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Abstract: Clinical isolates of Mycobacterium tuberculosis and Mycobacterium bovis are 28 

differentially susceptible to 2-Thiophen Hydrazide (TCH); however its mechanism of action or the 29 

reasons for that difference are unknown. We report herein that under our experimental conditions, 30 

TCH inhibits M. tuberculosis in solid but not in liquid medium, and that in spite of resembling 31 

Isoniazid and Ethionamide, it does not affect mycolic acid synthesis. To understand the mechanisms 32 

of action of TCH we isolated M. tuberculosis TCH resistant mutants which fell into two groups; one 33 

resistant to TCH and Isoniazid but not to Ethionamide or Triclosan, and the other resistant only to 34 

TCH with no, or marginal, cross resistance to Isoniazid. A S315T katG mutation conferred 35 

resistance to TCH while katG expression from a plasmid reduced M. tuberculosis MIC to this drug, 36 

suggesting a possible involvement of KatG in TCH activation. Whole genome sequencing of 37 

mutants from this second group revealed a single mutation in the alkylhydroperoxide reductase 38 

ahpC promoter locus in half of the mutants, while the remaining contained mutations in dispensable 39 

genes. This is the first report of the genetics underlying the action of TCH and of the involvement 40 

of ahpC as the sole basis for resistance to an anti-tubercular compound. 41 

 42 

Keywords: 2-Thiophen Carboxylic Acid Hydrazide, Mycobacterium tuberculosis, Mycobacterium 43 

bovis, Non Tuberculous Mycobacteria, Alkylhydroperoxidase, TCH resistant mutants. 44 

 45 
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Introduction. 47 

The differentiation between slow growing mycobacteria has been an issue for the microbiology 48 

diagnostic and research laboratories for many years. Prior to the advent of nucleic acid 49 

amplification techniques, the differentiation of Mycobacterium tuberculosis and Mycobacterium 50 

bovis from the Non Tuberculous Mycobacteria (NTM) was based on the utilization of selective 51 

inhibitors, such as p-nitrobenzoic acid (PNB); this latter compound has been used in multiple 52 

formats ranging from simple test tube assays to radiometric assays (Collins and Levett 1989) and 53 

more recently a microscopic-observation-drug-susceptibility (MODS)-based technique (Agarwal, 54 

Dhole et al. 2014). Along with the PNB assay, 2-Thiophen Hydrazide (TCH) was useful and 55 

reliable in differentiating M. tuberculosis from M. bovis; while M. bovis strains (including the 56 

vaccine BCG strain) grew up to TCH concentrations of 1 µg/ml, M. tuberculosis strains were able 57 

to grow with up to 5 µg/ml (Kaeppler 1964, Vestal and Kubica 1967).  The test was widely used 58 

due to its simplicity, only requiring culturing of the isolate on Lowenstein-Jensen medium 59 

containing TCH at the designated concentrations. However, a classification of M. tuberculosis 60 

clinical strains discriminated between “Asian “ (or “Indian”) strains and “European” or “classical” 61 

strains on the basis of TCH susceptibility (Grange, Aber et al. 1977, Grange, Aber et al. 1978); 62 

puzzlingly while Asian strains displayed  an increased sensitivity to TCH (between 1 and 5 µg/ml), 63 

“classical” strains were resistant to 5 µg/ml of TCH (Grange, Yates et al. 1985). The reason for the 64 

difference between Asian and classical strains was never deciphered. Importantly the claim that the 65 

TCH test could not be used on M. tuberculosis strains that were resistant to the cornerstone TB drug 66 

Isoniazid (4-Pyridinecarboxylic acid hydrazide, INH) led Yates and collaborators to study the 67 

relationship between resistance to both INH and TCH in M.tuberculosis strains by isolating 68 

spontaneous mutants and addressing the existence of cross-resistance (Yates, Grange et al. 1984). 69 

Their study concluded that the TCH assay was a valid method for subdividing M. tuberculosis 70 

strains for epidemiological purposes regardless of the INH resistance state since clinical strains very 71 
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rarely showed such cross-resistance in vivo (Yates, Grange et al. 1984). In summary, although TCH 72 

was used for more than fifty years in mycobacteriology laboratories as part of a simple culture test 73 

not only to differentiate M. tuberculosis from M. bovis but also to subdivide M. tuberculosis strains, 74 

there is a lack of knowledge on the rationale for its use and its mechanism(s) of action.  Moreover, 75 

susceptibility to TCH in M. bovis and M. tuberculosis strains is in itself an intriguing difference 76 

between two species that are so closely related and that show highly comparable susceptibility to 77 

other anti-tubercular drugs with the exception of pyrazinamide (Scorpio and Zhang 1996). The 78 

differential susceptibility to TCH may reflect metabolic or even target differences between 79 

members of the genus Mycobacterium.  80 

In order to gain insight in the mechanism(s) of action of TCH we herein describe the isolation and 81 

characterization of M. tuberculosis mutants resistant to TCH; we also report on the identification of 82 

katG and ahpC as genes involved in the TCH resistance phenotype, two genes that play important 83 

roles in resistance to INH. Although the mechanism(s) of action of the drug remain to be elucidated, 84 

we herein define a framework to decipher the mechanism of action of TCH in M. tuberculosis and 85 

M. bovis.  86 

 87 

Materials and Methods. 88 

Bacterial strains, growth media and growth conditions. M. tuberculosis H37Rv, M. bovis var 89 

BCG Pasteur and Mycobacterium smegmatis mc2155 were from laboratory stocks. An INH resistant 90 

(INHR) M. tuberculosis clinical isolate (INM27833, bearing a Ser315Thr mutation in  katG as 91 

confirmed by DNA sequencing) was kindly provided by Dr. N. Simboli (Mycobacteriology service, 92 

National Institute for Microbiology “Carlos G. Malbrán”, Buenos Aires, Argentina); 93 

Mycobacterium avium, Mycobacterium marinum and Mycobaterium kansasii clinical isolates 94 

identified to species level at a national reference center were used as NTM species and were the 95 
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generous gift of Dr. N. Morcillo (Mycobacteriology Service, Hospital Cetrángolo, Buenos Aires, 96 

Argentina). M. tuberculosis H37Rv, its derivative strains obtained through this work, M. bovis var 97 

BCG strain Pasteur and NTM were propagated in Middlebrook 7H9 broth medium supplemented 98 

with 0.5% glycerol, 10% ADS (Albumin- Dextrose NaCl supplement) and 0.05% (w/v) Tween 80 99 

(7H9-ADS-Gly-Tween for short unless otherwise stated). Middlebrook 7H9-ADS-Gly with the 100 

addition of agar 1.5% (w/v) was routinely used as solid media. Escherichia coli strain DH5α was 101 

used for cloning experiments and was grown in Luria–Bertani (LB) broth or agar medium. Culture 102 

media were supplemented with kanamycin (20 µg/ ml) when required. 103 

All chemicals and solvents were from Sigma- Aldrich (Mo) unless stated differently. 104 

 105 

Determination of TCH Minimum Inhibitory Concentrati on. Cultures of each mycobacterial 106 

species were started from fresh Middlebrook 7H9-ADS-Gly plates; to this end a loop full of growth 107 

was taken from each plate, resuspended in 7H9-ADS-Gly 0.05% Tween 80 (with the exception of 108 

M. smegmatis for which 0.5% Tween was used) and incubated at 37°C (except for M. marinum 109 

which was incubated at 30°C) for 5 days (M. smegmatis, M. marinum), 7 days (M. kansasii), or  30 110 

days (M. tuberculosis, M. bovis var BCG and  M. avium). The cultures were kept 1-2 h at room 111 

temperature with no agitation to allow clumps to settle; afterwards aliquots were withdrawn and 112 

diluted (1/50 for M. smegmatis, 1/10 for the remaining species) in fresh 7H9-ADS-Gly medium. 113 

Cultures were incubated at 37°C (except for M. marinum which was incubated at 30°C) with 114 

shaking until saturation. Colony Forming Units (CFU) were determined by plating ten-fold 115 

dilutions of each strain on 7H9-ADS-Gly solid medium, dilutions calculated to contain 103- 104 116 

CFU were plated on the same solid medium containing TCH (prepared in distilled water at 100 117 

mg/ml) at increasing concentrations ranging from 0.5 to 100 µg/ml. Plates were incubated at 118 

appropriate conditions as described above before visual inspection and colony counting. The drug 119 
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concentration at which CFUs in the presence of the drug were 0.1% of the CFUs present in medium 120 

without drug was taken as MIC 99.9.  121 

 122 

Isolation of spontaneous TCH resistant mutants. Spontaneous TCH-resistant (TCHR) mutants 123 

were isolated from five independent cultures of M. tuberculosis H37Rv started from ~ 106 CFU/ml 124 

and grown in 7H9-ADS-Gly supplemented with 0.05% Tween 80. The culture was incubated with 125 

shaking at 37°C until saturation. One hundred µl aliquots of tenfold serial dilutions (100- 10-3) of 126 

each culture were plated on 7H9-ADS-Gly supplemented with 1.5% (w/v) agar in the presence of 127 

TCH at 25, 50 and 100 µg/ml. Plates with no TCH were used to determine total CFUs by plating 128 

100 µl aliquots of the 10-5-10-8 dilutions followed by incubation at 37°C for 30 days. Ten colonies 129 

arising on plates from each culture at different TCH concentrations were streaked on fresh solid 130 

media devoid of drug and tested to confirm their MIC to TCH. 131 

 132 

Characterization of TCHR mutants. The isolated M. tuberculosis mutants were analyzed for 133 

growth features (colony morphology and size) and growth rate in 7H9-ADS-Gly-Tween liquid 134 

broth. Resistance to other anti-tubercular drugs inhibitors of mycolic acid biosynthesis was 135 

analyzed by plating dilutions containing ≈ 103 CFU of each mutant on 7H9-ADS-Gly agar plates 136 

containing INH (0.02; 0.05; 0.1; 0.25; 0.5 and 1 µg/ml); Ethionamide (ETH) or Triclosan (TRC), at 137 

0.5; 1.0; 2.5; 5 and 10 µg/ml. CFUs were determined after incubation for 30 days at 37°C. 138 

 139 

Analysis of the ‘de novo’ synthesis of lipids.  140 

In vivo labeling, extraction and analysis of lipids from liquid cultures of M. tuberculosis were 141 

performed as described by Vilchéze et al. (Vilcheze, Morbidoni et al. 2000). Briefly cultures were 142 
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grown in 7H9-ADS-Gly-Tween broth at 37°C with agitation up to mid-log phase and treated for 18 143 

h with the chosen concentrations of TCH (50 or 100 µg/ml, that is 10x and 20x MIC values) or INH 144 

(0,5 µg/ml corresponding to 10x MIC value); at this point 1 µCi/ ml of [1-14C] acetate was added to 145 

each culture followed by further incubation for 18 h. When the influence of the time of contact with 146 

the drug was evaluated, cultures were incubated with TCH at the chosen concentrations for 24 or 48 147 

h. In order to perform “in vivo” labeling on solid medium we used a protocol described by 148 

Nandakumar et al. (Nandakumar, Nathan et al. 2014). Briefly, 1 ml of M. tuberculosis H37Rv 149 

culture (O.D.600 ~ 1.0) was centrifuged and the bacterial pellet transferred onto a nitrocellulose disk 150 

placed on top of plates containing solid 7H9-ADS-Gly medium; after 3 days of incubation at 37°C 151 

the disk was transferred to a fresh plate of the same solid medium containing 50 µg/ml TCH. After 152 

further 48 h of incubation, a 5 µl aliquot of [1-14C] acetate diluted in 45 µl of 7H9 broth was 153 

carefully added to the surface of the disk. After 24 h of incubation the disk was removed and placed 154 

into a centrifuge tube containing 1 ml of ice-chilled 7H9 broth, followed by gentle shaking by 155 

vortex and removal of the disk. The resulting 14C-labelled cells were harvested by centrifugation at 156 

5,000 rpm, washed twice with distilled water and kept frozen until use. The extraction and analysis 157 

of fatty acids and mycolic acids was done as follows:  14C-labelled control (no drug added) and 158 

treated cells were subjected to alkaline hydrolysis in 15% (w/v) tetrabutylammonium hydroxide 159 

(TBAH, Fluka) at 105°C for 8 h, followed by the addition of 2 ml of CH2Cl2 and 100 µl of CH3I. 160 

The entire reaction mixture was then mixed by rotation at room temperature for 1 h and centrifuged, 161 

and the lower organic phase was carefully removed, washed with water, and dried at 55°C under a 162 

nitrogen stream. The resulting pellet was extracted with ethyl ether and dried again before adding a 163 

small volume of CH2Cl2. Aliquots (10 µl, 10% of the total extract and representing ~ 40,000 cpm) 164 

containing the obtained mixtures of fatty acid methyl esters (FAMEs) and mycolic acid methyl 165 

esters (MAMEs) were subjected to analytical one-dimensional thin layer chromatography (TLC), on 166 

silica gel plates (5735 silica gel 60 F254; Merck) using hexane: ethyl acetate 95:5 v/v for three 167 
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developments. Similarly, one-dimensional argentation TLC was carried on using silica gel plates 168 

dipped in AgNO3 to separate saturated from unsaturated fatty acids, in this case petroleum 169 

ether/diethyl ether (85:15 v/v) was used as eluent for three runs. For two-dimensional silver ion 170 

argentation TLC (2D-TLC), an aliquot of each sample containing the mixture of FAMEs and 171 

MAMEs (≈ 80,000cpm each) was applied to silica gel plates previously impregnated with AgNO3 172 

(80% of the length of the plate). The plates were developed in the first direction (without argentic 173 

impregnation) twice with hexane/ethyl acetate (95:5 v/v) and, after rotating the plate, in the second 174 

direction (containing silver ions) three times with petroleum ether/diethyl ether (85:15 v/v). In all 175 

cases detection of radiolabeled species was done by autoradiography. The autoradiograms were 176 

obtained after exposure at -80°C for 2-3 days on X-ray film. 177 

 178 

Genome DNA preparation and whole genome sequencing of TCHR mutants.  179 

DNA was extracted from cultures of selected mutants according to standard lab protocols; in brief 180 

10% (w/v) glycine was added to fresh late log phase mycobacterial cultures and the incubation 181 

continued for 12 h.  One ml from fresh cultures of each TCHR mutant and the parental strain were 182 

transferred to a 2 ml microcentrifuge tube, cells were inactivated by placing the suspensions in a 183 

heating block at 80°C for 1 h; after cooling down, 70 µl 10% SDS solution and 50 µl of Proteinase 184 

K stock (10 mg/ml) were added to each cell suspension. The tubes containing the samples were 185 

gently inverted a few times until viscosity was evident. Afterwards, the tubes were incubated at 186 

60°C for 1 h. After this time, 100 µl 5M NaCl and 100 µl 10% CTAB (both solutions pre-warmed 187 

at 60°C) were added to the Proteinase K-SDS treated cell suspensions and the incubation continued 188 

for 30 min. When the treatments were completed, the cell suspensions were briefly frozen (15 min) 189 

at -80°C followed by 15 min incubation at 60°C and frozen again at -80°C for 30 min. The frozen 190 

samples were warmed to room temperature and 700 µl of chloroform/isoamyl alcohol (24:1 v/v) 191 

was added to each tube; samples were inverted gently for 30 sec or until phase homogeneity. The 192 
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tubes were then centrifuged at 13,000 rpm at room temperature and the resulting aqueous layer was 193 

gently withdrawn with a large bore tip to prevent DNA shearing and transferred to a new 194 

microcentrifuge tube. The DNA was precipitated by adding 0.1 vol 3M sodium acetate (pH 5.2) and 195 

1 vol isopropanol to the aqueous fractions. The tubes contents were slowly mixed by inversion and 196 

placed at 48°C for 1h. Upon centrifugation at 12,000 rpm for 30 min at room temperature the 197 

supernatant was removed, and the pellet DNA was gently washed twice with cold 70% ethanol. 198 

After a new centrifugation step the ethanol was removed and the pellet allowed to dry. The genomic 199 

DNA was dissolved overnight in TE buffer and kept at -20°C until use. 200 

 201 

Genome sequence analysis.  The Illumina Genome Analyzer IIx system was used for whole 202 

genome sequencing (WGS). DNA was fragmented by sonication, end-repaired and indexed 203 

adapters ligated. Libraries were size selected on 2.5% TAE agarose gels. Library material was 204 

isolated from gel slices using the QiaQuick MinElute Gel Extraction kit (Qiagen). Purified libraries 205 

were quantified using a Qubit™ fluorometer (Invitrogen) and a Quant-iT™ double-stranded DNA 206 

High-Sensitivity Assay Kit (Invitrogen). Clustering and sequencing of the material was carried out 207 

as per the manufacturer's instructions, v2 Single Read Cluster Kits and v3 SBS kits (Illumina) were 208 

utilized for all sequencing.  209 

Whole genome sequencing data was aligned using the published M. tuberculosis H37Rv reference 210 

genome (NC_000962, from NCBI) with bowtie2 (Langmead and Salzberg 2012). Samtools (Li, 211 

Handsaker et al. 2009) and bcftools (https://github.com/samtools/bcftools) were used to predict 212 

single nucleotide variants (SNV). Each SNV had to be supported by at least 4 uniquely mapped 213 

reads at the position, with a SNV quality greater than 90, which corresponds to a false positive rate 214 

(FPR) lower than 10e-9.  215 

 216 
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Cloning of M. tuberculosis katG.  PCR amplification of M. tuberculosis katG was performed using 217 

the following primers: 5´-GAATTC GTGCCCGAGCAACACCCACC-3´ (katG Forward) and 5´-218 

AAGCTT CCGAATCAGCGCACGTCGAAC- 3´ (katG Reverse) where the underlined bold 219 

sequence corresponds to sites for restriction enzymes EcoRI and HindIII respectively, using M. 220 

tuberculosis chromosomal DNA as template. The amplification product was purified from agarose 221 

gels and cloned using the pGEM-T Easy cloning vector (Invitrogen) followed by electroporation 222 

into E. coli. Clones containing inserts of the expected size (as determined by restriction enzyme 223 

digestion) were sequenced at a commercial facility and inserts that showed no mutations were 224 

cloned into the integrative shuttle E. coli-mycobacteria vector pMV361. One such construct was 225 

propagated in E. coli and upon plasmid preparation, introduced into M. smegmatis mc2155 and M. 226 

tuberculosis H37Rv by electroporation following standard protocols (Snapper, Melton et al. 1990). 227 

 228 

Analysis of TCH stability. 229 

Sample preparation. TCH was added to 7H9-ADS-Gly (final concentration 5 µg/ml) and 230 

incubated at 37 °C for 72 h. Then 1 ml of the mixture was extracted with ethyl acetate (3 x 150 µl) 231 

and the combined organic extracts were evaporated under N2 stream, diluted with CHCl3 up to 1 232 

mg/ml final concentration and submitted for GC-MS analysis.  A solution of TCH in distilled water 233 

was also prepared (5 mg/ml) and incubated, extracted and diluted following the same procedure 234 

described above.  A sample of pure TCH dissolved in CHCl3 was also used as a control.  235 

GC-MS analysis. The analysis was performed using a Shimadzu GC-MS QP 2010 Plus equipped 236 

with a SPB-1 capillary column (30 m, 0.25 mm i.d., 0.25 µm film thickness). The carrier gas was 237 

helium, at a flow rate of 1 ml/min. Column temperature was initially 50 °C for 3 min, then 238 

gradually increased to 300 °C at 10 °C/ min, and kept at that temperature for 5 min. For GC-MS 239 

detection an electron ionization system was used with ionization energy of 70 eV, with full scan 240 
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between 60 to 600 m/z. Injector and detector temperatures were set at 250 and 230 °C, respectively. 241 

The injection volume was 1 µl in split mode (1:5). 242 

 243 

1H NMR analysis. Spectra were acquired on a Bruker Avance II 300 MHz (75.13 MHz) using D2O 244 

as solvent of a solution of pure TCH at a concentration of 5mg/ml (final volume 500 µl). Chemical 245 

shifts (δ) were reported in ppm downfield from tetramethylsilane (TMS) at 0 ppm.  246 

 247 

Chemical oxidation of TCH and INH by Mn(III) pyroph osphate.  The chemical oxidation of 248 

TCH was studied using manganese (III) pyrophosphate as oxidant following the protocols described 249 

by Nguyen et al. (Nguyen, Claparols et al. 2001, Nguyen, Quemard et al. 2002).  Briefly, the 250 

reaction was performed in 100 mM phosphate buffer (pH 7.5) containing 4mM manganese (III) 251 

pyrophosphate, with 2mM NAD+ as acceptor. Both INH (as a positive control) and TCH were used 252 

at 2mM. The mixtures were stirred at room temperature for 20 min and the reaction products run on 253 

TLC silica plates with ethanol in the case of TCH, or ethyl acetate/ethanol (90/10) in the case of 254 

INH, as mobile phase. Afterwards, the developed plates were inspected under UV light (254 nm) or 255 

using a p-anisaldehyde solution (3.7 ml of p-anisaldehyde in a mix of 135 ml of absolute ethanol, 5 256 

ml of concentrated sulfuric acid and 1.5 ml of glacial acetic acid); in this case the TLC plates were 257 

dipped in the solution followed by heating at 120 °C for 3 minutes. 258 

259 
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Results. 260 

TCH is active only on members of the M. tuberculosis complex. Growth in the presence of TCH 261 

differentiates between M. tuberculosis and M. bovis clinical isolates (MIC of 5 µg/ml and 1 µg/ml, 262 

respectively); however little is known on the molecular basis for this phenotype, nor as to how TCH 263 

works in these species. In order to address these questions we first tested TCH on different 264 

mycobacterial species on 7H9-ADS-Gly agar, which is routinely used as solid chemically defined 265 

media as opposed to the standard Lowenstein-Jensen (L-J) medium generally used in most clinical 266 

mycobacteriology laboratories. Our results showed that TCH displayed the same level of activity on 267 

Middlebrook solid defined media as on standard L-J media, with wild type M. bovis and M. bovis 268 

var BCG being inhibited by the presence of 1 µg/ml and M. tuberculosis H37Rv being inhibited by 269 

5-10 µg/ml. Longer incubation times (60 days) did not reveal mycobacterial growth. NTM showed 270 

no inhibition of growth even in the presence of very high TCH concentrations (100 µg/ml) as has 271 

widely been observed in clinical mycobacteriology settings. However, using the fast growing NTM 272 

M. smegmatis we observed a transient inhibition of growth in solid medium at TCH concentrations 273 

higher than 5 µg/ml and up to 100 µg/ml; while growth on plates containing high concentrations of 274 

TCH was marginal after 3 days of incubation at 37°C, colonies started to appear afterwards 275 

reaching comparable numbers than the control plates by day 12 (Fig. 1). This behavior was not seen 276 

when testing other NTM, which grew at all times unabated. 277 

 278 

KatG is involved in resistance to TCH in M. tuberculosis. As mentioned above, early reports 279 

indicated that M. tuberculosis INHR strains could also be TCHR (Yates, Grange et al. 1984), an 280 

observation also made by Parsons and colleagues for M. bovis (Parsons, Brosch et al. 2002). INH 281 

and TCH are also structurally similar, both bearing a hydrazide group (Fig. 2A). These 282 

observations, in the context of current understanding on the basis of the mechanism of action of 283 
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INH (summarized in Fig 2A and 2B), led us to hypothesize that the catalase/peroxidase KatG could 284 

be involved in the resistance to TCH. In first instance we tested the susceptibility of M. tuberculosis 285 

INM 27833, a clinical M. tuberculosis INHR strain having a S315T mutation affecting the katG 286 

catalase/peroxidase. Our results indicated that this strain was not affected by TCH up to 50 µg/ml 287 

(Fig. 2C and Table 1). Conversely a M. tuberculosis H37Rv strain containing an extra copy of M. 288 

tuberculosis katG cloned into the integrative vector pMV361 was more susceptible to TCH showing 289 

a 2-fold decrease in MIC value (Fig. 2D and Table 1). Based on those results, we next tested 290 

whether a non- enzymatic oxidizing method already proven for INH -incubation with Mn(III) 291 

pyrophosphate as described by Nguyen et al, (Nguyen, Claparols et al. 2001, Nguyen, Quemard et 292 

al. 2002)- would cause a comparable effect on TCH. That was indeed the case, with a rapid in vitro 293 

conversion of both INH and TCH under our experimental conditions (Fig S1). Taken as a whole, 294 

these results suggest that -like INH- TCH may be activated by KatG, supporting earlier phenotypic 295 

observations (Yates, Grange et al. 1984, Parsons, Brosch et al. 2002). However, direct evidence of 296 

the KatG-mediated needs to be confirmed. 297 

 298 

Mycolic acid biosynthesis is not affected by TCH in M. tuberculosis and M. bovis BCG. Since 299 

TCH is structurally related to INH, we next set out to study if they share the same molecular target. 300 

It is well known that INH affects mycolic acid biosynthesis through inhibition of the enoyl-ACP-301 

reductase InhA, one of the components of the mycobacterial FASII system.  To test whether TCH 302 

targeted mycolic acid biosynthesis, we performed M. tuberculosis and M. bovis BCG Pasteur “in 303 

vivo” labeling using the radioactive fatty acid precursor [1-14C] acetate. To this end, mid-log 304 

cultures (OD600 nm≈ 0.7) were left untreated or treated for 24 h with 2.5 and 5-fold the MIC of TCH 305 

(25 µg/ml and 50 µg/ml); after this, the radioactive precursor was added and the culture was 306 

incubated for another 24 h before cell collection and fatty acid and mycolic acid extraction. The 307 

analysis of mycolic acids and fatty acids by mono-dimensional TLC showed no change in the 308 
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intensity or composition of the labeled mycolic or fatty acids at either drug concentration even 309 

when longer exposure times to the drug (two doubling times) were used (Fig. 3);  in an identical 310 

manner monodimensional argentation TLC showed no changes in mycolic acids, saturated or 311 

unsaturated fatty acids (data not shown). Careful scrutiny of radiolabeled fatty acids and mycolic 312 

acids extracted from the TCH-treated M. tuberculosis cultures by 2D-TLC showed no change of the 313 

mycolic acid pattern, nor any novel spots that could be related to an effect on their biosynthesis 314 

(data not shown). In all cases treatment with INH (0.5 µg/ml) used as a control gave the expected 315 

results causing the well-known loss of mycolic acids and the hallmark accumulation of fatty acids. 316 

Taken together, these results suggest a mode of action for TCH that is distinct from that of INH and 317 

ETH. 318 

 319 

TCH lacks activity in liquid culture under standard  growth conditions. While assaying the 320 

effects of different exposure times to the drug in 7H9-ADS-Gly-Tween medium, we surprisingly 321 

found no noticeable changes on growth rate (judged by spectrophotometric measurements) of TCH 322 

treated cultures even when very high concentrations of drug (up to 100 µg/ml) and longer times of 323 

exposure (up to 72 h) were used (Fig. 4). The presence of agar and Tween are the only differences 324 

between liquid and solid Middlebrook 7H9-ADS-Gly, thus we ruled out a contribution of the 325 

tensioactive agent Tween 80 by following growth at OD600nm in medium devoid of it. Our results 326 

again showed that TCH was inactive regardless of the presence or absence of the tensioactive, 327 

hence ruling it out as a contributing factor to the lack on TCH activity in liquid medium (data not 328 

shown). We next hypothesized that differences in oxygen availability between liquid and solid 329 

media may play a role in the activity of TCH or through metabolic changes of the mycobacterial 330 

cells. To test this, cultures were grown under low agitation (30 rpm) conditions on 7H9-ADS-Gly-331 

Tween in the presence of TCH (100µg/ml). However, we again failed to detect any difference in 332 

growth rate under the mentioned conditions as judged by turbidity measurements (data not shown). 333 
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The same experiment using static cultures gave comparable results, that is, no activity of TCH in 334 

liquid medium was detected. Although resuspension of cultures grown in static conditions did not 335 

yield accurate measurements due to mycobacterial aggregation, it was clear that the turbidity of 336 

TCH treated cultures was comparable to control cultures while INH treated cultures showed a 337 

decline in turbidity (data not shown).  Preliminary results showed that an intermediate concentration 338 

of TCH (25 µg/ml) did not alter growth of cultures containing a reduced number of bacilli (2x105 or 339 

2x106 bacilli/ml) (data not shown). Based on those puzzling results and in order to circumvent this 340 

problem, we next tested the activity of TCH on the synthesis of mycolic acids in M. tuberculosis 341 

growing on solid medium by following a protocol recently described in which the addition of the 342 

radioactive precursor was added on top of small quantities of cells (roughly 2x107 CFU) growing on 343 

solid medium (Nandakumar, Nathan et al. 2014). In spite of this strategy, we could not detect any 344 

difference in the pattern of fatty acids and mycolic acids regardless of the presence or absence of 345 

TCH; however, INH used as a control totally inhibited mycolic acid synthesis in M. tuberculosis as 346 

expected (Fig. 5). In summary, the inhibitory activity of TCH was restricted to solid media under 347 

our assay conditions and did not affect mycolic acid synthesis.  348 

 349 

Lack of activity of TCH in liquid medium is not due to inactivation in liquid medium. An 350 

extensive literature search did not reveal any report on TCH stability. In order to assess whether 351 

liquid media may favor chemical alterations in TCH leading to lack of inhibitory activity, we 352 

examined the stability of the drug under the assay conditions by dissolving TCH in 7H9-ADS-Gly 353 

media at 5mg/ml; additionally, a sample of the drug dissolved in water was prepared at the same 354 

concentration for comparative purposes. Both samples were incubated at 37 °C for 72h, and 355 

afterwards, extracted with ethyl acetate, evaporated, resuspended in CHCl3 and analyzed by GC-356 

MS. The chromatogram of the TCH in water showed only one main peak at 16.43 min without any 357 

other peaks that would be evidence of decomposition (Fig. S2A). TCH dissolved in 7H9-ADS-Gly 358 
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showed a main peak at the same retention time, with only traces of compounds belonging to the 359 

media, demonstrating the stability of TCH under the assay conditions (Fig. S2A). The identity of 360 

the main peak was corroborated by comparing the mass spectra of the standard drug (Fig. S2B) that 361 

matched the NIST database spectrum (Fig. S2C). The GC-MS analysis provided evidence of the 362 

stability of TCH in aqueous media, but the ionization method may have prevented the detection of a 363 

polar or thermally sensitive product; therefore we complemented the analysis by 1H NMR. A 364 

sample of TCH (5mg/ml) in D2O was incubated a 37 °C for 72h and the spectra were acquired 365 

every 24 h. Our results clearly showed that the spectra did not acquire any new signal that could 366 

indicate the presence of a decomposition product (Fig. S3). Thus, the chemical stability of TCH 367 

does not seem to change in aqueous solution and rules it out as a factor underlying the lack of TCH 368 

activity in liquid medium.  369 

 370 

Whole genome sequencing identifies ahpC mutations conferring resistance to TCH.  Because 371 

of the specific in vitro conditions in which TCH showed activity, and to reveal the target(s) for 372 

TCH, we isolated spontaneous TCHR M. tuberculosis mutants on 7H9-ADS-Gly agar plates 373 

containing TCH at 25, 50 and 100 µg/ml. Mutants were obtained at a frequency of 10-7- 10-8. TCH 374 

resistant mutants fell into two groups depending on the cross resistance to INH displayed. The first 375 

group showed cross resistance to INH (MIC 0.5µg/ml) and had a high resistance to TCH 376 

(>100µg/ml) with the exception of mutant TCH25.1 which showed a medium level of resistance to 377 

TCH (25µg/ml). The second group had no cross resistance to INH and displayed a wide range of 378 

resistance to TCH (25 to >100µg/ml) (Table 2). Colony morphology and growth rates of the TCHR 379 

mutants were similar to the ones of the parental strain (data not shown).   380 

To gain understanding on the molecular mechanism(s) of action of TCH we performed whole WGS 381 

on 7 mutants from our set of TCHR, INHS mutants (obtained from independent cultures) and mutant 382 
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TCHR25.1 which was of interest due to its resistance phenotype. Our results identified a mutation 383 

(c-81t) in the promoter region of Rv2428 (ahpC), encoding an alkyl hydroperoxidase in half (4/8) of 384 

the mutants sequenced. Interestingly, this mutation has previously been shown to occur in INHR 385 

resistant strains but only in association with mutations causing loss or reduction of KatG function 386 

(Vilcheze and Jacobs 2014). In addition, it has previously been shown that this mutation caused a 2-387 

fold increase in ahpC expression (Zhang, Dhandayuthapani et al. 1996, Heym, Stavropoulos et al. 388 

1997). Thus, increased expression of AhpC seems to confer increased resistance to TCH with no 389 

cross resistance to INH in M. tuberculosis. The remaining mutations in the TCHR, INHS mutants 390 

occurred in the following genes: glcB (Rv1837c), Rv2731, ppe52 (Rv3144c), and the intergenic 391 

region between genes Rv3716c and Rv3717 (Table 3). Interestingly, mutant TCH R25.1 displayed 392 

two mutations, one affecting gene Rv3220c, encoding a sensor of a two-component histidine kinase 393 

system, and a mutation upstream of Rv0312 that encodes a proline-threonine-rich protein of 394 

unknown function. Some of the above mentioned genes have been shown to be non-essential by 395 

transposon mutagenesis  (Sassetti, Boyd et al. 2001) or by gene knock-out (Parish, Smith et al. 396 

2003);  thus their role in resistance to TCH is not obvious.  397 

 398 

Discussion.  399 

Conditions affecting TCH activity on M. tuberculosis. The last two decades revealed the 400 

mechanism of action of several anti-tubercular drugs including two important pro-drugs, INH and 401 

ETH (2-ethylpyridine-4-carbothioamide). Through a combination of genetics and biochemistry it 402 

was shown that INH is activated by the non-essential mycobacterial catalase/peroxidase encoded by 403 

the gene katG (Heym, Alzari et al. 1995, Heym, Saint-Joanis et al. 1999). Mutations in katG 404 

account for more than 90% of the INH resistant phenotypes of clinical M. tuberculosis strains 405 

(Jagielski, Bakula et al. 2015; Torres, Paul et al. 2015).  A combined interdisciplinary approach 406 
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spanning biochemistry, genetics, chemistry and physics revealed the mechanism of action of INH 407 

(Vilcheze and Jacobs 2007). Once activated, INH forms a variety of unstable radicals one of which 408 

reacts non enzymatically with NAD+ and NADP targets InhA, a vital acyl-ACP enoyl reductase 409 

involved in mycolic acid biosynthesis (Dessen, Quemard et al. 1995, Quemard, Sacchettini et al. 410 

1995). These extremely long α-alkyl β-hydroxy fatty acids are essential to maintain the 411 

mycobacterial cell wall structure (Vilcheze, Morbidoni et al. 2000; Barkan, Liu et al. 2009). 412 

Although activated by a different enzyme, ETH is also a pro-drug and an inhibitor of inhA through 413 

the same mechanism of action (Banerjee, Dubnau et al. 1994).  414 

As is widely known in clinical mycobacteriology laboratories, TCH, an hydrazide structurally 415 

related to INH and ETH, was not active on NTM (MIC≥100); however, we observed that M. 416 

smegmatis was able to grow at 100 µg/ml TCH albeit with a significant growth delay; moreover the 417 

fact that colony size and numbers equalized upon long incubation times suggested a metabolic 418 

adaptation of M. smegmatis to the toxicity of TCH (Fig. 1). Given that TCH displays a clear activity 419 

on M. tuberculosis and M. bovis, we focus on M. tuberculosis as model organism to gain insight on 420 

this drug mechanism(s) of action. Due to structural similarities between TCH, INH and ETH, we 421 

hypothesized that TCH would be a pro-drug and also an inhibitor of the synthesis of mycolic acids 422 

in M. tuberculosis complex species. In our hands, expression of M. tuberculosis katG from a 423 

plasmid decreased the susceptibility to TCH in wild-type M. tuberculosis H37Rv (Fig. 2D). 424 

Moreover, a clinical M. tuberculosis strain containing a S315T mutation in katG, the most widely 425 

described mutation causing resistance to INH, showed increased resistance to TCH when compared 426 

to the wild-type strain (Fig. 2C).  Also, preliminary experiments showed that both INH (used as a 427 

control) and TCH were modified by Mn(III) pyrophosphate in the presence of NAD+ as was 428 

previously described for INH (Nguyen, Claparols et al. 2001, Nguyen, Quemard et al. 2002) (Fig. 429 

S1).  Taken together, those results suggest that TCH is most likely a pro-drug and that KatG is its 430 
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possible activator. In this regard, more work to confirm the role of KatG and the identity of the 431 

radicals generated is warranted.  432 

Surprisingly, we failed to observe a concentration dependent killing in liquid media in spite of the 433 

good anti-tubercular activity (comparable to that of ETH) that TCH exerted in solid media. In our 434 

hands, TCH lacked activity on liquid medium even at concentrations 10-fold higher than MIC, 435 

regardless of growth conditions.  The utilization of 7H9-ADS-Gly-Tween as liquid (in which TCH 436 

is inactive) and solid (where TCH is active) media ruled out medium composition as a factor on the 437 

drug activity. We also discarded oxygen as a critical factor for activity since TCH did not produce 438 

any killing effect whether liquid cultures were incubating with or without agitation under conditions 439 

usually met in clinical laboratories. Discrepancies in MIC values for Pyrazinamide in liquid media 440 

have been traced back to an inoculum effect, most likely due to metabolic activity of the growing 441 

bacilli that may change the medium pH and thus reduce the efficacy of this drug, active in acidic 442 

media (Zhang and Mitchison 2003). Importantly, it has recently been reported that the activity of 443 

bedaquiline in liquid medium is affected by the inoculum size used for the assay (Lounis, Vranckx 444 

et al. 2016); although of importance for clinical practice, the reasons for that discrepancy remain 445 

unknown.  Our preliminary results showed that TCH (25 µg/ml) did not exert any visible activity in 446 

liquid medium (7H9-ADS-gly-Tw) even when a reduced inoculum size was used (≈ 2x105 CFU/ml) 447 

(Franceschelli, J.J., personal communication), the reasons for that failure remain to be determined. 448 

There are no experimental data on TCH stability and physical properties, with only some theoretical 449 

studies of its spectroscopic properties (Balachandran, Janaki et al. 2014). However, our studies 450 

discarded instability of the compound in liquid medium as a possible reason for the lack of TCH 451 

activity (Fig. S2A-C). To our knowledge this is the first report on a compound exerting anti-452 

tubercular activity only on solid media; and thus, a thrilling challenge to solve and a warning note 453 

for the screening of novel anti-tubercular drugs that are usually performed in liquid media. 454 
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 455 

FASII is not a target for TCH. Due to structural similarities between TCH and the well-456 

characterized mycolic acids inhibitors INH and ETH, and our results showing a comparable in vitro 457 

oxidation of both INH and TCH by Mn(III) pyrophosphate (Fig. S1) we hypothesized that TCH 458 

could be a pro-drug acting as an inhibitor of the FASII cycle by inactivation of the enoyl-ACP 459 

reductase InhA. In order to test that, we performed “in vivo” radiolabeling on cells growing in solid 460 

medium, thus overcoming the lack of activity of TCH in liquid media under our experimental 461 

conditions. Yet, in spite of being able to see the inhibition of the synthesis of mycolic acids by INH, 462 

TCH gave a fatty acid profile indistinguishable from the one obtained from cells grown in the 463 

absence of any inhibitor (Figs. 3 and 5).  The results remained unchanged after extended exposure 464 

to the drug; thus the mechanism of action of TCH is not related to inhibition of the synthesis of 465 

mycolic acids.  466 

 467 

Mutations in the ahpC promoter confer resistance to TCH.  Our screen for spontaneous TCHR 468 

mutants yielded ≈ 50% that displayed cross-resistance to INH (but not to ETH or TRC); a second 469 

group, with a TCHR INHS ETHS TRCS phenotype (thus suggesting the presence of a mutation 470 

conferring resistance to TCH that was not accompanied by resistance to those well characterized 471 

InhA inhibitors) was of most interest to us. We therefore performed WGS on 7 randomly chosen 472 

TCHR mutants and one mutant displaying a medium level TCHR high level INHR phenotype. 473 

Surprisingly, four of these mutants showed a previously described SNV in the promoter region of 474 

ahpC (Rv2428.), a gene encoding an alkylhydroperoxydase. The mutation, c-81t, was reported by 475 

several groups as present in M. tuberculosis INHR mutant strains and shown as causing an increase 476 

in ahpC expression (Sherman, Mdluli et al. 1996, Zhang, Dhandayuthapani et al. 1996, Heym, 477 

Stavropoulos et al. 1997). The mutant strain TCHR25.1 showed a mutation in a two-component 478 
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system for which no role on INH resistance has been previously been described; however the 479 

impact of the mutation on the function of the protein was not evident. The remaining SNVs fell 480 

either in intergenic regions or non-essential genes. The potential contribution of these latter 481 

mutations to TCH resistance will need further studies. Importantly, the mutants containing the c-81t 482 

change were isolated from four of the five independent cultures used for TCHR mutant screening 483 

and represented half of the TCHR INHSETHS TRCS mutants randomly selected for WGS analysis 484 

(4/8), thus strongly implicating a role for ahpC expression in resistance to TCH. 485 

Different approaches indicates that ahpC is not an essential gene in M. tuberculosis and M. bovis 486 

(Wilson, de Lisle et al. 1998, Springer, Master et al. 2001, DeJesus, Gerrick et al. 2017), thus 487 

suggesting that ahpC does not fulfill the requirements to be considered a target for TCH but plays 488 

an important role in resistance to this compound. 489 

The link between resistance to INH and the presence of mutations in the M. tuberculosis katG and 490 

ahpC genes have been studied for almost 20 years. While the role of KatG in the INHR phenotype is 491 

clear as the necessary activator of the INH pro-drug, the precise role of ahpC has proven more 492 

difficult to elucidate. Mutations in the promoter region and in the ahpC coding sequence in INHR 493 

strains have been described in detail (Vilcheze and Jacobs 2014). A survey of the literature shows 494 

that mutations in the ahpC promoter region leading to overexpression of the enzyme are described 495 

in 29% of INHR strains (Kelley, Rouse et al. 1997, Pagan-Ramos, Song et al. 1998, Rinder, 496 

Thomschke et al. 1998, Dalla Costa, Ribeiro et al. 2009, Vilcheze and Jacobs 2014). Importantly, 497 

one study reported that 20% of INHR clinical isolates and 8% of the INHS isolates contained the 498 

same mutations in the oxyR-ahpC intergenic region (Baker, Brown et al. 2005). Moreover, over-499 

expression of ahpC failed to increase M. tuberculosis MIC to INH suggesting that this enzyme is 500 

not directly related to INH resistance (Heym, Stavropoulos et al. 1997). Thus, our results describing 501 

low level resistance to INH within the isolated TCHR mutants are in agreement with previous 502 

publications. Although a matter of debate, it is generally accepted that ahpC mutations arise as a 503 
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compensatory mechanism in strains that have lost katG (Sherman, Mdluli et al. 1996), from this 504 

perspective we are herein reporting that ahpC mutants may arise without katG mutations being 505 

present.  506 

It is important to mention that it has previously been described that M. bovis BCG Pasteur shows 507 

up-regulation of ahpC (Springer, Master et al. 2001). Moreover, recently a very comprehensive 508 

study by Abdalah et al. analyzed the global transcriptional profile and gene expression differences, 509 

as well as quantitative protein analysis, between BCG strains. Their results showed a larger amount 510 

of AhpC when BCG strains Pasteur (3.4-fold), Phipps (4-fold), Danish (1.9-fold), Tokyo (1.8-fold) 511 

and Birkhaug (2.9-fold) were compared to M. bovis 2122/97 (Abdallah, Hill-Cawthorne et al. 512 

2015). Similarly, an increased amount of AhpD (2-3-fold for all the BCG strains mentioned) was 513 

detected, however no SNVs were present in the promoter region of ahpC (Abdallah, Hill-514 

Cawthorne et al. 2015). As BCG Pasteur shows equal levels of inhibition by TCH as M. bovis, it is 515 

therefore not the case that simple up-regulation of ahpC expression is sufficient for increased 516 

resistance to TCH, at least in M. bovis lineage strains. Indeed, BCG strains have several SNVs and 517 

large insertion/deletions which may explain the lack of concordance between increased ahpC 518 

expression and TCH susceptibility. Despite these observations, the fact that the only SNV found in 519 

our TCH resistant strains was a well described mutation causing overexpression of ahpC strongly 520 

supports the idea of this protein as an important factor contributing to TCH resistance in these M. 521 

tuberculosis mutants.  522 

In conclusion, we have confirmed a role for KatG in the resistance to TCH, reinforcing previous 523 

phenotypic observations of cross resistance between TCH and INH. In addition, we isolated TCH 524 

resistant mutants with a drug susceptibility profile consistent with its lack of activity on InhA, and 525 

finally and importantly, we unveiled ahpC expression as a player in resistance to TCH, a compound 526 

with anti-tubercular activity. These data provide new clues that we hope will finally lead to the 527 

identification of the molecular target for TCH.  528 
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Figure legends 655 

Figure 1: Growth of M. smegmatis mc2155 in solid 7H9-ADS-Gly medium containing increasing 656 

concentrations of TCH. Aliquots of 100 µl containing aprox 102-103 cfu were spread on each plate. 657 

Plates were incubated for 15 days at 37°C and growth monitored daily.  658 

Figure 2: Role of KatG in the activity of TCH in M. tuberculosis. (A) Chemical structures of INH, 659 

ETH and TCH. (B) KatG mediated activation of INH and adduct formation of the activated INH 660 

radical; proposed activation of TCH. Panels C and D: Susceptibility to TCH or INH of M. 661 

tuberculosis NM27388 (containing a Ser315Thr mutation in KatG) (C) or M. tuberculosis H37Rv 662 

pMV361::katG (D).  Aliquots of 100 µl of each culture containing approximately 102–103 cfu were 663 

spread on each half plate of 7H9-ADS-Gly solid media plates containing INH or TCH at the 664 

indicated concentration. Plates were incubated for 30 days at 37°C before visual inspection.  665 

Figure 3: Analysis of the effect of TCH on fatty acid and mycolic acid biosynthesis in 666 

M. tuberculosis H37Rv. TLC of FAMEs and MAMEs extracted from M. tuberculosis H37Rv 667 

cultures growing in the presence of TCH (exposure time 24 or 48 h, drug concentration 25 or 50 668 

µg/ml) or INH (0.5 µg/ml). Comparable counts (≈40 000 cpm) were loaded onto silica gel TLC 669 

plates, which were developed three times in hexane/ethyl actetate (95:5, v/v). Plates were exposed 670 

to X-ray film and for 48-72 h at -80°C before developing. FAME, fatty acid methyl ester; MAMEs 671 

mycolic acid methyl esters (α, α-mycolic acids; M, metoxi-mycolic acids; K, keto-mycolic acids).  672 

Figure 4: TCH does not affect M. tuberculosis growth in liquid medium. M. tuberculosis H37Rv 673 

was grown at 37°C in the presence of TCH (25 or 50 µg/ml) or INH (0.5 µg/ml). Growth was 674 

monitored by samples absorbance (OD600nm). Three independent replicates were carried on with 675 

comparable results. 676 

 677 
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Figure 5: Analysis of the effect of TCH on mycolic acid biosynthesis in M. tuberculosis H37Rv 678 

grown in solid medium. Aliquots of mid-log cultures of M. tuberculosis H37Rv were exposed to 679 

solid medium containing either TCH (50 µg/ml), INH (0.5 µg/ml) or left untreated and labeled 680 

lipids were extracted as described in Materials and Methods. 2D-TLC analysis of 14C-acetate 681 

labeled cultures was performed by loading comparable counts (≈80,000 cpm) on silica plates 682 

impregnated with AgNO3. The plates were developed twice in hexane:ethyl acetate (95:5 v/v) in the 683 

first direction and three times in petroleum ether:diethyl ether (85:15 v/v) in the second direction. 684 

OAME, oleic acid methyl ester; SFAMEs, saturated fatty acids methyl esters; MAMEs mycolic 685 

acid methyl esters (α, α-mycolic acids; M, metoxi-mycolic acids; K, keto-mycolic acids). 686 
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Table 1. MICs of M. tuberculosis strains against TCH and INH. 

 

Strain MIC (µg/mL) 

TCH INH 

H37Rv 10 0,1 

INM27833 (KatG S315T) >50 >0,5 

H37Rv pMV361::katG ≤5 ≤0,05 
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Table 2. MICs of TCHR M. tuberculosis mutants against TCH, INH, ETH and TRC 

 

Strain/mutant 

 

MIC (µg/mL) 

TCH INH ETH TRC 

H37Rv 5-10 0.05 5 10 
TCH R25.1 25 0.5 5 10 

TCH R25.12, TCH R25.13, 
TCH R25.10 

25-50 0.05 5 10 

TCH R25.11 50-100 0.05 5 10 
TCH R50.6, TCH R50.7, 
TCH R50.8, TCH R50.9 

≥100 0.1 5 10 

TCH R50.1, TCH R50.2,  TCH R50.3, 
TCH R50.4, TCH R25.2  TCH R25.3 

≥100 0.5 5 10 
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Table 3. SNPs identified in M. tuberculosis TCH-resistant mutants. 

TCH
R
 

mutant Coordinate Gene 
Rv 

number Mutation 
Aminoacid 
substitution Comment 

25.1 380435 Intergenic   c → g N/A -121bp upstream of Rv0312, 
conserved hypothetical proline 
and threonine rich protein 

  3596244 Rv3220c Rv3220c a → g S431P Two component sensor kinase 

25.11 3510642 PPE52 Rv3144c c → t G226S 
SNPs also identified in Ioerger et 
al  # 

25.12 4160982 Intergenic   g →a N/A 
-19bp upstream of Rv3716c 
and -116bp upstream of Rv3717c 

25.13 3043105 Rv2731 Rv2731 g → a G27R 
Conserved alanine and arginine 
rich protein 

50.6 2086466 glcB Rv1837c g → a A172A   

  2726112 Intergenic   c → t N/A 
-81bp Upstream of ahpC 
(Rv2428) 

50.7 2726112 Intergenic   c → t N/A 
-81bp Upstream of ahpC 
(Rv2428) 

50.8 2726112 Intergenic   c → t N/A 
-81bp Upstream of ahpC 
(Rv2428) 

50.9 2726112 Intergenic   c → t N/A 
-81bp Upstream of ahpC 
(Rv2428) 

#J Bacteriol. 2010 Jul;192(14):3645-53 
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