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Abstract  

Animals frequently face trade-offs between their requirements for maximizing growth and 

minimizing mortality risk. The partition of habitat use in foraging arenas and refuges as an 

answer to this trade-off has been evaluated in intertidal crabs but is poorly known in subtidal 

crabs. The subtidal crab Ovalipes trimaculatus lives and is captured by artisanal fishermen on 

sandy bottoms of the San Matías Gulf (Lat 41 °S; Argentina). Whereas these bottoms are poor 

in potential prey, the nearby rocky outcrops are much richer with relatively high abundance of 

potential prey for the species. Hence, we investigated if crabs in this area are using rocky 

bottoms as a foraging arena. Stomach content and stable isotopes analysis show that none of 

the evaluated prey (small teleosts, echinoderms, mollusks and crustaceans) contributed to 

more than 10% of O. trimaculatus diet, however prey from hard bottoms jointly contributed to 

50-80% of the diet. Thus, O. trimaculatus is a generalist carnivore that, despite inhabiting 

mainly open sandy bottoms, uses rocky outcrops habitats as a foraging arena, probably due to 

their higher prey availability.  
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1. Introduction 

Animals frequently face trade-offs between their requirements for maximizing growth and 

minimizing mortality risk (e.g. Halpin, 2000; Grabowski and Kimbro, 2005). As a result, patterns 

of empty stomachs and apparent reduced food intake have been observed particularly in 

fishes (Ahrens et al., 2012). The partition of habitat use in foraging arenas and refuges as a 

strategy to cope with the compromise between growth and mortality has been mainly 

identified in fishes (e.g. Werner et al., 1983; Bernot and Turner, 2001), but has received less 

attention in other aquatic species. In estuarine and marine crabs, movements following the 

tidal flow represent a trade-off between the higher amount of food at the high intertidal, and 

the shelter provided underwater (Robles et al., 1989; Holsman et al., 2006). However, the 

trade-off between foraging and refuging has not been as explored in subtidal crab populations. 

The Portunid three spot swimming crab Ovalipes trimaculatus (De Haan, 1833) is distributed 

from southern Brazil (Lat 23° S) to San Jorge Gulf (Lat 46° S; Argentina) in the Atlantic Ocean 

(Vinuesa, 2005), and from southern Perú (Lat 14° S) to Trinidad Channel (Lat 50° S; Chile) in the 

Pacific Ocean (Retamal, 1981). It inhabits coarse sandy bottoms from 10 to 65 m deep (Fenucci 

and Boschi, 1975). In the San Matías Gulf (Lat 41° S; Argentina), O. trimaculatus is captured by 

diving fishermen that deploy bait on sandy bottoms the day before fishing. In this area, the 

seafloor is composed of coarse-sandy bottoms, with zones of mud, sand and shell debris 

(Servicio de Hidrografía Naval Argentino, 1974). Within this sandy bottom matrix, rocky 

patches covered by mussel beds (mainly the ribbed mussel Aulacomya atra) sporadically occur 

(Schnack et al., 1996). Fishermen find crabs eating from the bait or shallowly buried in the 

sand surrounding it. The sandy bottoms where the crabs are commonly found are poor in 

biodiversity and biomass and look typically poor in potential sources of food for O. 
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trimaculatus. This brings up the question of how this population is sustained. On the contrary, 

the rocky patches have a very diverse community with high density and biomass that could 

represent a much more profitable foraging area for O. trimaculatus (Narvarte et al., 2012). 

However, the species has not been described as using this kind of habitat. 

Several subtidal crabs show daily foraging movements to the intertidal (e.g. Cancer productus 

L. (Robles et al., 1989); Necora puber, Cancer pagurus (Silva et al., 2014)) but there is no 

information on subtidal foraging travels within dissimilar environments. Considering that the 

sandy-bottom fishery grounds are located in areas with apparently low abundance of potential 

prey, and that the nearby rocky bottoms are much richer in terms of prey abundances, the 

question arises whether these individuals could move from sand to rocky bottoms to forage. 

Hence, the aims of this study are: 1) to determine the diet of O. trimaculatus, and 2) to identify 

the foraging arena of this species in the San Matías Gulf. With this purpose, we studied the O. 

trimaculatus stomach contents and performed C and N stable isotopes analysis (SIA) of O. 

trimaculatus and its potential prey, under the hypothesis that although the species is found 

inhabiting sandy bottoms it mainly forages in the richer surrounding rocky bottoms. 

 

2. Materials and Methods 

2.1. Stomach content analysis 

A total of 686 O. trimaculatus were captured at the northern part of the San Matías Gulf from 

April 2013 to December 2014 to perform stomach content analysis. Samples were obtained 

from depths ranging from 10 to 65 m using bottom trawling and diving. Crabs were 

immediately frozen after capture and, in the laboratory, were sexed, weighed and measured 

(carapace width) to the nearest 1 mm. The moult stage was also registered (following Alvarez 

et al., 2009) and only animals in intermoult stage were used for the analysis, as crabs cease 

feeding prior to and during moulting (Williams, 1982). The foregut of each crab was removed 

and the percentage fullness of the cardiac stomach was estimated visually (following Williams, 
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1981). The contents of the cardiac stomach were stored in 70% ethanol until they were 

analyzed under stereomicroscope (30X magnification). Most often the items found in the 

stomachs had undergone high processing by external appendices and extensive grinding by 

the gastric mill, so they were generally very broken, making a precise identification impossible 

in most cases, thus, we preferred to classify items with confidence into large groups.  

Food items were classified into 12 categories and weighed to calculate a relative weight index 

(%W) for each category as: 

%�� =
∑ ���
�
�	


�
100 

where wie is the weight of the prey category i in stomach e, E is the number of not-empty 

stomachs and W is the total weight of stomach contents. For each index 95% confidence 

intervals were calculated using bootstrap resampling (1000 iterations, with replacement). A 

relative occurrence index (%O) was also calculated for each prey category as: 

%� =
∑ ��
�
�	


�
100 

where ei= 1 if the stomach presented prey category i, or ei = 0 if the stomach did not present 

prey category i and E is the number of not-empty stomachs. 

 

2.2. Availability of prey and stable isotopes analysis 

Samples of O. trimaculatus and its potential prey from sandy bottom (SB) and hard bottom 

(HB) communities where taken by diving between November and December 2015 to analyze 

their natural C and N stable isotopes composition. Different times of sampling is not expected 

to affect the conclusions given that both methodologies are not directly compared in this 

study but are both used in a complementary way. For O. trimaculatus, five females and five 

males were captured and immediately frozen. Muscle from one chaela was removed from 

every crab. To sample SB community, quadrats of 1 m
2
 (n = 15) were randomly deployed and 

sediment and infauna from the first 5 cm deep inside each quadrat were removed using an 
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airlift pump. At HB, quadrats of 0.25 m
2
 (n = 15) were used due to the higher density of benthic 

organisms in this habitat. Organisms were detached from the rock using a metal spatula.  

With these methods we were unable to capture fishes, hence small fishes associated to the 

benthic communities were sampled by diving using a hand net. Only one fish species of small 

size and low motility was captured: the “cocherito” Dules auriga (Serranidae). This species can 

be found in both studied habitats (unpub. obs.). 

The SB samples were sieved through a 1 mm mesh to separate the sediment from the infaunal 

community. Individuals larger than 1 mm from both communities were classified to the 

highest possible taxonomic separation. Each taxonomic group was weighed and individuals 

were counted. The biomass per m
2 

available was compared between habitats using a t- test.  

Taxonomic groups with individuals between ~ 1 and 4 cm in size were classified as potential 

prey if they belonged to a group of items found in the O. trimaculatus stomachs or if they had 

high relative abundance (Table 1). The size criteria was set in order to represent the 

maneuverability of crab chaelae, as well as an approximation to the size of the items found in 

stomach contents. The abundance criterion was set to overcome the fact that prey with high 

digestibility may be underrepresented in stomach content samples.  
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Whenever possible, a sample of muscular tissue was taken from the potential prey species, but 

in some cases this was not possible due to small size (Table 1). Also, when individuals were too 

small to obtain an adequate amount of tissue for the analysis, composite samples with at least 

three individuals were prepared (Table 1). Despite this, some samples were still too small to 

get confident results, hence some species were less represented in the analysis (Table 1). 

Samples were dried at 60 °C for 48 h and then ground into a fine powder with mortar and 

pestle. In cases where carbonate structures could not be mechanically separated from tissues, 

samples were acidified with HCl 20%. 

Determination of total C and N contents and stable isotope analyses were performed by an 

isotope ratio mass spectrometer at the University of California, Davis. C and N stable isotopes 

ratios were expressed in δ notation as parts per thousand (‰) according to the following 

relationship: 

���‰� = [��������/������� �� − 1] × 1000 

Species Habitat 
Type of 

sample 

# 

individuals 

per sample 

Acid 

treatment 

# Samples 
Prop. in diet 

(mean, SD) δ13
C δ15

N 

Tegula patagonica HB Mus 5 No 5 5 0.08, 0.07 

Ciona robusta HB Full 3 No 5 5 0.08, 0.07 

Acanthoserolis schythei  SB Full 1 Yes 3 2 0.08, 0.07 

Pachycheles chubutensis HB Full 3 Yes 3 3 0.08, 0.07 

Leucippa pentagona HB Full 1 Yes 3 3 0.07, 0.06 

Nereididae (Fam.) SB Full 5 No 5 5 0.07, 0.06 

Pagurus exilis SB Full 1 Yes 3 3 0.07, 0.06 

Arbacia dufresnii HB Full 1 Yes 3 2 0.07, 0.06 

Crepidula sp. HB Mus 3 No 5 5 0.07, 0.06 

Chaetopleura sp. HB Full 5 Yes 3 3 0.07, 0.06 

Polynoidae (Fam.) HB Full 5 No 5 5 0.06, 0.05 

Transenpitar americana SB Full 3 No 5 5 0.06, 0.05 

Eunicidae (Fam.) SB Full 5 No 2 2 0.05, 0.04 

Ophioplocus januarii HB Full 6 Yes 2 2 0.05, 0.03 

Dules auriga Benthopelagic Mus 1 No 5 5 0.03, 0.03 

Table 1: Potential prey used for SIA identified to the lowest possible taxon. HB, hard bottom; SB, sandy 

bottom; Full, full body used for SIA; Mus, only muscle used for SIA. “Prop. in diet” is the relative 

contribution to O. trimaculatus’ diet according to SIA. 
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where X is 
13

C or 
15

N, and Rsample and Rstandard are the 
13

C:
12

C or 
15

N:
14

N ratios of the sample and 

the standard, respectively (McKinney et al., 1950). The standard reference for C is Pee Dee 

Belemnite (PDB) and atmospheric N2 for N. Laboratory internal standards used were G11 

(Nylon), G13 (Bovine Liver), G17 (USGS-41Glutamic Acid) and G9 (Glutamic Acid). Replicate 

measurements of internal laboratory standards indicated measurement standard deviations 

lower than 0.2 and 0.3 ‰ forδ
13

C and δ
15

N, respectively. 

C and N SIA were performed for each sample, except for prey that needed acid treatment, in 

which case, C SIA was done on acidified samples and N analysis was carried out on 

independent samples without acid treatment. A mathematical normalization of δ
13

C suggested 

by Post et al. (2007) was applied to account for the presence of lipids in the samples.  

To evaluate differences in the diet between sexes, isotopic composition of males and females 

were compared using ANOVA for δ
13

C and δ
15

N after confirming normality and homogeneity of 

variances. To estimate the proportional contribution of the potential sources to the O. 

trimaculatus diet, the MixSIAR model was used (B. Stock and Semmens, 2016). MixSIAR is a 

Bayesian stable isotope mixing model that incorporates individual and group level diet 

variability among predators. It is written in the open source languages R (R Core Team, 2016) 

and JAGS (Plummer, 2003). δ
15

N and δ
13

C of each individual swimming crab were used as 

mixture data and the mean and standard deviation values of potential prey items were used as 

source data. When modeling, discrimination values used for δ
13

C and δ
15

N were 0.4, 1.3 ‰ and 

3.4, 1‰ (mean, SD) (Post, 2002) and concentrations of C and N in the source tissues were 

considered (Phillips and Koch, 2002). We ran 200,000 iterations with a burning of 50,000, used 

process residual error term (B. C. Stock and Semmens, 2016) and uninformed priors. 

To assess the use of prey from different habitats, sources were grouped a posteriori (following 

Phillips et al., 2005 and Stock et al., 2018) according to their habitat use in SB (n = 18), HB (n = 

33) or benthopelagic (n = 5). The main use of combining sources a posteriori based on a certain 

functional similarity is that it is not necessary that the combined sources are similar in their 
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isotopic signal (Stock et al., 2018). SB and HB groups were composed by the species captured 

at SB and HB respectively, while ‘benthopelagic’ was only constituted by the fish Dules auriga 

that is the only species able to move between SB and HB.  

 

3. Results 

3.1. Stomach contents analysis 

The mean weight of captured crabs was 173.65 g (SD = 64.24 g) with carapace width ranging 

between 57 and 128 mm (mean = 97 mm, SD = 11 mm). 35% of the sampled crabs were 

females and 59% of the 686 analyzed stomachs were empty.  The diet was mainly carnivore, 

being algae ~1% of the relative weight and thus considered incidental as well as sediment (~1.5 

% mainly sand grains). Most items could not be identified beyond the point of large groups.  

In terms of relative weight, crustaceans were the most relevant group contributing more than 

50% of the biomass and appearing in 57% of the not empty stomachs (Fig. 1). In the case of 

crustaceans we found small (<1 mm) pieces of carapace, spines, pieces of segmented 

appendices. The second best represented group in terms of relative weight and also in relative 

occurrence were small fishes (10% of weight, occurring in 16% of not-empty stomachs, Fig. 1). 

In this case, spines and vertebrae of ~1 mm were found. Relative weight and occurrence of the 

most represented item were around four times higher than those of the second one (%W  51 

vs 9 % and %O 57 vs 16 %, respectively). Despite the uneven distribution, a large variety of 

invertebrates was found in the stomachs (Fig. 1). 

 

3.2. Availability of prey and stable isotopes analysis 

Biomass density of SB (mean = 5.49 g.m
-2

, SD = 2.61 g.m
-2

) was lower than in HB (mean = 

15453.53 g.m
-2

, SD = 7748.57 g.m
-2

; t14= 7.72, P < 0.001). The three taxa with the largest weight 

percentage in the O. trimaculatus diet (crustaceans, teleosts and polychaetes) were present 

both in SB and in HB habitats, but different species composed those taxa at the different 
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habitats (e.g. crustaceans at SB: Acanthoserolis schythei, Pagurus exilis; crustaceans at HB: 

Leucippa pentagona, Pachycheles chubutensis). On the other hand, ascidians, echinoids, 

ophiuroids and chitons were only present in HB samples. 

O. trimaculatus δ13
C values ranged from -16.9 to -15.6 ‰, and δ15

N values ranged from 16.5 to 

18.9 ‰ (Fig. 2). No differences were found between the δ13
C and δ15

N of O. trimaculatus males 

and females (δ13
C: ANOVA, F(1, 8) = 1.05, MSE = 0.16, P > 0.05; δ15

N: ANOVA, F(1, 8)=5.39, 

MSE=0.34, P = 0.05) hence data of both sexes were analyzed together. After correcting for 

lipids, δ13
C of species from SB ranged from -20.2 to -14.5 ‰, and their δ15

N ranged from 12.7 

to 17.7 ‰. In the case of δ13
C of species from HB, after correcting for lipids, values ranged 

from -18.5 to -12.3 ‰, and their δ15
N ranged from 11.1 to 16.0 ‰. The benthopelagic prey 

δ13
C values, after lipid correction, ranged from -18.2 to -16.6 ‰, and δ15

N from 18.0 to 19.0 ‰ 

(Fig. 2).  

 

There was no significant correlation in the contribution of the species to the diet (-0.31 was 

the maximum correlation found between two sources). Source contributions to the O. 

trimaculatus diet was even, the mean contribution of each source ranging between 0.03 (Dules 

auriga) and 0.08 (T. patagonica, C. robusta, A. schythei, P. chubutensis) (Table 1). 

When sources were combined, species from the HB were represented by 9 sources while 

species from SB were represented by 5 sources and benthopelagic species by one species. 

Therefore, these relative abundances represent the new informative prior. Species from HB 

had a larger combined contribution to the O. trimaculatus diet than SB species (Fig. 3), in 

agreement with the higher abundance of potential prey in HB. The proportional contribution 

of SB sources ranged from 0.15 to 0.56 (mean = 0.34, 95% confidence interval (CI)) and the 

contribution of HB from 0.41 to 0.82 (mean = 0.63, 95% CI). D. auriga, the benthopelagic 

species, did not have a relevant contribution to the diet of O. trimaculatus (CI 95% = 0.00 - 

0.09).  
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4. Discussion 

Our results show that although O. trimaculatus lives and is captured mainly in sandy bottoms, 

it uses rocky bottoms as its foraging arena, a habitat that is not prevalent in this subtidal 

region (Schnack et al., 1996), in which sandy bottoms are dominant. According to stomach 

contents analysis and SIA, adult O. trimaculatus forage on sandy as well as on hard bottom 

species. Moreover, SIA indicates that a majority of the O. trimaculatus diet is composed of 

species from hard bottoms. The generalist carnivore diet O.trimaculatus presented in this 

study is similar to that described for the species north of San Matías Gulf (Mar del Plata, 38
o
 S; 

Fenucci and Boschi, 1975), and is also similar to the diet of other portunid species (e.g. Caine, 

1974; de Lestang et al., 2000), although more selective species are also described in the 

literature (e.g. Liocarcinus depurator; Careddu et al., 2017).  

Except for small fishes, the most important groups found in stomach contents were present at 

SB as well as at HB, but their high grade of trituration prevented us from identifying the prey 

to a better extent. Crustaceans, polychaetes and mollusks were relatively well represented at 

both habitats but some of the items found in the stomachs were only found at hard bottoms: 

ascidians, echinoids and ophiuroids. Small fishes were particularly difficult to find during 

sampling in both environments. Using an alternative method we were able to capture only one 

species of fish that fits the size of stomach contents and has slow movements. SIA, however, 

showed that this species is very unlikely to be part of the O. trimaculatus diet, as it is too 

enriched in 
15

N. The high occurrence of teleost remains in stomachs shows that O. 

trimaculatus consumes fishes at least occasionally, although the method may have 

overestimated their contribution to the diet due to the indigestibility of bones. Thus, it is 

possible that O. trimaculatus is consuming teleosts with a lower trophic level than D. auriga. 

We used muscle tissue of O. trimaculatus to perform SIA due to its low turnover rate that 

integrates the diet of the animals at a seasonal scale (Suring and Wing, 2009). However, we 
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arte not considering what happens with the diet during the rest of the year. Further studies 

are needed to clarify whether the use of HB as foraging zones is a seasonal or year-round 

behavior. The results of SIA in terms of proportional contribution of each source are not 

dependable as some species were under-represented in the analysis (e.g. Ophioplocus januarii, 

but see Table 1 for sample sizes). This was due to the small size of the individuals and the large 

proportion of carbonate structures in their bodies which resulted in samples with very low 

mass of C or N (less than 20 µg) to determine their δ13
C or δ15

N, even when composite samples 

were considered. The habitats in which O. trimaculatus forages, however, are well represented 

in terms of replicates due to the grouping of the prey, hence, our conclusions are much more 

confident in terms of foraging habitat. We applied a mathematical correction for lipid content 

to δ13
C values proposed by Post (2007) to decrease possible bias caused by lipid presence 

given that we did not performed lipid extraction. This correction raises some controversy 

around its accuracy, thus, the proportion of each source in the diet of O. trimaculatus should 

be taken with caution. 

Stomach contents analysis depends on the time that the contents remain visible and on the 

relative digestibility of prey items. Conversely, SIA provides a time- and space-integrated 

representation of the diet and is useful for studying organisms whose diets are difficult to 

characterize directly. We conclude from both analyses, in agreement with the literature on the 

subject, that O. trimaculatus is a generalist carnivore, with a wide range of prey. An extensive 

range of potential prey (15 potential prey types) were considered as possible sources in the SIA 

mixing model (Phillips et al., 2014), not only including species found in the stomach contents, 

but also species that were abundant in the study area (e.g. Polyonidae polychaets). Thus, the 

collection of potential prey was not restricted to the results of the stomach content analysis, 

rather, we used this analysis as a guide and to assure that all important sources were included 

in the mixing model. Variability in diet among and within years in the foraging habits of this 

species is possible, but it was not evaluated in this study.  
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To our knowledge, there is no record of O. trimaculatus using HB in this region. However, the 

observations from fishermen, local people, scientists or tourists were mainly done during 

daylight, which may not account to the nocturnal activity of many Portunids (e.g. Caine, 1974; 

Reigada and Negreiros-Fransozo, 2001). Our results show a prevalence of HB sources 

suggesting that O. trimaculatus moves to HB and forages on them, rather than consuming 

individuals that incidentally arrive to SB. However, given the higher amount of sources in HB, 

the proportion of the sources in diet seems to be equivalent to the available sources in each 

habitat supporting the generalist behavior of the species. It is also possible that O. 

trimaculatus forages from the intersections between both habitats. This brings new insights on 

the way portunids can partition habitat use, being able to refuge at SB, where they are found 

by fishers, and approaching HB to forage, where food is much more abundant and profitable. 

In similar cases, suboptimal foraging (i.e. diminished foraging behavior than the expected by 

maximum potential rate) has been explained by aversion to competition or predation (e.g. 

Turner, 1996; Grabowski and Kimbro, 2005). Chemical cues of injured conspecifics, for 

example, can change freshwater snail habitat use, hence indirectly increasing periphyton 

abundance on less protected habitats (Bernot and Turner, 2001). The aim of our study was not 

to evaluate the effect of predators on O. trimaculatus habitat use, but at least two species 

consume O. trimaculatus in San Matías Gulf (remains of the species were found in stomach 

contents of the sea lion Otaria flavences and the skate Sympterygia acuta, (Barbini and 

Lucifora, 2016). In the genus Ovalipes, the behavior of burying in SB decreases predation risk 

(Barshaw and Able, 1990), thus, the use of SB as protection from predators rather than as 

foraging areas is the most plausible hypothesis in the case of O. trimaculatus.  

In conclusion, our results show that O. trimaculatus is a generalist carnivore that, despite 

inhabiting mainly in open sandy bottoms, also feeds on invertebrates from rocky outcrops, 

which offer much more prey.  
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Figure captions 

Fig. 1. A. Relative weight of items found in the stomach contents (n = 280) of Ovalipes 

trimaculatus. Lines represent 95% Confidence Intervals calculated using bootstrap. B. Relative 

occurrence of items in stomachs that were not empty (n = 280). 

Fig. 2. δ
13

C and δ
15

N values for O. trimaculatus and sources (mean, SD). O. trimaculatus’ values 

were corrected for trophic enrichment. Sources’ δ
13

C values were corrected for lipids. Filled 

circles represent sources from benthopelagic environment, filled squares from hard bottom 

and filled triangles from sandy bottom. Ac, Acanthoserolis schythei; Ar, Arbacia dufresnii; Ch, 

Chaetopleura sp.; Ci, Ciona robusta; Du, Dules auriga; Eu, Eunicidae; Cr, Crepidula sp.; Pol, 

Polynoidae; Le, Leucippa pentagona; Ner, Nereididae; Op, Ophioplocus januarii; Pa, 

Pachycheles chubutensis; Pag, Pagurus exilis; Te, Tegula patagonica. 

Fig. 3. Dietary biomass proportions of aggregated prey from benthopelagic (n = 5), sandy 

bottom (n = 18), and hard bottom (n = 33) habitats. The aggregate solutions are the sum of the 

biomass contributions for food sources from each habitat. The aggregate contributions are 

calculated for all model iterations (in 2% increments), and are expressed as the percent 

frequency of all possible solutions. The mean proportion of each aggregate distribution is 

labeled. 
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Highlights 

• Ovalipes trimaculatus inhabits sandy bottoms, poor in potential preys  

• Nearby rocky outcrops are richer, with relatively high abundance of potential preys 

• Stomach contents and stable isotopes analysis showed it forages on rocky outcrops 

• Neither prey contributed to more than 10% to the diet composition 

 


