δjνij + (δi + ωi)νji]

∆1
.(5.16b)

Finally, differentiating (5.7) with respect to z yields




Gi

12

Gj
12



 = −
[

f ′ −Gi
1 f ′ −Gj

1

]




δj ωj

ωi δi








Gi

2

Gj
2




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and, after appropriate substitutions,

Gi
12 = −

(δjG
i
2 + ωjG

j
2)(ωiωj + δiωj)

∆1
f ′,

Gj
12 = −

(ωiG
i
2 + δiG

j
2)(ωiωj + ωiδj)

∆1
f ′,

whereGi
2 and G

j
2 are given by (5.16a) and (5.16b), respectively. We consider these third-order

effects that arise from the interaction between current and future returns to capital.

5.2 Stability Analysis

We have seen that optimal strategies are characterized by complex interactions. But it is

possible to determine the stability of a stationary point k∗ from the analysis of aggregate

responses, i.e., (Gi
1 +Gj

1) and (Gi
2 +Gj

2), because some of the interaction terms compensate

each other. For this, we obtain a linear approximation of the dynamical system and apply

the stable manifold theorem. Substitute (5.8) into (5.9) to obtain a reduced form for Ψ,

Ψ(x, y, z) =f
(
f(x)−Gi(x, y)−Gj(x, y)

)
−Gi

(
f(x)−Gi(x, y)−Gj(x, y), z

)
(5.17)

−Gj
(
f(x)−Gi(x, y)−Gj(x, y), z

)
− z = 0.

Next, differentiate (5.17) with respect to (x, y, z) and evaluate the results at a stationary

point. In terms of f , Gi, and Gj , the partial derivatives are given by

Ψ∗
1 = (f ′(k∗)−Gi

1(k
∗, k∗)−Gj

1(k
∗, k∗))2,(5.18a)

Ψ∗
2 = −(f ′(k∗)−Gi

1(k
∗, k∗)−Gj

1(k
∗, k∗))(Gi

2(k
∗, k∗) +Gj

2(k
∗, k∗)),(5.18b)

Ψ∗
3 = −(1 +Gi

2(k
∗, k∗) +Gj

2(k
∗, k∗)).(5.18c)

Consider the polynomial function

(5.19) P (λ) = Ψ∗
1 +Ψ∗

2 λ+Ψ∗
3 λ

2

with Ψ∗
3 6= 0, so its discriminant is given by (Ψ∗

2)
2−4Ψ∗

1Ψ
∗
3 = (f ′−Gi

1−G
j
1)

2(Gi
2+G

j
2+2)2.

From (5.14), note that

(5.20) f ′ −Gi
1 −Gj

1 = (1 + δi/ωi + δj/ωj)
−1 f ′

does not vanish near k∗. Then, it is assumed that Gi
2 +Gj

2 6= 2 to obtain real and distinct

characteristic roots.
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Adding (5.16a) to (5.16b), it follows that

Gi
2 +Gj

2 = −
(δi/ωi)

2 + (δj/ωj)
2

(1 + δi/ωi + δj/ωj)2
f ′ −

(1/ωj)(f
′′ −Gi

11) + (1/ωi)(f
′′ −Gj

11)

(1 + δi/ωi + δj/ωj)
,

which, in principle, can take any real value. Easy calculations show that these roots are

(5.21) λ∗1 = −(f ′ −Gi
1 −Gj

1) and λ∗2 =
f ′ −Gi

1 −Gj
1

1 +Gi
2 +Gj

2

.

Given that the stable manifold theorem is valid for hyperbolic stationary points, we further

assume that the eigenvalues λ∗1 and λ∗2 lie outside the unit circle.17

Although we have imposed a number of restrictions on our parameter values, there are

still several stability configurations that may arise from the analysis of (5.21). To narrow

them down, we use the same approach as in the case of precommitment strategies, evaluating

the characteristic polynomial P at three key points, namely, 0, 1 and −1, and exploiting some

properties of its graph. For this, substitute (5.18) into (5.19), to obtain

P (0) = (f ′ −Gi
1 −Gj

1)
2,

P (1) =
[

(f ′ −Gi
1 −Gj

1) + 1
] [

(f ′ −Gi
1 −Gj

1)− (1 +Gi
2 +Gj

2)
]

,(5.22)

P (−1) =
[

(f ′ −Gi
1 −Gj

1)− 1
] [

(f ′ −Gi
1 −Gj

1) + (1 +Gi
2 +Gj

2)
]

.

Obviously, P (0) > 0, but the signs of P (−1) and P (1) ultimately depend on parameter

values. Introducing some notation (for this analysis only) will be helpful to visualize all

different cases and clarify the presentation of the results. Let a := (f ′ − Gi
1 − Gj

1) and

b := Gi
2 +Gj

2. From (5.20), it follows immediately that a > 0. But, as we mentioned earlier,

b can take any value (with a couple of exceptions pointed out above). From (5.22),

P (−1) = (a− 1)[a+ (1 + b)], P (0) = a2, and P (1) = (a+ 1)[a− (1 + b)].

All the graphs corresponding to these cases are parabolas, so additional information can be

obtained from the principal coefficient of the characteristic polynomial, −(1 + b), and the

x-coordinate of their vertices, λv = −ab/2(1 + b). The stability analysis based on these

formulas is summarized in Table 1.

Note that oscillatory, i.e., nonmonotonic, behavior is pervasive, given that at least one

eigenvalue is negative in all cases. This is in stark contrast with the majority of models of

17The analysis of non-hyperbolic fixed points is based on the center manifold. See Galor (2007, Ch. 4) and
references therein.
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Table 1: Stability Analysis

Case Parameters P (λ) Eigenvalues Notes Stab.

1 0 < a < 1,
b > 0

0

1

-1 0 1

−1 < λ∗1 < 0 < λ∗2 < 1 |λ∗1| > |λ∗2| stable

2 a > 1, b > 0,
a− b < 1

0

1

-1 0 1

λ∗1 < −1; 0 < λ∗2 < 1 |λ∗1| > |λ∗2| saddle

3 a > 1, b > 0,
a− b > 1

0

1

-1 0 1

λ∗1 < −1; λ∗2 > 1 |λ∗1| > |λ∗2| unstable

4 0 < a < 1,
−1 < b < 0,
a− b < 1

0

1

-1 0 1

−1 < λ∗1 < 0 < λ∗2 < 1 |λ∗1| < |λ∗2| stable

5 0 < a < 1,
−1 < b < 0,
a− b > 1

0

1

-1 0 1

−1 < λ∗1 < 0; λ∗2 > 1 |λ∗1| < |λ∗2| saddle

6 a > 1,
−1 < b < 0

0

1

-1 0 1

λ∗1 < −1; λ∗2 > 1 |λ∗1| < |λ∗2| unstable

7 0 < a < 1,
b < −1,
a+ b < −1

0

1

-1 0 1

−1 < λ∗1 < λ∗2 < 0 |λ∗1| > |λ∗2| stable

8 0 < a < 1,
b < −1,
a+ b > −1

0

1

-1 0 1

λ∗1 < −1 < λ∗2 < 0; |λ∗1| > |λ∗2| saddle

9 a > 1,
b < −1
a+ b > −1

0

1

-1 0 1

λ∗1 < λ∗2 < −1 |λ∗1| > |λ∗2| unstable
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optimal growth with many agents in the literature, with and without strategic interaction,

where monotone trajectories of the state variable is one of their strongest predictions. In

particular, cases 1, 4, and 7 are globally stable, in the sense that it is possible to define an

interval I ⊂ (0, km) and a continuous map ψ such that for any (k0, k1) that belong to the

graph of ψ, the path of kt converges to the stationary point k∗. In other words, the stable

manifold has dim = 2. Cases 1 and 7 imply oscillatory paths that end up converging, since

the eigenvalue with largest modulus is negative, i.e., |λ∗1| > |λ∗2|. The reverse inequality

holds in case 4, so the stable path may display oscillations during transitional dynamics, but

convergence is eventually monotonic. In cases 2, 5, and 8, the stable manifold has dim = 1,

so there is a continuous function, say ψ1, such that for k0 sufficiently close to k∗, the only

points (k0, k1) for which there is convergence are those on the graph of ψ1. Given that the

stable roots for cases 5 and 8 are negative, convergence is oscillatory; in case 2 there is

monotone convergence. All remaining cases imply divergent paths, also with oscillations.

The stable manifold theorem provides an additional result to study the behavior of the

aggregate saving function. There is a neighborhoodN of the point (k∗, k∗) and a continuously

differentiable function ψ : N → R such that for k0 sufficiently close to k∗, there exists k1

with (k1, k0) ∈ N and ψ(k1, k0) = 0. This is true if the Jacobian matrix [Dψ(k∗, k∗)] has

full rank. The linearized system Ψ can be represented in terms of the coefficients of the

characteristic polynomial P (λ) as

Ψ∗
1(kt − k∗) + Ψ∗

2(kt+1 − k∗) + Ψ∗
3(kt+2 − k∗) = 0,

so that the behavior of kt near k
∗ can be characterized by a 2× 2 matrix

A :=






−
Ψ∗

2

Ψ∗

3

−
Ψ∗

1

Ψ∗

3

1 0




 ,

which is nonsingular.

By Jordan decomposition, A can be written as A = B−1ΛB, where B is a nonsingular

matrix, and Λ a diagonal matrix with the eigenvalues λ∗1 and λ∗2 in the main diagonal. Using

the fact that BA = ΛB, the stable manifold can be characterized from the following system






b11 b12

b21 b22











−
Ψ∗

2

Ψ∗

3

−
Ψ∗

1

Ψ∗

3

1 0




 =






λ∗1 0

0 λ∗2











b11 b12

b21 b22




 ,
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and for any nonzero values of b11 and b22, we have that

B =






b11

(

λ∗1 +
Ψ∗

2

Ψ∗

3

)

b11
(

λ∗2 +
Ψ∗

2

Ψ∗

3

)−1
b22 b22




 .

Note that the savings function must satisfy ψ[g(k), k] = 0, hence its derivative is given

by g′(k∗) = −ψ−1
1 (k∗, k∗)ψ2(k

∗, k∗). The derivatives of the stable manifold at the stationary

point are

ψ1(k
∗, k∗) =

(

λ∗2 +
Ψ∗

2

Ψ∗

3

)−1
b22, and ψ2(k

∗, k∗) = b22,

which implies

g′(k∗) = −
ψ2(k

∗, k∗)

ψ1(k∗, k∗)
= λ∗1.

If the system is governed by λ∗2 instead, then simply replace λ∗1 with λ∗2 in all previous

calculations.

5.3 Stationary equilibrium

In this section we establish the existence of a stationary equilibrium for the Markov game in

terms of the map Ψ defined in (5.12). For this, we focus on the first-order conditions for the

players dynamic programs and incorporate the results obtained in the previous two sections.

The analysis is mainly based on Stokey et al. (1989, Ch. 18.2) for a dynamic nonoptimal

economy with homogeneous agents, but there are enough differences to justify a separate

treatment.

We need some preliminaries before presenting the main result. Assume that Gi
2+G

j
2 6= 0,

so Ψ∗
2 does not vanish. By the implicit function theorem, there exists a rectangle I × I

containing the point (k∗, k∗) and a continuously differentiable map H : I × I → I such that

(5.23) Ψ(x,H(x, z), z) = 0, for all (x, z) ∈ I × I.

Many important results depend on the characterization of this mapping. The following

monotonicity properties are introduced for that purpose.

Definition 5.2. A map H : I × I → R is said to be

(a) uniformly monotone if H(x, z) is increasing (resp. decreasing) in x for all z ∈ I, and

increasing (resp. decreasing) in z for all x ∈ I

(b) mixed monotone if H(x, z) is increasing (resp. decreasing) in x for all z ∈ I and

decreasing (resp. increasing) in z, that is, for all x ∈ I.

37



All the stationary equilibria from Table 1 can be grouped in terms of these properties.

From (5.23), the partial derivatives of H(x, z) evaluated at (k∗, k∗), are H∗
1 = −Ψ∗

1/Ψ
∗
2 and

H∗
2 = −Ψ∗

3/Ψ
∗
2. At the same time, it is well known that the eigenvalues λ∗1 and λ∗2 and the

coefficients of P are related by λ∗1 + λ∗2 = −Ψ∗
2/Ψ

∗
3 and λ∗1 λ

∗
2 = Ψ∗

1/Ψ
∗
3, therefore

H∗
1 =

λ∗1λ
∗
2

λ∗1 + λ∗2
and H∗

2 =
1

λ∗1 + λ∗2
.

Results are shown in Table 2.

Table 2: Properties of H(x, z)

Group Cases Partial Derivatives Monotonicity

I 1 – 3 H∗
1 > 0, H∗

2 < 0 Mixed

II 4 – 6 H∗
1 < 0, H∗

2 > 0 Mixed

III 7 – 9 H∗
1 < 0, H∗

2 < 0 Uniform

Denote by C(I) the space of bounded continuous functions h : I → R with the sup norm,

and define the operator T on C(I) by

(5.24) Th(k) = H[k, h2(k)], for all k ∈ I,

where H is the function defined in (5.23). Clearly, a fixed point of T is a solution to (5.12)

on I. We eliminate the unstable cases (3, 6, and 9) from Table 2, because there has to be

at least one eigenvalue smaller than one in absolute value to construct the relevant space of

functions. The proof for H uniformly monotone is similar to the one in Stokey et al. (1989),

so we omit it to concentrate on the cases where H is mixed monotone.

Let ε > 0 and define Iε := [k∗ − ε, k∗ + ε]. Then, for any λ ∈ (−1, 1), denote by D|λ|(Iε)

the space of continuous functions on Iε that have a stationary point k∗ and satisfy a Lipschitz

condition with constant |λ|. More specifically, this set is given by

D|λ|(Iε) :=
{
h ∈ C(Iε) : h(k

∗) = k∗ and |h(k) − h(k′)| ≤ |λ||k − k′|, all k, k′ ∈ Iε
}
.

We give full treatment to the case −1 < λ∗1 < 0 and λ∗2 > 0 (Group II in Table 2), since

the remaining cases can be handled in an analogous manner. Given that the stable manifold

with −1 < λ∗1 < 0 implies that the policy function is strictly decreasing, we choose the

subspace of D|λ|(Iε) of decreasing functions,

∼

D|λ|(Iε) :=
{
h ∈ D|λ|(Iε) : for all k, k

′ ∈ Iε, if k ≤ k′, then h(k′) ≤ h(k)
}
.
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The space
∼

D|λ|(Iε) endowed with the sup norm is a Banach space in the metric derived from

this norm. The next result shows that for every λ that lies in an interval specified below,

the operator T maps
∼

D|λ|(Iε) to itself. See Appendix C for a detailed proof.

Lemma 5.3. There exists −1 ≤
∼
λ < λ∗1 such that for every λ ∈ (

∼
λ, λ∗1), there are constants

m1,m2 with H∗
1 < m1 < 0 and 0 < H∗

2 < m2, that satisfy

(5.25) λ < H∗
1 +H∗

2λ
2 < m1 +m2λ

2 < 0.

Let
∼
λ, m1, and m2 be defined as in Lemma 5.3 and let λ ∈ (

∼
λ, λ∗1). For any ε > 0,

the continuity of H implies that Th is continuous for all h ∈
∼

D|λ|(Iε). By definition of a

stationary point Ψ(k∗, k∗, k∗) = 0, then H(k∗, k∗) = k∗. It follows that Th(k∗) = k∗ for any

h ∈
∼

D|λ|(Iε). Now, since H1 and H2 are continuous on I, there exists some ε > 0 such that

Iε ⊂ I and H1(x, z) ≤ m1 < 0 and 0 < H2(x, z) ≤ m2, for all (x, z) ∈ Iε × Iε. Let k, k
′ ∈ Iε′

and, without loss of generality, suppose that k ≥ k′. The fact that h is decreasing implies

that h(k) ≤ h(k′) and h2(k) ≥ h2(k′). Then,

Th(k)− Th(k′) =
[
H(k, h2(k))−H(k′, h2(k))

]
+
[
H(k′, h2(k)) −H(k′, h2(k′))

]
,

≤ m1(k − k′) +m2

[
h2(k)− h2(k′)

]
,

≤ m1(k − k′) +m2λ
[
h(k) − h(k′)

]
,

≤ (m1 +m2λ
2)(k − k′),

where the third and fourth lines use the fact that h ∈
∼

D|λ|(Iε). By (5.25), we have that

(m1 +m2λ
2) < 0, so Th(k) ≤ Th(k′). Hence Th is decreasing.

It remains to prove that Th satisfies the Lipschitz condition with constant |λ|. By the

continuity of Th, it follows from Lemma 5.3 and the result from the previous paragraph,

that for k, k′ ∈ Iε and λ ∈ (
∼
λ, λ∗1), we have

λ ≤
Th(k)− Th(k′)

k − k′
≤ m1 +m2λ

2 < 0.

This immediately implies that |Th(k)−Th(k′)| ≤ |λ||k−k′|. Hence, the operator T maps the

space
∼

D|λ|(Iε) to itself. Note that Iε is compact and it is easy to verify that
∼

D|λ|(Iε) ⊂ C(Iε)

is closed, bounded and convex, and that
∼

D|λ|(Iε) is itself an equicontinuous family. Moreover,

T is continuous, but we leave the proof and several technical details to Appendix C. All this

means that T satisfies the hypothesis of Schauder’s fixed point theorem, so we have proved

the main result of this section, which we state as a theorem.
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Theorem 5.4. There exist ε > 0 and |λ| < 1 such that the operator T :
∼

D|λ|(Iε) →
∼

D|λ|(Iε)

defined in (5.24) has a fixed point.

5.4 Discussion

We close this section with a stability analysis and a graphical analysis for the equilibrium

in Markov strategies, along the lines of those made in Section 4.4 for the precommitment

equilibrium. First, differentiate the left-hand sides of (5.13a) and (5.13b) and evaluate at

k = k∗, which yields

α′
i

αi
(Gi

1 +Gi
2) +

f ′′ −Gj
11 −Gj

12

f ′ −Gj
1

< 0(5.26a)

α′
j

αj
(Gj

1 +Gj
2) +

f ′′ −Gi
11 −Gi

12

f ′ −Gi
1

< 0,(5.26b)

and then verify that for the aggregate savings function s(k∗) := f(k∗)−Gi(k∗, k∗)−Gj(k∗, k∗),

the following local stability condition |s′(k∗)| < 1 holds, i.e.,

s′(k∗) := f ′(k∗)− (Gi
1(k

∗, k∗) +Gj
1(k

∗, k∗))− (Gi
2(k

∗, k∗) +Gj
2(k

∗, k∗)).

To do this, use (5.26) to eliminate (Gi
1+G

j
1) and (Gi

2+G
j
2) from s′(k∗) and rearrange terms,

so the stability condition is equivalent to

(
α′
i

αi

)(
α′
j

αj

)
(
f ′ − 1

)
+

(
α′
i

αi

)
f ′′ −Gi

11 −Gi
12

f ′ −Gi
1

+

(
α′
j

αj

)
f ′′ −Gj

11 −Gj
12

f ′ −Gj
1

< 0,(5.27)

if s(k∗) is increasing, and with the reverse inequality if s(k∗) is decreasing. Two remarks

are in order: first, keeping in mind that the arguments of these functions are best-response

profiles for two different equilibria, comparing (5.27) with the stability condition for the

precommitment equilibrium (4.19) is useful to get some understanding about the additional

strategic interactions brought by Markov strategies; second, this stability condition has a

close relation with the “stability parameters” νij and νji defined in (5.15).

For the graphical approach, by (5.14), we have (f ′ −Gj
1) = ξij f

′ and (f ′ −Gi
1) = ξji f

′,

where

ξij :=
1 + δi/ωi

1 + δi/ωi + δj/ωj
and ξji :=

1 + δj/ωj

1 + δi/ωi + δj/ωj
.

Thus, a stationary Markov equilibrium can be written as

(5.28) αi

(
Gi(k∗, k∗)

)
ξji(k

∗, k∗) f ′(k∗) = αj

(
Gj(k∗, k∗)

)
ξij(k

∗, k∗) f ′(k∗) = 1.
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Provided that these functions are sufficiently smooth so that αi and αj are invertible over

the relevant range, it is possible to determine the optimal stationary strategies for k ∈ Iε,

Gi(k, k) = α−1
i

(
1

ξji(k, k) f ′(k)

)

and Gj(k, k) = α−1
j

(
1

ξij(k, k) f ′(k)

)

.

Hence the Markov equilibrium results from the intersection of the aggregate consumption

curve, G(k, k) := Gi(k, k) + Gj(k, k), and the aggregate net output curve, f(k) − k. This

is pictured in Figure 5 as point E′, which determines k∗. Points C ′ and D′ represent the

equilibrium consumption levels for players i and j, respectively, associated with k∗.

Figure 5: Stationary equilibrium in Markov strategies

Given that both ξij and ξji are strictly positive and less than one, and ignoring second-

order effects, it follows from (5.28) that f ′(k∗) > f ′(k), hence k∗ < k. In other words, the

precommitment equilibrium can be obtained from this condition by setting ξij = ξji = 1

for all k ∈ I. As αi ≥ αj near k∗, it also follows from (5.28) that ξij(k
∗, k∗) < ξji(k

∗, k∗).

This determines the shifts of the Gi and Gj curves in the graph (shown in upward arrows).

Intuitively, when the possibility of commitment is no longer feasible, players internalize the

effect that their actions have on their opponents. We can think that ξij and ξji measure

the burden that each player imposes on the other player by increasing the marginal cost of
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investment. Since ξij < ξji, the burden is heavier for the patient player i, than the other

way around. As a result, the impatient player j reduces consumption (from D to D′) while

player i consumes more (from C to C ′).

6 Concluding Remarks

This paper studies a two-agent capital accumulation model with heterogeneity in preferences

and income shares. Preferences are represented by recursive utility functions with decreasing

marginal impatience. Given that agents share a single production technology, individual

consumption and saving decisions are interrelated. This mutual influence among agents also

creates incentives for strategic behavior. The stationary equilibria of this dynamic game are

analyzed under two information structures: one in which agents precommit to future actions,

and another one where agents use Markovian strategies.

We develop a novel approach for the solution of stationary equilibria in this class of capital

accumulation games with recursive preferences. The method results from a combination of

different approaches, which include the dynamical systems approach, operator methods, and

fixed point theory. In the case of Markovian strategies, Euler equations arising from each

agent’s dynamic program are transformed into a system of partial differential equations,

which are solved by implicit programming.

Despite the technical difficulties involved, we are able to prove the existence of stationary

equilibria in open-loop and Markovian strategies, and characterize these equilibria based on

general functional forms. Aggregate capital in any stationary equilibria is bounded above

by the equilibrium level of the less patient agent in the autarky setting. Moreover, agents

reduce capital accumulation in a Markovian equilibrium compared to the precommitment

case. Under certain regularity conditions, it is shown that convergence is monotone under

precommitment, but Markovian equilibria may exhibit nonmonotonic paths for aggregate

variables, even in the long-run.

A The Strategy Space: Proofs

A.1 Proof of Lemma 3.1

For simplicity, assume that αi(c) ≥ αj(c) holds for all c ∈ [0, km], since the argument does

not hinge on this particular assumption. By (T2), we have that αi(0)f
′(0+) > 1 (it could

be infinity). From (T1)–(T2), the maximum sustainable level satisfies f ′(km) < 1. This,

together with (U1) and the fact that f(km)− km > 0, implies αi(km)f ′(km) < 1. Hence the

existence of kia ∈ (0, km) follows from the continuity of αi and f
′. The proof for kja ∈ (0, km)

is analogous.

42



By (3.3), we have in a stationary equilibrium that

(A.1) 1 = αi(c
i
a)f

′(kia) = αj(c
j
a)f

′(kja),

where 0 < cia = f(kia) − kia and 0 < cja = f(kja) − kja. Suppose that kia < kja. Hence

f ′(kia) > f ′(kja) > 1, and it follows that αi(c
i
a) < αj(c

j
a) from (A.1). For this inequality to

hold, cia must be sufficiently lower than cja. In particular, 0 < f(kia) − kia < f(kja) − kja, or,

equivalently,

f(kia)− f(kja)

kia − kja
< 1.

Then, by the mean value theorem, there is a kia < x < kja such that f ′(x) < 1. But this

contradicts the concavity of f . Hence, kja ≤ kia. The other inequality, cja ≤ cia, follows from

the concavity of f and the fact that both kaj and kai satisfy f ′(k) > 1.

B Precommitment Strategies: Details and Proofs

B.1 Proof of Proposition 4.5

Since (4.10a) and (4.10b) hold for any interior stationary point, we have that

1 = αi(c
i)f ′(k) = αi(c

i
a)f

′(kia),(B.1a)

1 = αj(c
j)f ′(k) = αj(c

j
a)f

′(kja),(B.1b)

which implies αi(c
i) < 1 and αj(c

j) < 1 by (U1). This in turn implies f ′(k) > 1, f ′(kia) > 1,

and f ′(kja) > 1. Next, divide (B.1a) by (B.1b) to obtain

1 =
αi(c

i)

αj(cj)
=
αi(c

i
a)f

′(kia)

αj(c
j
a)f ′(k

j
a)
.

Given that αi(·) ≥ αj(·), for the first equality to hold it must be the case that ci ≤ cj , which

proves (i).

For part (ii), note that from (B.1a)–(B.1b) and the resource constraint, it follows that

1 = αi(f(k)− k − cj)f ′(k) = αi

(

f(k)− k − α−1
j

(
1/f ′(k)

))

f ′(k).

From the second inequality above, the nonnegativity condition ci ≥ 0 is equivalent to

αj(f(k)− k)f ′(k) ≥ 1 = αj(f(k
j
a)− kja)f

′(kja).
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Hence, k ≤ kja. The remaining inequality k ≤ kia follows from Lemma 3.1.

To show part (iii), rearrange (B.1a) and apply the result from part (ii) of this proposition

to obtain
αi(c

i)

αi(cia)
=
f ′(kia)

f ′(k)
≤ 1,

hence the monotonicity of the discount factor implies ci ≤ cia. The remaining inequality can

be obtained applying a similar argument to (B.1b). This completes the proof.

B.2 Proof of Proposition 4.6

By local regularity, it follows that

α′
i

αi
(f ′ − 1) +

f ′′

f ′
< 0 and

α′
j

αj
(f ′ − 1) +

f ′′

f ′
< 0

on Ii × Ij × Ik.

Multiplying both sides of the first inequality above by α′
i/αi, multiplying both sides of

the second inequality by α′
j/αj , and adding up the result, we have

[(
α′
i

αi

)2

+

(
α′
j

αj

)2
]

(f ′ − 1) +

(
α′
i

αi
+
α′
j

αj

)
f ′′

f ′
< 0.

Given that α′
i/αi, α

′
j/αj ≥ 0, Young’s inequality18 implies that

α′
i

αi

α′
j

αj
≤

1

2

(
α′
i

αi

)2

+
1

2

(
α′
j

αj

)2

≤

(
α′
i

αi

)2

+

(
α′
j

αj

)2

.

Hence, it follows that
α′
i

αi

α′
j

αj
(f ′ − 1) +

(
α′
i

αi
+
α′
j

αj

)
f ′′

f ′
< 0,

which is (4.19), the desired result.

B.3 Proof of Theorem 4.7

The proof of the theorem will be carried out in several steps which we formulate as inde-

pendent lemmas. We assume that the matrix A has no eigenvalues lying in the unit circle

(hyperbolic fixed point) so the stable manifold theorem applies.

18Young’s inequality states that if a and b are nonnegative real numbers, and p and q positive real numbers
such that 1/p + 1/q = 1, then ab ≤ ap/p+ bq/q.
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Generally speaking, the graph of a third-degree polynomial,

p(λ) = λ3 − tr(A)λ2 + 1
2

(
tr2(A)− tr(A2)

)
λ− det(A),

can be characterized by its roots, the intersection with the y-axis, a local maximum, a local

minimum, and a point of inflection.

Lemma B.1. Assume that ηi, ηj < 0. Then p(−1) < p(0) < 0 < p(1).

Proof. Reordering terms in (4.21) yields

tr(A) =
2ωiωj − ηi(ωj − δj)− ηj(ωi − δi)

∆0
+ f ′.

By (P1) and the fact that ωi − δi > 0 and ωj − δj > 0, it follows that tr(A) > 0. It has also

been established that det(A) > 0. The linear coefficient of p is given by

tr2(A)− tr(A2)

2
=
ωiωj − ηiωj − ωiηj

∆0
+

2ωiωj

∆0
f ′,

which is clearly positive with ηi, ηj < 0. These values completely describe the coefficients of

the polynomial p. Hence, we will evaluate p(·) at certain reference points to help determine

the stable and unstable local manifolds. Here we choose 0, 1, and −1, which gives

p(−1) = −

(
4ωiωj − δiδj

∆0

)

(f ′ + 1) +
ηi(2ωj − δj) + (2ωi − δi)ηj

∆0
< 0,

p(0) = −
ωiωj

∆0
< 0,

p(1) =
δiδj (f

′ − 1)− (δiηj + ηiδj)

∆0
> 0.

Simple calculation shows that p(−1) < p(0). Hence p(−1) < p(0) < 0 < p(1) as claimed.

The next result is useful to characterize the critical points of p.

Lemma B.2. If ηi < 0 and ηj < 0, then 1
3 tr(A) > 1.

Proof. We have already established that f ′(k̄) > 1 for any given stationary point. Since the

remaining entries of the main diagonal of A, are positive, it suffices to show that their sum

is greater than two, or equivalently, that F i
1 + F j

1 − 2 > 0. From (4.13), we have that

F i
1 + F j

1 − 2 =
2δiδj − ηi(ωj − δj)− (ωi − δi)ηj

∆0
> 0,

and the desired result follows.
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Lemma B.3. Suppose that ηi < 0, ηj < 0 and tr(A2)− 1
3 tr

2(A) > 0. Then, p(λ) has a local

maximum at r1 > 0, a local minimum at r2, and a point of inflection at r3 with r1 < r3 < r2

and r3 > 1.

Proof. First differentiate p to find the critical points, which are the zeroes of p′(λ) in R, i.e.,

the solution of the quadratic equation

λ2 − 2
3 tr(A)λ+ 1

6

(
tr2(A)− tr(A2)

)
= 0.

Since tr(A2)− 1
3 tr

2(A) > 0, the critical points r1 and r2, given by

(B.2) r1,2 =
1
3 tr(A)∓

1
2

√
2
3

(
tr(A2)− 1

3 tr
2(A)

)

are well defined.19 By Lemma B.2, it is easy to verify that 0 < r1 < r2.

Differentiating p′ once more, we have that

p′′(λ) = 2λ− 2
3 tr(A),

thus p′′ vanishes at r3 =
1
3 tr(A) and

p′′(λ) < (>) 0 ⇐⇒ λ < (>) r3,

respectively, so r3 is a point of inflection. By simple inspection of (B.2), it is clear that

r1 < r3 < r2, which immediately implies that r1 is a local maximum and r2 a local minimum

of p in R. Finally, applying Lemma B.2 again, it follows that r3 > 1. This completes the

proof.

B.4 Analysis of the Stable Manifold

Let Φ : X → X be a map describing the nonlinear discrete dynamical system

xt+1 = Φ(xt), t = 0, 1, . . .(B.3)

and let x ∈ X be a point such that x = Φ(x), i.e., a stationary point. By the stable manifold

theorem, if Φ is continuously differentiable in a neighborhood N of x and A = DΦ(x) is

the Jacobian matrix of Φ, then there exists a neighborhood U ⊂ N , and a continuously

differentiable function φ : U → R
2, for which the matrix Dφ(x) has full rank 2. Moreover,

if {xt} is a solution to (B.3) with x0 ∈ U and φ(x0) = 0, then limt→∞ xt = x. The set of x

values satisfying φ(x) = 0 is called the stable manifold of the nonlinear dynamical system.

19Allowing for complex roots does not alter the results in any significant way, so that case is omitted.
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By Jordan decomposition, the matrix A of the linearized system (B.3) around x can be

written as A = B−1ΛB, where B is nonsingular and Λ is a diagonal matrix containing the

eigenvalues of A. Hence, a solution can be expressed recursively in terms of these matrices

(B.4) xt = x+B−1ΛtB (x0 − x).

It is clear that xt → x if and only if B(x0 − x) = w0, where w
i
0 = wj

0 = 0. Let x̂t := xt − x

denote deviations from stationary values for all t. This condition is equivalent to

(B.5)









b11 b12 b13

b21 b22 b23

b31 b32 b33

















ĉi0

ĉj0

k̂0









=









0

0

w









,

where b31ĉ
i
0 + b32ĉ

j
0 + b33k̂0 = w is a constant to be determined.

The solution (B.4) implies









ĉit

ĉjt

k̂t









=
1

det(B)









M11 M12 M13

M21 M22 M23

M31 M32 M33

















(λ1)
t 0 0

0 (λ2)
t 0

0 0 (λ3)
t

















b11 b12 b13

b21 b22 b23

b31 b32 b33

















ĉi0

ĉj0

k̂0









,

where Mij is the 3× 3 matrix whose elements are the principal minors of B and det(B) 6= 0.

Solving the system above yields

ĉit =
M13

det(B)
w(λ1)

t, ĉit =
M23

det(B)
w(λ1)

t, and k̂t =
M33

det(B)
w(λ1)

t,

which represents a stable trajectory for all variables, since 0 < λ1 < 1. Now, (B.5) can be

expressed as



b11 b12

b21 b22








ĉi0

ĉj0



 = −




b13

b23



 k̂0,

and assuming b11b22 − b12b21 6= 0, it follows that




ĉi0

ĉj0



 = −
1

b11b22 − b12b21




b22 −b12

−b21 b11








b13

b23



 k̂0,
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which yields

ĉi0 =
M31

M33
k̂0 and ĉj0 =

M32

M33
k̂0.

And solving for w again in (B.5), it follows that

w =

(

b31
M31

M33
+ b32

M32

M33
+ b33

)

k̂0.

In order to characterize the stable manifold, from the fact that BA = ΛB, we have









b11 b12 b13

b21 b22 b23

b31 b32 b33

















F i
1 F i

2 F i
3

F j
2 F j

1 F j
3

−1 −1 f ′









=









λ1 0 0

0 λ2 0

0 0 λ3

















b11 b12 b13

b21 b22 b23

b31 b32 b33









,

which we can solve for arbitrary nonzero values of b11, b22, and b33, therefore

b12 =

(

F i
1 − F i

2 − λ1

F j
1 − F j

2 − λ1

)

b11, b13 = −
1

(f ′ − λ1)

[

F j
3

(

F i
1 − F i

2 − λ1

F j
1 − F j

2 − λ1

)

+ F i
3

]

b11,

b21 =

(

F j
1 − F j

2 − λ2

F i
1 − F i

2 − λ2

)

b22, b23 = −
1

(f ′ − λ2)

[

F i
3

(

F j
1 − F j

2 − λ2

F i
1 − F i

2 − λ2

)

+ F j
3

]

b22,

b31 =

[

F j
1 − F j

2 − λ3

(F i
1 − λ3)(F

j
1 − λ3)− F i

2F
j
2

]

b33, and

b32 = −
1

F j
3

[

F i
3(F

j
1 − F j

2 − λ3)

(F i
1 − λ3)(F

j
1 − λ3)− F i

2F
j
2

+ (f ′ − λ3)

]

b33.

The stable manifold is the set of values (ci, cj , k) ∈ U such that φ(ci, cj , k) = 0 holds. By

the implicit function theorem, there exist functions πi and πj such that

φi (πi(k), πj(k), k) = 0, and φj (πi(k), πj(k), k) = 0.

Differentiating around k, we obtain

(B.6)






φi1 φi2

φj1 φj2











π′i(k)

π′j(k)




 = −






φi3

φj3




 ,

where φil, l = 1, 2, 3, denotes the partial derivative of φi with respect to the l-th argument,
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evaluated at the stationary point, and similarly for φjl . In fact, the derivatives of the stable

manifold at the stationary point are related to the coefficients of B as follows,

Dφ(x) =






φi1 φi2 φi3

φj1 φj2 φj3




 =






b11 b12 b13

b21 b22 b23




 .

This allows to solve for the derivatives of the policy functions from (B.6), yielding

π′i := π′i(k) = −

(
b13b22 − b12b23
b11b22 − b12b21

)

and π′j := π′j(k) = −

(
b11b23 − b13b21
b11b22 − b12b21

)

.

Equivalently,

π′i =

[

F i
3 +Eij(λ1)F

j
3

]

(f ′ − λ2)− Eij(λ1)
[

F i
3E

ji(λ2) + F j
3

]

(f ′ − λ1)

(f ′ − λ1)(f ′ − λ2)
[
1− Eij(λ1)Eji(λ2)

] ,

π′j =

[

F i
3E

ji(λ2) + F j
3

]

(f ′ − λ1)− Eji(λ2)
[

F i
3 + Eij(λ1)F

j
3

]

(f ′ − λ2)

(f ′ − λ1)(f ′ − λ2)
[
1− Eij(λ1)Eji(λ2)

] ,

where

Eij(λ1) :=
F i

1 − F i
2 − λ1

F j
1 − F j

2 − λ1
and Eji(λ2) :=

F j
1 − F j

2 − λ2

F i
1 − F i

2 − λ2
.

Note that an appropriate set of conditions must be imposed on the model’s parameters for

all previous values to be well defined, in particular f ′−λ1 6= 0, f ′−λ2 6= 0, F j
1−F

j
2−λ1 6= 0,

F i
1 − F i

2 − λ2 6= 0, and (F j
1 − F j

2 − λ1)(F
i
1 − F i

2 − λ2)− (F i
1 − F i

2 − λ1)(F
j
1 − F j

2 − λ2) 6= 0.

C Markov Strategies: Details and Proofs

C.1 Proof of Proposition 5.1

Let g be a continuous function satisfying (5.12). If g(k) has a stationary point k∗ > 0, then

Ψ
[
k∗, g(k∗), g2(k∗)

]
= Ψ(k∗, k∗, k∗) = 0.

But then, (5.10) and (5.11) imply

k∗ = g(k∗) = f(k∗)−Gi(k∗, k∗)−Gj(k∗, k∗).
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Given that the strategies Gi, Gj solve the first-order conditions (5.7), and taking into account

that U i, U j > 0 for all k ∈ (0, km],

αi

(
Gi(k∗, k∗)

)
[f ′(k∗)−Gj

1(k
∗, k∗)] = 1,

αi

(
Gi(k∗, k∗)

)
[f ′(k∗)−Gj

1(k
∗, k∗)] = 1,

where f ′(k∗)−Gi
1(k

∗, k∗) > 0, i = 1, 2, holds from optimality conditions.

C.2 Proof of Lemma 5.3

Given that P (λ) < 0 for any λ < λ∗1, it follows from (5.19) that Ψ∗
1 + Ψ∗

3 λ
2 < −Ψ∗

2 λ, and,

since Ψ∗
2 > 0, it also follows that

H∗
1 +H∗

2 λ
2 = −

1

Ψ∗
2

(
Ψ∗

1 +Ψ∗
3λ

2
)
> λ.

Denote by Q(λ) the quadratic polynomial on the left-hand side of the above equality. Note

that Q(λ∗1) = λ∗1 < 0, Q(−λ∗2) > 0, and Q is strictly increasing for every λ < λ∗1. Then, there

is a unique root for Q(λ) = 0 in (−λ∗2, λ
∗
1), which is − (|λ∗1λ

∗
2|)

−1/2. This value can be less or

greater than −1, depending on the parameters. Hence the lower bound is set to

∼
λ := max

{

−1,−(|λ∗1λ
∗
2|)

−1/2
}

,

so that λ < Q(λ) < 0 for every λ ∈ (
∼
λ, λ∗1). The existence of m1 > H∗

1 and m2 > H∗
2

satisfying λ < Q(λ) < m1 + m2λ
2 < 0 on that interval follows from continuity. This

completes the proof.

C.3 Proofs ommited from Theorem 5.4

In order to prove the continuity of T , we need a preliminary result.

Lemma C.1. Let {hn}n∈N be a sequence of functions in
∼

D|λ|(Iε) converging to h. Then, the

sequence h2n(k) := h(hn(k)) converges uniformly on Iε to h2(k) := h(h(k)).

Proof. Since the family of functions in
∼

D|λ|(Iε) is uniformly bounded and equicontinuous,

by the Arzelà-Ascoli theorem, hn converges uniformly on Iε. Given that h is continuous,

hence uniformly continuous, for every ε > 0, there is a δ > 0 such that k, k′ ∈ Iε with

|k − k′| < δ implies |h(k) − h(k′)| < ε. On the other hand, there is a positive integer N

such that |hn(k) − h(k)| < δ for all n > N and all k ∈ Iε. The combination of both results

immediately implies that for every ε > 0, there is some N such that |h(hn(k))−h(h(k))| < ε

for all n > N and all k ∈ Iε. Hence h
2
n(k) converges uniformly on Iε to h2(k).
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Lemma C.2. Let λ ∈ (λ∗2,
∼

λ) and suppose Iε is defined as in Lemma 5.3. Then, the operator

T :
∼

D|λ|(Iε) →
∼

D|λ|(Iε) is continuous in the sup norm.

Proof. Let hn be a sequence in
∼

D|λ|(Iε) that converges to h. By a similar argument given in

the main text, there exists m′
2 > 0 such that

|(Thn)(k) − (Th)(k)| =
∣
∣H[k, h2n(k)] −H[k, h2(k)]

∣
∣

≤ m′
2

∣
∣h2n(k)− h2(k)

∣
∣

≤ m′
2|λ| |hn(k) − h(k)| ,

for all n and all k ∈ Iε. Then, for some 0 < δ < ε/(m′
2|λ|), if ‖hn − h‖ < δ, we have

‖Thn − Th‖ = sup
k∈Iε

∣
∣H[k, h2n(k)] −H[k, h2(k)]

∣
∣

≤ m′
2|λ| |hn(k)− h(k)|

≤ m′
2|λ|δ < ε,

which proves that T is continuous.
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Petruşel, A., G. Petruşel, and C. Urs (2013). Vector-valued metrics, fixed points and coupled

fixed points for nonlinear operators. Fixed Point Theory and Applications 2013 (1), 1–21.

Pichler, P. and G. Sorger (2009). Wealth distribution and aggregate time-preference. Journal

of Economic Dynamics and Control 33 (1), 1–14.

Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave N -person

games. Econometrica 3 (33), 520–534.

Sorger, G. (2002). On the long-run distribution of capital in the Ramsey model. Journal of

Economic Theory 105 (1), 226–243.

Sorger, G. (2008). Strategic saving decisions in the infinite-horizon model. Economic The-

ory 36 (3), 353–377.

Stern, M. (2006). Endogenous time preference and optimal growth. Economic Theory 29 (1),

49–70.

Stokey, N., R. E. Lucas, and E. C. Prescott (1989). Recursive Methods in Economic Dynam-

ics. Cambridge, MA: Harvard University Press.

54
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