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Optimizing fertilizer rates is a common agricul-
tural objective, currently aggravated by the negative 
environmental effects of excess fertilizer. The present 

challenge to increase yields while reducing the environmental 
impacts of agriculture (Foley et al., 2011) demands adequate 
response models for fertilizer applications. This is particularly 
true for N, a major plant nutrient.

The most widely used method for estimating N fertilizer 
needs is based on conducting so-called yield response trials. 
This method consists on applying a wide range of N rates in 
individual plots, measuring the yield at each applied N rate, 
and fitting a response model. Commonly used response models 
include a quadratic response, Mitscherlich curve, linear or qua-
dratic responses followed by a plateau at high fertilizer rates, a 
logistic response, among others (Cerrato and Blackmer, 1990). 
All too often, individual plot yield data versus fertilizer rates 
from different sites and years are pooled together. The simple 
approach is to fit a response function to all the data using ordi-
nary least squares (Monbiela et al., 1981; Sain and Jauregui, 
1993; Pagani et al., 2008; Salvagiotti et al., 2011; Diaz Valdez 
et al., 2014). This provides a simple model for determining 
fertilizer rates at regional level.

Mentioned models, although widely used for their simplicity, 
have several limitations. When databases include large spatial 
and temporal variability, correlation coefficients are often low 
(Kim et al., 2008). This can be attributed to large variability in 
soil N supply, variable N losses related to mechanisms like leach-
ing, volatilization, or denitrification, or yield limitations due to 
other factors like water availability, among others (Kyveryga et 
al., 2013). Typically, the easiest solution is to subjectively remove 
extreme data or extreme response trials, reducing the possibility 
to find any rational explanation for those particular cases. This 
increases the uncertainty to N recommendations.

These models also have important statistical limitations, as 
they ignore the correlations that probably exist between the 
responses of different plots at the same site or within the same 
year (Wallach, 1995). Ignoring assumptions might result in inef-
ficient parameter estimators (Zuur et al., 2009). Mixed-effects 
models (also called hierarchical or multilevel models) are sta-
tistical tools to deal with these common limitations. However, 
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AbstrAct
Optimizing fertilizer rates is a common problem in modern agri-
culture. Frequently used response models ignore basic statistical 
assumptions and do not allow quantifying the effects of variables 
influencing yield response to fertilizer, generating uncertainty in 
fertilizer rate recommendations. We used linear mixed-effects 
models to explore maize (Zea mays L.) yield response to applied 
nitrogen (N) in late sowings, and we tested different predictors 
for explaining yield responses across sites. Data included yield 
response trials to applied N at 17 different environments (com-
bination site × year) with four to five N rates replicated twice in 
each trial. The best model (Model A) that included significant 
effect of N rate applied, sowing date, and soil N-NO3 at sowing 
described grain yield variations with high accuracy (R2 = 0.93). 
Another best model (Model B) showed that soil type as addi-
tional variable affected significantly yield response to applied 
N. The final model indicated that the overall response across 
sites was characterized by a linear coefficient of 67 kg grain ha−1 
per additional kg N ha−1 applied and a quadratic coefficient of 
−0.37 kg grain ha−1 per additional kg N ha−1 applied. Across all 
sites, soil N-NO3 at sowing (explored range from 34 to 356 kg N 
ha−1) explained 46% of the variability in the linear yield response 
to applied N. We proposed a method and generated statistical 
models with site specific covariates that can help optimize farm-
ers’ decisions on the use of optimal N fertilizer rates.
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core Ideas
•	 We used linear mixed effects models to explore maize yield response 

to applied N.
•	 Final models accurately described the observed data (R2 = 0.93).
•	 Best models indicated that yield response to applied N depended on 

soil N and soil type.
•	 Information is useful to optimize management decisions on N fertil-

izer rates.
•	 Resulting models are better than traditional ones based on ordinary 

least squares.
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they have been rarely used for optimizing fertilizer rates 
(Wallach, 1995; Kyveryga et al., 2013). They allow including 
predictors or covariables to explain the variability at different 
grouping levels (Gelman and Hill, 2007; Qian et al., 2010). The 
resulting fertilizer recommendations will then depend on these 
predictors. Other advantages of mixed-effects modeling include 
the ability to assume some effects to be random or fixed, based 
on the particular interest of the analysis (Smith et al., 2005).

Argentina is an important maize (Zea mays L.) producer, 
and is currently facing a relevant change in its production 
system. The planting date at the central region has extended 
later in the growing season. While traditional recommended 
sowing date is during September to early October, at present 
another recommended sowing date is during December. A 
longer fallow period allows more water and N accumulation at 
planting. Late-sown maize (December) locates the critical flow-
ering period for yield definition (Andrade et al., 1999) under 
conditions of higher probability of rainfall and less evaporative 
demand compared to earlier traditional sowings. Although 
yield potential at these late sowing dates is lower than earlier 
ones (Mercau and Otegui, 2014), farmers are obtaining accept-
able yields with higher yield stability. There are also commer-
cial benefits related to lower fertilizer needs. Late sowing has 
become a valid alternative for maize producers to reduce risk. 
At present 45 to 65% of the total maize produced in Argentina 
is considered late sowing (PAS, 2015).

Recently Gambin et al. (2016) described the relative impor-
tance of genotype, management, and environmental variables 
affecting grain yield of late sown maize using linear mixed-
effects models. The study demonstrated that management 
variables related to genotype selection, N availability, and stand 
density are relevant when optimizing its crop management. 
Although the information is valuable to estimate general fer-
tilizer needs, analyzed data involved simultaneous variation 
with different management variables, and thus have relevant 
limitations for using as a model to assist N recommendations. 
Particularly, the experimental design was not focused on fer-
tilizer crop yield response, meaning that differences in yield 
response to applied N across trials could not be explored. If dif-
ferences exist, as expected, defining which predictors (mineral 
soil N, soil type, rainfall, etc.) at the field level can help explain 
yield response differences is critical. This will allow developing 
a reasonable model to assist N recommendations rates.

In the present study our objective was to explore yield 
responses to applied N in late sown maize using linear mixed-
effects models. Data included individual response plots to 
different levels of applied N at 17 different environments 
(combination of site-year). We started testing models consider-
ing applied N as an individual level predictor to explore yield 
response to applied N across sites. We later tested different 
predictors at the site level (soil N-NO3 at sowing, organic mat-
ter, soil phosphorus (P), soil type, rainfall during the crop cycle, 
initial soil water content, presence of an influential water table, 
and sowing date) to help explain yield variations and response 
differences to applied N among sites. We hypothesize that 
yield response to applied N varies with sites, and that some of 
these predictors will help explain site-to-site differences. As 
the influence of initial soil N-NO3 on fertilizer response is 
widely known in this and others crops (González Montaner 

et al., 1997; Makowski et al., 2001; Salvagiotti et al., 2011), we 
expected the yield response to applied N will be negatively influ-
enced in those sites with higher levels of soil N-NO3 at sowing. 
In addition, as the presence of a water table showed negative 
effects on yield at these environments (Gambin et al., 2016), we 
hypothesize that the presence of a water table will have a nega-
tive influence on the crop yield response to applied N.

mAterIAls AnD methoDs
study system

Experiments were located at different sites around the central 
temperate production area in Argentina during three growing 
seasons (2012–2013, 2013–2014, and 2014–2015, hereafter 
called 2013, 2014, and 2015). Sites are described in Table 1, 
indicated by the closest city name and harvest year with suffixes 
(_13, _14, and _15, for 2013, 2014, and 2015, respectively). 
Sites included one location in 2013, nine locations in 2014, and 
seven locations in 2015. The term “location” is a loose spatial 
reference as, in different seasons, the location (summarized 
by the town name) may actually be different paddocks, farms, 
and/or soil types subject to different management practices. 
The term “site” will be used herein to define the combination 
of a particular experiment in a given year (Table 1). All fields 
were managed under no-tillage for a minimum of 8 yr. All fields 
belong to farmers grouped within AAPRESID, the Argentinian 
Association of No-Tillage Farmers (www.aapresid.org.ar; veri-
fied 3 Jan. 2017). The predominant landscape is comprised of 
flat to gently rolling continental dunes (Hall et al., 1992).

Each individual experiment was managed by the farmer in 
terms of hybrid, stand density, row spacing, and P manage-
ment, and cropped using available technology (planter, harvest-
ing). Sites are representative of the maize production system 
in the region of interest. Selected hybrids were commercial 
hybrids recommended for late sowings in the region of interest 
by different seeds companies (relative maturity around 120 to 
123 d). All experiments were rainfed, and weeds and insects 
were chemically controlled using standard practices for the 
region. Soils are predominantly deep sandy loams (typic hap-
ludoll, entic hapludoll, and haplustoll) and shallower clay soils 
(aquic argiudoll and argialboll) (Soil Survey Staff 2014). Soil 
types represent the ones commonly used for maize production 
in the region (types I, II, and III) (Klingebiel and Montgomery, 
1961). The predecessor crop was soybean (Glycine max L.) in 
most sites, with the exception of LLA_15 and LPI_15, where 
the previous crops were vicia (Vicia faba L.) and maize, respec-
tively. Individual experiments were entirely fitted within a field 
portion having uniform soil characteristics based on soil tax-
onomy maps and similar management of previous crops.

Each site had a randomized complete block design with two 
adjacent replicates, except one with three replicates (ALB_14). 
Plot size was around 50 m wide, and always longer than 100 
m, but specific size depended on the specific site. Plot size was 
ultimately determined to be operatively efficient at the farmer 
scale considering that fertilizer applications were done using 
available commercial farmer technology.

Inter-row spacing was 0.52 m, except at ALB_14 and NJU_14 
where inter-row spacing was 0.70 m. Four fertilizer treatments 
were randomly assigned to individual plots: (i) control, with no 
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applied N, (ii) dose 50, with an application rate of 50 kg N ha−1, 
(iii) dose 100, with an application rate of 100 kg N ha−1, and (iv) 
dose 130, with an application rate of 130 kg N ha−1. Nitrogen 
fertilizer was always applied as urea (46:0:0 N–P–K), and incor-
porated between sowing and V6 (Ritchie and Hanway, 1982). 
In twelve sites a minimum amount of N was applied at planting 
with P fertilizer (average 11 kg N ha−1) as MAP (11:52:0).

At each site, soil samples until 60-cm depth were taken 
before sowing for determining initial soil proprieties. Twenty 
soil samples were collected across the experimental field, from 
which a compound sample was used for laboratory determina-
tions. Soil test included organic matter (0–20 cm), P amount 
(mg kg–1, 0–20 cm), and N-NO3 (0–60 cm) determinations. 
Organic matter was determined by semi-micro Walkley and 
Black technique (Walkley and Black, 1934), and P and N-NO3 
were determined by spectrophotometry.

Soil available water content was determined at each site to 
2-m depth. Soil water content was determined by the gravimet-
ric method (Black, 1965). Depth of water table was indicated 
when present at sowing, until 2-m depth. Rainfall during the 
crop cycle was recorded at each site.

Harvest was done with a commercial combine harvester, and 
the yield of each replicate plot was obtained weighting tractor 
trailer grain tanks with sensors. Grain yield data is presented 
with 14% moisture concentration. Sites showed no major inci-
dences regarding weeds, lodging, or diseases. The first winter 
killing frost was always latter than physiological maturity.

statistical Analysis

Data were modeled using linear mixed-effects models (lme4 
package, lmer function) (Bates et al., 2015) in R version 3.3.2 
(R Core Team 2016). The analysis was done in two steps. 
First, we fitted random intercept and random intercept and 
slope models with an individual level predictor (applied N) 

to explore site-to-site variations in yield response to applied 
N. Second, we fitted random intercept and slope models with 
predictors at a higher grouping level (site) to explore if differ-
ent predictors helped understand variations in yield response 
to applied N, and provide a final model to assist N fertilization 
rates. When fitting these models, we tested both a linear and a 
curvilinear yield response model to applied N using non-trans-
formed or log-transformed variables. The curvilinear response 
was explored by fitting a quadratic function. The model 
improved (had a lower Akaike’s information criterion [AIC]) 
when considering a curvilinear response curve, and therefore 
we present models with the linear coefficient β1 and the qua-
dratic coefficient β2 from the quadratic function.

random Intercept, and random 
Intercept and slope models

For exploring site-to-site variations in yield response to applied 
N, two models were fitted. The first and simplest model consid-
ered the variation among the intercept for the different sites and 
blocks nested within site, and a fixed effect that estimated the 
yield response to applied N for the population of sites (Model 1). 
Yield at each site and applied N level is modeled as:

2
0 1 2ij j ij ij ijN Ng b b b s= + + +  [1]

where γij is the yield at i level of applied N at site j; β0j is the 
intercept variation due to site j; β1 is the linear coefficient, and 
β2 is the quadratic coefficient; Nij is the i level of applied N at 
site j; and σij is the error term. Random term β0j is assumed 
normally distributed, with a mean of zero and constant vari-
ance [

0

2
0 ~ (0; )j N bb s ]. Fixed effects are represented by the 

intercept, the linear coefficient, and the quadratic coefficient, 
indicating the effects across the population of sites.

Table 1. List of sites and their environmental and management variables.
Site  
ID

Soil 
N-NO3

Soil  
OM†

Soil  
P

Soil  
classification

Soil  
type

Soil 
AWC‡

Water 
table Rainfall¶

Sowing 
date

Stand 
density Hybrid

kg ha–1 % mg kg–1 mm 0 or 1§ mm plant m–2

LAB_13 75 2.07 19 Udic Haplustoll IIc 292 1 337 13 Dec. 7.5 DK7210
ALB_14 125 3.96 7 Typic Argiudoll IIw 320 1 578 17 Dec. 3.8 DK7210
COL_14 112 2.70 42 Aquic Argiudoll IIep 317 1 461 7 Jan. 6.8 DM2771
COL_15 64 2.80 10 Aquic Argiudoll IIep 317 0 415 6 Jan. 6.9 DK7210
COR_15 176 3.32 60 Typic Hasplustoll IIIc 292 0 619 3 Jan. 6.0 PROAVE467
GAL_15 156 2.90 27 Typic Argiudoll I 375 1 476 24 Dec. 7.0 ACA468
GOD_14 150 2.41 16 Vertic Argiudoll IIIws 317 1 780 12 Dec. 7.3 AX852
GOD_15 117 2.41 17 Vertic Argiudoll IIs 312 0 398 6 Jan. 7.3 AX7822
LLA_15 34 1.70 15 Entic Hapludoll IIIc 172 0 635 12 Dec. 4.4 DK7210
LPI_14 109 1.70 31 Molic Argiudoll IIep 266 1 625 19 Dec. 6.5 AX878
LPI_15 214 2.44 15 Molic Argiudoll IIep 266 0 682 3 Jan. 6.7 DK7310
MJU_14 151 2.63 68 Typic Argiudoll IIc 375 0 462 2 Dec. 6.5 DK7010
NJU_14 171 2.60 7 Entic Hapludoll II 292 0 493 7 Dec. 6.1 DM2738
NOE_14 356 2.56 47 Typic Argiudoll IIc 375 1 373 14 Dec. 5.5 P31Y05
RDO_14 130 1.80 47 Typic Haplustoll IIIc 108 0 481 19 Dec. 4.5 DK7210
RSE_15 38 1.86 16 Typic Haplustoll IIIc 154 0 721 16 Dec. 5.6 DK7210
SUR_14 162 2.87 62 Typic Argiudoll I 375 1 527 3 Dec. 6.5 DOW505
† OM, organic matter.
‡ AWC, available water content at sowing (0–2 m depth).
§ Presence (1) or absence (0) of water table at planting (less than 2 m) depth.
¶ Rainfall during the crop cycle (from planting to physiological maturity).
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The second model is similar to the first one, but considered 
an applied N by site interaction term to explore site-to-site dif-
ferences in yield response to applied N (Model 2). Yield at each 
site and applied N level is modeled as:

2
0 1 2ij j j ij j ij ijN Ng b b b s= + + +   [2]

where all parameters are the same as Eq. [1], but now β1 and 
β2 are allowed to vary for each site (note the subscript j on 
both parameters in Eq. [2]). Random terms β0j, β1j, and β2j 
are assumed normally distributed with a mean of zero and 
constant variance of 

0 1

2 2 2
2, , b b bs s s , respectively). As in Eq. [1], 

fixed effects are represented by the intercept, the linear coeffi-
cient, and the quadratic coefficient, indicating the effects across 
the population of sites. Models were fitted using estimates of 
restricted maximum likelihood (REML) and compared by the 
log-likelihood ratio test.

random Intercept and slope  
models with predictors at the site level

Different predictors at the site level were explored to help 
explain site-to-site differences in yield and yield response to 
applied N. The inclusion of predictors was based on several 
aspects, including data availability and enough variation across 
sites. The following predictors were explored:

(a)  Soil N-NO3 at sowing (kg ha−1, 0–60 cm depth) as a 
quantitative variable.

(b)  Soil organic matter (%, 0–20 cm depth) as a quantitative 
variable.

(c)  Soil P (mg kg–1, 0–20 cm depth) as a quantitative variable.
(d)  Soil type as a categorical variable with three levels (Type 

I, II, and III). Soil classification was also explored as a 
categorical variable based on great group (Argiudoll, 
Hapludoll, and Haplustoll).

(e)  Soil available water content at sowing (mm, 0–2 m depth) 
as a quantitative variable.

(f )  Rainfall during the crop cycle (mm) as a quantitative vari-
able, from planting to physiological maturity.

(g)  Water table at planting as a nominal variable (two levels: 
0, absence; 1, presence at less than 2 m depth).

(h)  Planting date as a quantitative variable (d, after 1 November).

To determine the inclusion of a predictor into the model, we 
explored the correlation between each predictor and param-
eters describing yield variation across sites (β0j) and the linear 
coefficient of the yield response to applied N obtained in Model 
2 (β1j). Data exploration suggested the explanatory variables 
in the fixed component that were most likely to contribute 
to the optimal model were sowing date, soil N-NO3, and soil 
type (Supplemental Fig. S1). Sowing date was negatively cor-
related (p < 0.05) to yield variations across sites (β0j), while soil 
N-NO3 and soil type were both negatively correlated (p < 0.05) 
to yield response to applied N (β1j) (Supplemental Fig. S1). 
No apparent correlation was found between β0j and β1j with 
other predictors, nor β2j and predictors (not shown). The final 
model was obtained following the top-down strategy of model 
selection process (Zuur et al., 2009), which involves starting 
with the model including all potential variables influencing 

variations among sites and variations in the yield response to 
applied N (usually called “the beyond optimal model”), finding 
the optimal random structure based on REML estimations and 
finally finding the optimal fixed structure based on ML estima-
tions. Last, the final model is presented using REML estima-
tions. The “beyond optimal model” was:

2
0 1 2ij j j ij j ij ijN Ng b b b s= + +   [3]

where

0 0

2
0 ~ ( ; )jj N b bb m s  and 

0 0 1Sowing datej jbm a a= +   [4]

1 1

2
1 ~ ( ; )jj N b bb m s  and 

1 0 1 2Soil N Soil typej j jbm g g g= + +   [5]

2 2

2
2 ~ ( ; )jj N b bb m s  and 

2 0 1 2Soil N Soil typej j jbm d d d= + +   [6]

Note that Eq. [3] is the same as Eq. [2], but now β0j, β1j, and 
β2j are dependent on predictors at the grouping level (site) with 
consequences to the coefficient estimates. β0j depends on a 
constant fixed term (α0) and the fixed effect of sowing date (α1) 
(Eq. [4]). β1j depends on a constant fixed term (γ0), the fixed 
effect of soil N-NO3 at sowing (γ1), and the fixed effect of soil 
type (γ2) (Eq. [5]). Similarly, β2j depends on a constant fixed 
term δ0, the fixed effect of soil N-NO3 at sowing (δ1), and the 
fixed effect of soil type (δ2) (Eq. [6]).

The final model was obtained following the multi-model infer-
ence based on the information-theoretic approach (Burnham 
and Anderson, 2002, 2004). This approach does not accept the 
notion that there is a simple “true model” in biological sciences. 
Selection of a best approximating model represents the inference 
from the data and tells us what “effects” (represented by param-
eters) can be supported by data (Burnham and Anderson, 2002). 
We used AIC to select the best fitting models for combinations 
of the four fixed-effect predictor variables (Aho et al., 2014). 
Based on the context and our objectives, AIC is the appropriate 
tool for model selection when compared to others like BIC or 
hypothesis testing (Aho et al., 2014; Burnham and Anderson, 
2002, 2014; Burnham et al., 2011). Because models have dif-
ferent fixed effects (but with the same random structure), ML 
estimation was used, and not REML. We checked the Gaussian 
and homoscedasticity assumptions (Zuur et al., 2009) for the 
standardized model residuals with graphical analysis. There was 
no covariance among random effects.

The proportional change in variance (PCV) was calculated 
following Merlo et al. (2005). The PCV monitors changes 
specific to a variance component, that is, how the inclusion of 
additional predictor(s) reduce or increase the variance com-
ponent at particular levels. Proportional change in variance is 
calculated as follows:

- - -= -N 1 N 2 N 1PCV ( )/V V V   [7]

where VN−1 is the variance in the model without predictors 
and VN−2 is the variance in the final model with predictors. 
A positive value indicates a reduction in the variation among 



1548 Agronomy Journa l  •  Volume 110, Issue 4 •  2018

groups (e.g., sites) given by the incorporation of predictors. The 
model without predictors is similar to Eq. [2], but with a single 
fixed effect represented by the model intercept.

The R2 of adjusted models were obtained following the 
methodology described in Nakagawa and Schielzeth (2013) 
for generalized linear mixed models. Both marginal and con-
ditional R2 were calculated. Marginal R2 (R2

m) represents the 
variance explained by fixed factors and is given by:

2
2

2 2 2
1

f
m

f ll

R m

e

s

s s s
=

=
+ +∑

  [8]

where 2
fs   is the variance calculated from the fixed effect com-

ponents of the linear mixed model, 2
ls  is the variance compo-

nent of the lth random factor, and 2
es  is the residual variance. 

Equation [8] can be modified to express conditional R2 (R2
c) as:

2 2
2 1

2 2 2
1

f ll
c

f ll

R
m

m

e

s s

s s s
=

=

+
=

+ +
∑

∑
 [9]

which represents the variance explained by the entire model 
(fixed and random factors) (Nakagawa and Schielzeth, 2013).

results
management and environmental 

variations across sites

Management and environmental variables showed ample 
variation across sites (Table 1). Soil N-NO3 at sowing varied 
importantly, from 34 to 356 kg ha−1, in agreement to previ-
ously reported values for late sowings in our region (Gambin et 
al., 2016). Soil organic matter ranged from 1.7 to 3.9%. Soil P 
ranged from 7 to 68 mg kg–1. Soil type ranged from Type I to 
III, indicating productive soils. The same was evident based on 
soil classification. Soil available water content at sowing showed 
a smaller variation across sites, mainly because water content was 
near field capacity in most cases. In only three sites (LLA_15, 
RDO_14 and RSE_15), soil available water content was below 

field capacity (74, 35, and 70% of field capacity, respectively). 
A water table was detected in most sites at less than 2-m depth. 
Rainfall during the crop cycle varied across sites, from 337 to 
780 mm (Table 1). Sowing dates ranged from December 2 to 
January 7, and stand density ranged from 4.4 to 7.5 plants m−2.

random Intercept, and random 
Intercept and slope models

Our first goal was to determine if yield response to applied N 
varied across sites, as a previous step before exploring management 
or environmental variables affecting any differential response. 
This simplest model (usually called “random intercept model”, 
Model 1) is depicted in Fig. 1A. Note that the model considers 
an intercept variation due to each site, but the slope of the yield 
response to applied N is the same for all sites (no applied N by 
site interaction). The second model we tested is the usually called 
“random intercept and slope model”, which incorporates an 
applied N by site interaction term to model site-to-site variations 
in yield response to N applied (Model 2). This model is depicted 
in Fig. 1B, showing variations in both intercepts and slopes.

The likelihood ratio test indicated that the model with an 
applied N by site interaction term is better (p < 0.001). The AIC 
of the model having the interaction was lower than the model 
without interaction (2223 vs. 2251, respectively). The same was 
evident when considering the residuals, they were lower in the 
model having an applied N by site interaction term (264 kg 
ha−1) than the model without this interaction (580 kg ha−1).

random Intercept and slope models 
with predictors at the site level

In the previous section, we confirmed site-to-site varia-
tions in yield and in yield response to applied N. We were now 
interested in determining explanatory variables explaining 
these variations. Data exploration suggested that explanatory 
variables in the fixed component that were most likely to con-
tribute to the optimal model were sowing date, soil N-NO3, 
and soil type (Supplemental Fig. S1). These three variables were 
considered further.

There were two best fitting models based on AIC (Table 2). 
The best fitting one (Model A) indicated that the yield depended 

Fig. 1. Observed (symbols) and fitted values obtained by mixed-effects modeling (lines). Different symbols indicate different sites. (A) 
Random intercept model in which a site effect is included in the model as a variation around the intercept. (B) Random intercept and 
slope model in which a site effect is included as a variation around the intercept and an applied N by site interaction effect is included as a 
variation around the slope. For clarification, fitted values for the population (fixed components) are not shown.
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on sowing date, applied N, and on the applied N by soil N-NO3 
interaction term that explained the differential yield response 
across sites (Table 2). The second best model (Model B) was 
similar to Model A, but included another interaction term 
(applied N by soil type). Interaction terms indicated that the 
differential response to applied N across sites depended on soil 
N-NO3 at sowing and soil type. These models were better than a 
model without predictors (Model E; Table 2). This is evidenced 
when comparing the AIC value of the model with no predictors 
with the best models (Table 2). Variance explained by the fixed 
factors (R2

m) was 0.35 and 0.33 for Model A and B, respectively. 
Variance explained by the entire model (R2

c) was 0.93 and 0.94 
for Model A and B, respectively, indicating that they appropri-
ately and accurately described observed yield data.

In the model without fixed effects, site-to-site variation in yield 
had the greatest contribution to the total variance (90%). This is an 
expected result given the important variation in environment and 
management variables across sites (Table 1). This is also evident 
in the intercept variation of both models in Fig. 1. Final models 
indicated that part of yield variations among sites were due to 

sowing date. Sowing date explained 10 to 12% of the site-to-site 
yield variation, as evidenced by the PCV for site (Table 3).

Variation in yield response to applied N across sites (i.e., 
applied N by site interaction) represented 1.3% of the total 
variance in the model without fixed effects (Table 3). After 
considering fixed predictors, Model A indicated that part of 
the variation in yield response to applied N among sites was 
due to site differences in soil N-NO3 at sowing (PCV was 46 
and 11% for β1j and β2j, respectively; Table 3). For Model B, 
which incorporates more predictors (soil N-NO3 and soil type), 
the PCV was higher (83 and 73% for β1j and β2j, respectively; 
Table 3). Distribution of random effects of the final Models A 
and B are depicted in Supplemental Fig. S2.

We further examined the regression coefficient estimates for 
the final models. This allows quantifying the specific influence 
of each predictor variable on grain yield response to N fertil-
izer rate. Sowing date had a negative effect over grain yield, 
being quite similar for both models (−76 and −74 kg ha−1 d−1 
of delay in sowing date after November 1). Applied N showed 
a positive decelerating effect on grain yield (Table 3; Fig. 2). 

Table 2. Akaike’s information criterion (AIC) for mixed effects models of the potential effect of soil N-NO3 and soil type on grain yield 
response to applied N in late-sown maize. The best five models are shown (from a total of 10 models). Columns are the different predic-
tor variables. The inclusion of variables in a particular model is indicated (+). R2

m is the variance explained by fixed factors, and R2
c is the 

variance explained by the entire model.

Model
Predictors

Sowing date Applied N Applied N × soil N-NO3 Applied N × soil type R2
m R2

c AIC ΔAIC†
A + + + 0.35 0.93 2198 0.0
B + + + + 0.33 0.94 2198 0.2
C + + + 0.28 0.94 2207 9
D + + 0.12 0.91 2211 13
E – – 2216 17
† The Δ column indicates the difference between a model’s AIC and that of the best-fitting model.

Table 3. Variance components (VC) of random effects, and estimates (± standard error [SE]) of fixed effects for different models applied 
to data. The model without fixed effects is only represented by a fixed intercept. Models A and B are the best fitting models based on the 
Akaike’s information criterion (see Table 2). All models have the same random structure.
Effect Parameter† Model without fixed effects Model A Model B
Random effects VC

Site β0j 1,131,162 999,000 1,020,350
Applied N × site β1j 17,024 9,214 2,847

β2j 0.5 0.4 0.1
Residual 85,758 91,090 69,510

PCVsite‡ 12 10
PCVapplied N × site β1j 46 83

β2j 11 73
PCVresidual –6 19

Fixed effects Estimate and SE
Intercept α0 8,073 ± 383 11,680 ± 1,012 11,390 ± 1,059
Sowing date α1 – –76 ± 19 –74 ± 20
Applied N γ0 – 67 ± 47 66 ± 47

δ0 – –0.37 ± 0.32 –0.35 ± 0.32
Applied N × soil N-NO3 γ1 – –0.30 ± 0.30 –0.21 ± 0.18

δ1 – 0.002 ± 0.002 0.001 ± 0.001
Applied N × soil type§ γ2 II – – –13 ± 40

δ2 II – – 0.09 ± 0.28
γ2 III – – –14 ± 44
δ2 III – – 0.06 ± 0.31

† Parameters of the quadratic function describing the yield response to applied N (see Eq. [3] to [6]).
‡ PCV, proportional change in variance.
§ Soil type is a categorical variables with three levels (Type I, II, and III); the baseline soil is Type I.
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The linear coefficient γ0 was 67 and 66 kg grain ha−1 per addi-
tional kg N ha−1 applied for Models A and B, respectively. The 
quadratic coefficient δ0 was −0.37 and −0.35 kg grain ha−1 per 
additional kg N ha−1 applied for Models A and B, respectively. 
The reduction in yield response to applied N at increasing levels 
of soil N-NO3 at sowing was higher in Model A than Model B 
(approximately 3 or 2 kg grain ha−1 per applied kg N ha−1 for 
every 10 kg ha−1 of soil N-NO3 at sowing for Models A and B, 
respectively; Table 3). Model B included an additional reduction 
in response to applied N given by soil type. Relative to soil of 
Type I, this reduction was 13 and 14 kg grain ha−1 per applied 
kg N ha−1 for Types II and III, respectively. Both final models 
correctly described yield responses to applied N across sites 
(Fig. 3).

Figure 4 provides a graphical representation of the final models. 
Lines represent the expected yield response for different rates of 
applied N after considering different levels of the soil N-NO3 at 
sowing. Response to applied N (Fig. 4, y-axis) was calculated as the 
first derivative of the quadratic equation for yield versus applied N 
(Eq. [5] and [6]). Based on Model A, the impact of soil N-NO3 at 
sowing was important in reducing the yield response to applied N, 
independently of soil type (Fig. 4A). Based on Model B, the impact 
of soil N-NO3 at sowing was less important, and there was an 
additional reduction in the yield response associated with soil type 
(Fig. 4B–D). The yield response to applied N was higher in soil of 
Type I and lower in soil of Types II and III (Fig. 4B–D).

Information provided in Fig. 4 can be used for N fertilizer 
recommendations by equalizing the yield response to applied N 
rates (Fig. 4, y-axis) with relative prices of fertilizer and grain. For 
example, considering an expected relative price of 15, Model A 
indicates that yield response to applied N is always lower than 
this value if soil N-NO3 at sowing is 190 kg ha−1 (Fig. 4A). This 
indicates there is no economic benefit for N fertilizer applications 
above this value. However, if soil N-NO3 at sowing is 130 or 
50 kg ha−1, the yield response to applied N is higher than 15 for N 
rates approximately ≤70 kg ha−1, being the yield response higher 
at reducing levels of soil N-NO3 at sowing. Yield response for 
applied N levels higher than 80 kg ha−1 becomes negligible at any 
level of soil N-NO3 at sowing (Fig. 4A). Model B indicated that, 
for soils of Type I, economic benefit of N application was approxi-
mately 70 kg ha−1 at 50 kg ha−1 of soil N-NO3 at sowing or 40 kg 
ha−1 when soil N-NO3 at sowing was 190 kg ha−1 (Fig. 4B). For 
relative less productive soils (soil of Type III), economic benefit 
of N application is approximately 50 kg ha−1 for 50 kg ha−1 of 
N-NO3 at sowing, and there is no economic benefit of applying 
N at high levels (190 kg ha−1) of soil N at sowing (Fig. 4D).

DIscussIon
We provided reasonable and parsimonious models that reduce 

uncertainty to farmers and advisers when deciding N fertilizer 
rates in late planted maize at our region. The models were satis-
factory in describing the spatial and temporal variation in maize 
grain yield to applied N (R2 = 0.93) and have several important 
attributes. The models: (i) consider the hierarchical data structure, 
a common characteristic of data used for developing fertilizer 
recommendation models, (ii) consider that the yield response 
to applied N varies across sites, and (iii) predict that the yield 
response to applied N depends on some environmental variables 
at the field level, in our case soil N-NO3 at sowing and soil type. 

Evidence of using these types of models for fertilizer management 
recommendations are rare, whereas the more frequent approach 
is to fit a response function to all data using ordinary least squares 
(Monbiela et al., 1981; Sain and Jauregui, 1993; Pagani et al., 
2008; Salvagiotti et al., 2011; Diaz Valdez et al., 2014). Linear 
mixed-effects models (also called hierarchical or multilevel mod-
els) are a powerful tool (Wallach, 1995; Zuur et al., 2009; Qian et 
al., 2010), and their use to explore the influence of management 
and environmental variables on crop yield at a regional level is 
increasing. We also recently used these models to assist in crop 
management options for late sown maize (Gambin et al., 2016).

As noted by Gelman and Hill (2007), a multilevel model can 
be considered a method for compromising two extremes models: 
ignoring the variation between sites-years (complete pooling) or 
estimating separate models within each site-year (no pooling). 
Generating separate models for each combination of site and 
year can provide models with high accuracy, but are not practical 
when the objective is to develop a model for N fertilizer manage-
ment recommendations with regional application. On the other 
hand, applying a complete pooling model to data, which is the 
typical situation, gave us a model with R2 = 0.08, which is con-
siderably lower than the mixed-effect model proposed here. This 
complete pooling model also indicates that yield is maximized 
at a higher level of applied N compared to the proposed models. 
Model parameters indicated that yield is maximized at 150 kg 
of applied N ha−1 based on a quadratic model fit to all data 
using ordinary least squares, while final models proposed here 
indicated that yield is maximized at approximately 80 to 120 kg 
of applied N ha−1 (response to applied N equal to zero in Fig. 4) 
depending on the model and based on intermediate expected 
levels of soil N-NO3 at sowing. This suggests that farmers will be 
applying N in excess if they use extremely simplistic approaches.

Although the benefits of linear mixed-effect models for fertil-
izer recommendations have been recognized more than twenty 
years ago (Wallach, 1995), their use has been limited. Examples 
using these models for N recommendation rates were explored 
for winter wheat in France (Makowski and Wallach, 2001; 
Makowski et al., 2001). Authors demonstrated the importance 
of random parameter models to be consistent with the type of 
data, and highlighted the possibility of extending the model by 

Fig. 2. Grain yield versus applied N for the entire data set. Black 
lines reflect the final models for the population of sites (full line, 
Model A; dashed line, Model B). Parameters of the final models 
are represented by the fixed effects shown in Table 3.
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including site-year characteristics. In their case, they showed 
how the inclusion of one particular predictor (end of winter 
mineral soil N) improved their prediction accuracy (Makowski 
and Wallach, 2001). Although in the present study we explored 
several others predictors, results are consistent with those found 
in these previous studies, showing the importance of initial 
soil N-NO3 to assist fertilizer recommendations. This is also 
consistent with models based on total nutrient approach which 
combine soil N and fertilizer N as a single measure of total nutri-
ent (González Montaner et al., 1997; Salvagiotti et al., 2011). The 
alternative approach used here (the covariance approach; Sain 
and Jauregui, 1993) has practical advantages, including a variable 
yield response to applied N based on soil N-NO3 (not possible 
when considering the total nutrient approach) or less dependence 
on soil tests by assuming some expected soil level.

An alternative model indicated that more integrative 
variables like soil type influence yield response to applied N. 
Isolated soil characteristics like organic matter or soil P showed 
no apparent relationship with yield response to applied N. This 
is clear evidence of the complex reality between the addition 
of fertilizer to the soil and yield as a black box in which some 
known and many unknown processes are integrated (Sain and 
Jauregui, 1993). In this sense, Nelson et al. (1985) concluded 
that no single model can be recommended for all situations, 
and that the researcher can only hope that the best model has 

some agronomic rationale. This is in accordance with our model 
selection strategy. This approach does not accept the notion 
that there is a simple “true model” in the biological sciences. 
Selection of a best approximating model represents the inference 
from available data and tells us what effects can be supported 
by data (Burnham and Anderson, 2002, 2004). The world view 
perspective of model selection based on AIC considered that 
“all models are wrong, but some are useful” (Aho et al., 2014).

Yield response to applied N was not influenced by other 
environmental predictors like rainfall during the crop cycle, 
initial soil water content, and presence of an influencing water 
table, or by a management predictor like sowing date. The lack 
of interaction with soil P could be expected, given that most 
sites evidenced soil P values above the threshold below which 
soil P is considered limiting in our region (12 to 14 mg kg–1; 
Rubio et al., 2016). Under conditions with reduced soil P, the 
yield response to applied N is expected to be lower (Rubio et 
al., 2016). However, we were not able to explore this hypoth-
esis. Because late sown maize is particularly sown in medium to 
poor environments, the interaction with other nutrients is an 
important aspect that deserves further attention.

The lack of interaction with other explored variables might 
be related to the limited number of sites and/or predictor 
variation. In turn, the fact that several sites showed little or no 
yield response to applied N (Fig. 3) reduces the ability to find 

Fig. 3. Grain yield response to applied N for each site. Black lines reflect the final models (full line, Model A; dashed line, Model B). Fixed 
components of the models are shown in Fig. 2, while Fig. 3 shows the site effect as a variation around the intercept (β0j) and the N applied 
by site interaction effect as a variation around the slope (β1j and β2j).
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predictors explaining differential responses. Other variables that 
could not be explored here but are known to influence grain yield 
response to N (such as stand density, Duncan, 1954; Carlone and 
Russell, 1987; or genotype, Gambin et al., 2016) are of special 
interest for future analysis. The importance of the size of the data 
set on the value of including an explanatory variable has been 

demonstrated (Makowski et al., 2001). Although our study is 
limited in the data set size (number of site-year combinations), 
it is a valid exercise showing a statistical approach that leads to 
better models than the ones currently used.

Finally, yield variations among sites were highly important 
independently of the levels of applied N or soil N-NO3 at sow-
ing. Final models indicated that sowing date explained part 
of this variability, being lower at delayed sowing dates from 
early December to early January. Similar results were found 
by Mercau and Otegui (2014) using a simulation model, high-
lighting the importance of this management variable. None of 
the other explored variables showed apparent association with 
yield. Other management variables not explored (genotype and 
stand density) are known to have a relevant influence on yield 
in late maize (Gambin et al., 2016), and could be behind yield 
variations not captured by present models.

conclusIons
We described reasonable and parsimonious models that 

reduce the uncertainty to farmers and advisors when deciding N 
fertilizer rates for late sown maize in central Argentina. Models 
satisfactory described the spatial and temporal variation in maize 
grain yield to applied N (R2 = 0.93). Yield response to applied N 
depended on soil N-NO3 at sowing and soil type.

The type of analysis we conducted shows several important 
attributes in that it (i) considers the dependence or hierarchical 
data structure, (ii) considers that the yield response to applied 
N varies with environments, and (iii) uses predictors or explan-
atory variables at the environment level to estimate the magni-
tude of the yield response to applied N. As a consequence, the 
resulting models are better suited for predictions than tradi-
tional ones based on ordinary least squares estimates.
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