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ABSTRACT: In this work, a model based in strong-stretching

theory for polymer brushes grafted to finite planar surfaces is

developed and solved numerically for two geometries: stripe-

like and disk-like surfaces. There is a single parameter, R�1,

which represents the ratio between the equilibrium brush

height and the grafting surface size, that controls the behavior

of the system. When R�1 is large, the system behaves as if the

polymer were grafted to a single line or point and the brush

adopts a cylindrical or spherical shape. In the opposite extreme

when it is small, the brush behaves as semi-infinite and can be

described as a planar undeformed brush region and an edge

region, and the line tension approaches a limiting value. In the

intermediate case, a brush with non-uniform height and chain

tilting is observed, with a shape and line tension depending on

the value of R�1. Relative stability of disk-shaped, stripe-shaped,

and infinite lamellar micelles is analyzed based in this model.
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INTRODUCTION The physics of polymer brushes, that is, poly-
mer layers adsorbed at one end to a surface, is of fundamen-
tal interest1 in materials science and engineering. Polymer-
functionalized solid surfaces,2,3 stabilized or functionalized
micro- or nano-colloidal particles,4–8 nanostructures in
block-copolymer systems,9–11 are just a few examples of
material systems where polymer brushes are present. A
large volume of theoretical and simulation work have been
reported in the literature, aimed to understand the equilib-
rium properties (equilibrium height, density profile) of
polymer brushes.12–26 Different theoretical approaches with
different level of physical detail have been developed. The
earlier approaches due to Alexander and de Gennes, were
based in Flory theory. This approach is based in the asump-
tions that the chains are uniformly stretched and that the
concentration is uniform throughout the brush, and they
lead to the so-called scaling laws.12–14 Despite its important
simplifications, these theories can describe the overall
properties of the brush fairly well. One important result of
the scaling picture is that the thickness of the brush in
equilibrium scales as N3/(d13), where N is the number of
Kuhn segments of the chain, and d5 0 for planar, 1 for
cylindrical and 2 for spherical brushes.19,27,28

When a more detailed description or accurate calculations
are required, scaling theories are not adequate. A more com-
plex and precise description of polymer brushes is based in

the self-consistent field theory (SCFT),28–30 which describes
the density distributions in a mesoscopic scale by using a
mean-field approximation. There are more complex and exact
theories, for example accounting for the effect of thermal
fluctuations,31 but the mean-field approximation works well
in most cases and SCFT (and its variants) is the most widely
theoretical framework used. The solution of the full SCFT is
often not possible analytically, even for the simplest systems.
Semenov,15 and later Milner et al.16–18 and independently
Zhulina et al.,26 developed a Strong-Stretching Theory (SST)
that assumes that the chains are fully stretched, such that
only the chain path that minimizes the free energy is rele-
vant and fluctuations are unimportant. In these conditions
the SCFT equations can be solved analytically for simple
geometries. This theory predicts that the concentration pro-
file inside the brush is parabolic.

The analysis of most of the previous works was restricted to
simple geometries: infinite planes, cylinders, or spheres, such
that the chain paths extend perpendicular to the grafting
surface, and the problem becomes one dimensional. With the
advances in nanoscience and nanotechnology in the last dec-
ades, the ability of nano-scale synthesis and processing had
led to the emergence of systems where polymer brushes are
not confined to infinite surfaces or simple geometries, and
finite-size effects, that is the presence of an “edge,” play a
crucial role in the brush structure. That is the case of, to
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mention a few examples, polymers grafted to nano-
patterned surfaces,3 finite lamellar micelles, ribbon-like or
disk-like micelles in the case of block copolymers with one
crystalline block,22,32–35 platelet-like stabilized colloids,8

etc. Despite its importance, only a few theoretical works
have dealt with the case of brushes with edges, and all of
them based in strong simplifications. Raphael and de Gen-
nes considered the case of brushes in finite plates, using a
simple Flory theory combined by a phenomenological Lan-
dau–Ginzburg free energy to describe the effect of the
edge.36 Gross et al. considered brushes in finite planes
(stripe-like) and circles, in poor solvents, using scaling
arguments and assuming a priori different configurations
(e.g., cylindrical brush, planar brush, lateral micelles),37 and
Vilgis analyzed the case of a semi-infinite planar brush
under compression, within a Flory approximation, where he
considered that all chains extended between two fixed sur-
faces.38 Williams and Fredrickson considered the case of
disk-like micelles of block copolymers, by making the
assumption that, at some distance from the surface, the
chains paths adopted a radial configuration, which limits
the treatment to the cases where the brush height is much
bigger than the radius of the grafting surface.22 With this
model, they compared the relative stability of infinite lamel-
lar and finite disk-like micelles, and found that the later are
stable for certain range of parameter values.

In this work, planar brushes in a stripe-like and a disk-like
surface will be considered, within the framework of Milner’s
SST. This theory is more accurate than Flory theories so the
present model is expected to be more exact than the previ-
ous works; in addition, as the brush shape is not previously
assumed nor constrained as in previous works, it is also
more general, within the applicability of SST (for a discus-
sion of the range of validity of SST see ref. 39). As SST can be
solved analytically for the chain path, the model reduces to a
system of ordinary differential equations, and with a proper
non-dimensionalization there is only one parameter that
determines the solution. The structure of the brush and its
properties (equilibrium height and chain tilting, free energy,
and line tension), are calculated in the whole parametric
range, and limiting cases (where the chains are much
smaller or much larger than the width of the grafting sur-
face) are identified and compared to analytical solutions.
Finally, relative stability of planar micelles with finite size
and different shapes (stripe-like and disk-like) and infinite
size is assessed with this model in terms of a dimensionless
surface energy.

The paper is organized as follows: in the Model section, the
model based in SST is presented. First, the case of infinite
brush is considered, followed by the case of finite brushes
and finally, the case of line and point brushes (which corre-
sponds to the limit of very large chains) are presented.
Results and discussion section presents the main results of
the numerical solution of the model, and the analytical
results corresponding to the limiting cases, divided into
three subsections: brush structure, brush free energy, and

relative stability in micellar systems. Finally, the conclusions
are given in the Conclusions section.

MODEL

Infinite Brush
First, the case of an infinite brush will be briefly reviewed,
as some of these results will be used for the finite brush.
The polymer segments of a given chain are located along a
curve rchain(n), called the chain path. The variable n is the
number of Kuhn segments comprised in a chain section that
goes from the origin of the chain to a position rchain along it.
Following the strong stretching theory of Milner,16–18 the
free energy (in kbT units) of a single chain with a given chain
path can be calculated as:

Fchain;r5wv
ðN
0

/dn1
3
2a2

ðN
0

drchain
dn

� �2

dn (1)

where the first term accounts for excluded volume interac-
tions, and the second term accounts for chain stretching. In
that equation, / is the volume fraction of polymer, w is the
excluded volume parameter (w> 0), a is the Kuhn segment
length, and N is the total number of Kuhn segments of a
chain, and v is the volume of a chain segment. Note that the
excluded volume interaction is usually considered in terms
of w/2dV (where V is the total volume), but in eq 1 the fact
that /chaindV (where /chain is the volume fraction of a single
chain) can be written as vdn was used.

In the strong stretching limit only the chain path that mini-
mizes the free energy, req is considered. This is obtained
from the functional minimization of the chain free energy:
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In the case of an infinite brush, req(n) is a straight, vertical
line. As discussed by Milner and others, for a chain whose
end-segment is in a position rN, and with no stretching in
the free end (drchain/dn5 0 for r 5rN) this equation has a
solution:

req5rNsin
p
2N

n
� �

(3)

Where req is the position along the chain path. The concen-
tration profile is parabolic,

/5A2Br25A2
3p2

8a2wvN2
r2 (4)

Where A and B are constants and r the direction perpendicu-
lar to the grafting surface. The value of B is determined from
the boundary conditions and it is as shown in eq 4.

The concentration profile must satisfy the following
constraint:
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vN5
1

r

ðR
0

/dy (5)

where r is the number of chains grafted per unit area and R
the brush height. Both sides of this equation represent the
total volume occupied by one polymer chain; in the left-hand
side it is calculated from the number of chains present in
the system, and in the right-hand side, from the concentra-
tion profile. Inserting eq 4 in eq 5:

A5
vrN
R

1
p2

8a2wvN2
R2 (6)

When the concentration profile is introduced in the free
energy:
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If B is replaced by its expression given in eq 4:
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Obtaining the remarkable result that the free energy is inde-
pendent of the end-segment position rN. Replacing A, the
equilibrium height of an infinite brush can be obtained from
the minimization of the free energy:

Req;15
3Nr~v

2B

� �1=3

5
4a2wN3rv2

p2

� �1
3

(9)

With this result, the concentration profile can be re-written
as:

/5B Req;1
22r2

� 	
(10)

And the free energy can be calculated as:

Fchain;eq5wvNBReq
2 (11)

Note that the “1” index has been removed, as this expression
is actually valid for any geometry as long as A5BReq

2, that is,
when the concentration is parabolic and drops to zero at the
endpoint of the chain, regardless the shape of the chain path.

Finite Brushes: Edge Effects
The case of a polymer brush attached to a surface which is
finite in one direction and infinite in the other, that is, a
“stripe” brush, is considered first. Figure 1 shows a sche-
matic of the system under consideration. The surface dimen-
sions are 2L in the x direction Z in the z direction
(perpendicular to the xy plane), with Z large enough such
that it is effectively infinite in that direction. The origin x5 0
is at the center of the brush, and the edge corresponds to
x5 L. Close to the border, the chains tilt and curve outwards,
but a simplified scenario with straight chain paths will be
considered, as shown in Figure 1.

The coordinates used to describe a chain are shown in Fig-
ure 2. The position of the grafting point of the chain is x0, S
and H are the total lateral displacement and height of the
chain, such that the position of the chain end is (x01S, H),
and the total length of the chain path is R5(S21H2)1/2. Note
that H, S, and R are functions of x0. The position of a chain
segment is given by (xn5 x01ynS/H,yn), and its distance to
the grafting point is rn5 yn(11 S2/H2)1/2.

Ball et al.21 have shown that the parabolic concentration pro-
file is only valid for planar geometry, while in curved surfa-
ces this would lead to the existence of a zone with an
unphysical negative concentration of chain free ends. Conse-
quently, there is an “exclusion zone” where the concentration
of chain ends is zero, and the concentration profile deviates
from the parabolic shape. This is also the case in a finite
brush, where the chains are tilted and the brush is curved
outwards. In this case, the chain paths cannot be explicitly
solved and eq 11 would, strictly, not be valid. Nevertheless,
as the authors show in the same paper, the free energy is
remarkably well reproduced when a parabolic profile is
used; they actually use it in another work where they

FIGURE 1 Schematics of the edge of a finite planar brush.

Polymer chains are shown as full red lines, with the corre-

sponding chain paths shown as dotted blue lines. The simplifi-

cation that the chain paths are straight is used, although in

real systems they might be curved as they tilt outwards. The

black dotted line represents the outer limit of the brush. [Color

figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Definition of coordinates and variables used in the

model. [Color figure can be viewed at wileyonlinelibrary.com]
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analyze curved brushes.40 Consequently, considering that the
results presented in this work depend on the free energy
and characterizing the concentration profiles or the segment
distribution is not the main goal, the parabolic concentration
profile (that allows explicit solutions for the chain paths)
will be used. With this consideration, eqs 1 through 8 are
valid for the finite brush, and the constraint imposed to the
concentration profile (derived in the Appendix) is given by:

rvN5

ðH
0

/ 11
yn
H
S02S

yn
H2

H0
h i

dyn (12)

where the primes denotes derivatives (with respect to x0).
The equilibrium structure of the brush is given by the pro-
files S(x0) and H(x0) that minimize the free energy, subjected
to the constraint given by eq 12. The problem can be simpli-
fied as follows. As the free energy is proportional to A (eq
8), the value of A has to be minimum. This is the case when
the concentration drops to zero at the end point of the
brush, so eq 11 is valid in this case too.40 Considering, in
addition, that rn/R5 yn/H, the problem reduces to minimiz-
ing the total brush free energy, which, using eq 11, is:

F52rZ
ðL
0
Fchain;eqdx052wvNrBZ

ðL
0

H21S2
� 	

dx0 (13)

subject to the constraint:
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The case of a brush attached to a circular surface, that is a
“disk” brush, was also considered. The diameter of the disk
is D. In this case the equations are:

F5rp
ðD=2
0

x0Fchain;eqdx05pwvNrB
ðD=2
0

x0 H21S2
� 	

dx0 (15)

Subject to the constraint (derived in the Appendix):
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1S S21H2ð Þ 1

4
H1

2

15
HS02

2

15
SH0

� � (16)

The problem was solved by using the method of Lagrange
multipliers for constrained minimization. The differential
equations were solved by a finite-differences method. The
constraint equation (eq 14 or 16) is first order, so it requires
one boundary condition. Functional minimization of the free
energy, after elimination of Lagrange multipliers, leads to a
second-order equation and requires two boundary condi-
tions. In principle, only the symmetry conditions S5 0 and
dH/dx5 0 at the center of the brush (x0 5 0) are imposed.
As the value Hedge is not given by any external condition, the
system of equations was solved for different values of Hedge;
the one that minimizes the free energy corresponds to the
equilibrium value. It was found that the free energy
decreases as Hedge decreases, such that the minimum

corresponds to a negative value of Hedge. In this work, only
the case of non-negative Hedge is considered, corresponding
to a physical system with an impenetrable surface at y5 0,
for example when the solid substrate extends beyond the
grafting area of the brush, or to the case of thin planar
micelles (where the surface at y5 0 is a symmetry plane).
With this restriction, the free energy is minimized for
Hedge 5 0.

Brushes in Infinitesimal Surfaces
A third case is considered, that corresponds to the limiting
case when chain length much larger that L or D; in this
case the stripe brush behaves as if the chains were
attached to a line, and the disk brush as if the chains were
attached to a point; in both cases they will extend out-
wards radially.

In the case of a “line” brush, the chain-volume constraint is:

p

Z
~vN52p

ðR
0

/rdr (17)

where p is the total number of polymer chains in the
brush, such that p/Z is the number of chains per unit
length of the brush. In terms of the variables considered
for the stripe brush, p/Z is equivalent to 2rL. Minimizing
the free energy given by eq 11, subjected to that con-
straint and using this equivalence, the equilibrium chain
length is obtained:

Req;line5
8LrvN

pB

� �1
4

5
64Lrv2wa2N3

3p3

� �1
4

(18)

In the case of a “point” brush, the constraint is:

pvN52p
ðR
0

/rdr (19)

Where p5 rpD2/4. Minimization of the free energy in this
case leads to the equilibrium length:

Req;point5
15

16

D2rvN
B

� �1
5

5
5D2rv2wa2N3

2p2

� �1
5

(20)

Dimensionless Variables and Parameters
The characteristic length used to non-dimensionalize all spa-
tial variables is l5 L for the stripe, and l5D/2 for the disk.
With this non-dimensionalization, the solution of the equilib-
rium equations depends on a single dimensionless group,
rvN/Bl3. The equilibrium solutions will be described in
terms of the ratio between the equilibrium height of an infi-
nite brush and the surface length:

R1
�5

Req;1
l

5
3rvN
2Bl3

� �1
3

(21)

The equilibrium size of a line brush and point brush is given
in eqs 22 and 23 in terms of this parameter:
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Req;line5
16
3p

R1
�23
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L (22)

Req;point5
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20

8
R1
�22

� �2
5

D (23)

The dimensionless free energy is defined in terms of the free
energy of an infinite brush as:

F�5
2F

2wvNrhBReq
2

(24)

where h is the area of the grafting surface. The dimension-
less free energy for an infinite brush is then 1, and for the
cases of line and point brushes it reduces to the following
analytical expressions:

F�line52
4

3p

� �1
2

R1
�21

2 (25)

F�point5
5

8

� �2
5

2
4
5R1

��24
5 (26)

Finally, the line tension k, which is the (negative) excess
energy per unit length introduced by the presence of the
edge, is calculated from eq 27:

F5F12kC (27)

Where C is the length of the edge: Cstripe52Z and Cdisk5pD.
A dimensionless line tension can be defined and calculated
by eq 28:

k
wvNrBReq

3
5k�5

12F�

kR1�
(28)

Where k5 1 for stripes and k5 2 for disks.

RESULTS AND DISCUSSION

Structure
The equilibrium equations were solved in a broad range of
R�1, observing two limiting cases: for very large R�1 (corre-
sponding to Req,1� l), the chains are much larger than the
grafting surface and they behave as line brush or point
brush. In the opposite extreme, when Req,1 is small com-
pared to l, the chains are much smaller than the grafting sur-
face and the brush behaves as semi-infinite, composed by a
region of undistorted brush (vertical chain paths), and an
“edge region,” with a (normalized) shape and structure that
is independent of R�1. Similar regimes where identified and
considered by Gross et al.,37 although in that work they are
treated within a simplified scaling theory, and intermediate
regimes are not considered.

Figures 3 and 4 show the structure of the stripe brush, the
case of the disk brush is similar so it is not shown. Figure 3
shows the shape of the stripe brush as a function of R�1. The
coordinates of the brush outer limit, that is H versus x01S,

are plotted. Figure 3(a) shows the case of large R�1, where
the semi-circular shape limit is observed; while Figure 3(b)
shows the opposite case of small R�1, where the semi-infinite
behavior can be observed. Note that in Figure 3(b) the x-
coordinate is shifted (so that the 0 is placed at the edge),
and re-scaled with respect to R1, so that the limit of R�1-
independent shape is observed. For large R�1, the disk brush
has the same circular shape, but the value of Req is smaller
than for the stripe brush. For small R�1, where the curvature
of the grafting surface becomes negligible, the brush struc-
ture is the same for both geometries.

Figure 4(a–c) shows the chain paths (in the upper panel),
and the profiles of H, S, and R as a function of x0 (lower
panel), for the cases of large [Fig. 4(a)], intermediate [Fig.
4(b)], and small [Fig. 4(c)] R�1, in a stripe brush (for disk
brushes they are qualitatively similar). Figure 4(a) shows the
line brush regime, where R is constant and the profiles H
versus x0 and S versus x0 approach a cosine and sine func-
tion respectively; for a disk brush, H and S approach(1–x)2

and (1–(1–x)2)1/2. In the intermediate regime, Figure 4(b),
the shape is not circular, but the brush is distorted every-
where, with a non-zero gradient of S and an equilibrium
chain length close to, but smaller than Req,1. In Figure 4(c),

FIGURE 3 Shape of the brush for different values of the param-

eter R�1. (a) R�15 1.14, 5.31, 24.6, 114, 246, 531, and (b)

R�15 0.0531, 0.531, 1.14, 2.46, 11.4, increasing in the direction

of the arrow. Note the different axis in each figures. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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the regime of semi-infinite brush is shown, where the chain
paths are mostly vertical, with H5Req,1, and only close to
the edge they tilt outwards with decreasing H and non-zero
S and S0. The size of this “edge region” can be observed to
be of about 2R�1. Note that the semi-infinite brush limit
breaks down when R�1 is about 0.5, that is, when the whole
brush size equals the edge size.

Figure 5(a) shows the values of R/Req,1 at the center of the
brush, at x5 L, and its mean value, as a function of R�1. The
limiting values are, respectively, 1, 0.83, and 1 as R�1 goes to
zero, (semi-infinite brush), and the three curves converge,
approaching zero, in the regime of large R�1. Both the stripe
and disk brush behave the same, but the disk brush has a

smaller value of R/Req,1, it deviates from the semi-infinite
behavior at smaller values of R�1, and approaches to 0 faster
than the stripe brush, as expected due to the larger curva-
ture of the surface. Figure 5(b) shows R/L as a function of
R�1 in double log scale, where the two limiting behaviors
given by eqs 22 and 23 are observed.

The extension of the chain paths R, as expected, is smaller in
the edge than in the center, due to the extra free volume
available to the chains. But it is worth to note that the
decrease in chain size introduced by the edge is relatively
small, the lowest value of R(x5 L)/R(x 5 0) is 0.83. Conse-
quently, the presence of the edge does not compromise the
validity of the strong stretching approximation.

FIGURE 4 Chain paths (upper panel), and profiles of H, S, and R (lower panel) in different brush regimes. In the upper panel the

grafting surface is drawn in blue color. (a) R�15 531, corresponding to the cylindrical brush polymer regime, (b) R�15 1.14, corre-

sponding to the intermediate regime, (c) R�15 0.114, corresponding to the semi-infinite brush regime. The inset shows the edge

region. Note that each figure has a different scale. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Some representative values of R as a function of R�1. (a) R/R�1 at x 5 0 (dashed line), x 5 L (dotted line), and mean value

of the brush (full line). (b) Mean value of R/l of the finite brush (crosses), and of an infinite brush and a cylindrical brush polymer

(dotted lines). [Color figure can be viewed at wileyonlinelibrary.com]
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Free Energy
Figure 6(a,b) shows the free energy and the line tension as a
function of R�1. The free energy of the disk-brush is smaller
than the stripe brush. This is expected due to the fact that
the disk has a larger curvature, or equivalently a larger
perimeter, so edge effects (which decrease the free energy)
are more significant. For R�1 close to zero, the free energy
approaches 1, the value that corresponds to an infinite
brush. As R�1 increases, edge effect become increasingly
more significant, lowering the free energy, until the line- and
point-brush limits (eqs 25 and 26) are approached for large
R�1. The limiting behaviors of small and large R�1 are shown
in Figure 6(a), as well as an approximating function con-
structed by combining these limiting cases (this is explained
in the following section).

The line tension reaches a limiting constant value, which is
k*15 0.18, as R�1 goes to zero. This is expected considering
that the structure of the brush edge becomes independent
on R�1 in this range. The line tension starts deviating signifi-
cantly from k*1 at a value of R�1 close to 0.5, that is when
the size of the edge equals the size of the brush, as
explained before (although there is a difference between

stripe- and disk-brushes that will be discussed in the follow-
ing paragraph).

An interesting observation, is that the line tension of the
disk-brush is smaller than the stripe brush (as a conse-
quence it starts deviating from the low R�1 regime at smaller
values of R�1 than the stripe brush, as shown in Fig. 6). This
seems to contradict the previous affirmation that edge
effects are more significant in the disk-brush due to its
higher curvature. Nevertheless, it has to be taken into
account that the edge effect on the free energy arises from
the product between the line tension and the perimeter/area
ratio, which is 1/L for stripes and 2/L for disks, so there is
no such contradiction. The fact that a disk brush seems to
deviate from the semi-infinite regime for smaller values of
R�1, can be understood considering that when the size of the
brush approaches the edge penetration length, the curvature
of the grafting surface across the edge region is significant;
this affects the structure of the brush in the edge region and
consequently the line tension.

Application to Crystalline-Core Lamellar Micelles
As aforementioned, one physical system that can be repre-
sented as a finite brush is the case of lamellar micelles of
finite size. This type of micelles can be found in a block
copolymer (BCP) system with one crystalline block. In this
section, the relative stability of different micelles (disks,
stripes, infinite lamellas) in a BCP with a crystalline block
will be estimated with a simplified model, using the results
obtained for finite brushes. Although Williams and Fredrick-
son calculated a phase diagram including disk-like micelles
and infinite lamellas (among other geometries),22 to our
knowledge a theoretical analysis of the relative stability of
this three geometries has not been performed before.

Assuming that there are no free BCP chains (i.e., all the BCP
molecules are forming part of the micelles), the total number
of polymer molecules can be related to the number of
micelles as:

P5mrh (29)

Where P is the total number of BCP molecules and m the
number of micelles; h in this case is the area of the micelle
(monodispesity in micelle size is assumed). Neglecting the
translation entropy of the micelles, the free energy of the
micellar system is:

FT5m Fbrush1cCdð Þ1Fcrys1Fint (30)

Where Fcrys is the free energy of the crystalline core and Fint
is the free energy of the interface between the micelle core
and the brush; these two terms are considered independent
of the micelle configuration. The free energy of the micelle
corona is represented as Fbrush, and corresponds to the
energy of a stripe or a disk brush. The surface energy of the
lateral surface of the micelle is c and d is the thickness (Cd
is the lateral area). Note that c corresponds to an interface
between the lateral surface of the crystalline core and the

FIGURE 6 (a) Free energy of the brush as a function of R�1, (b)

line tension, as a function of R�1. The squares and stars are the

calculated values, the dotted lines correspond to the limits of

infinite and cylindrical brush polymer (eqs 25, 26, and 28), the

dashed line is the limit of infinite brush, and the full line is the

approximation given by eqs 32 and 34. [Color figure can be

viewed at wileyonlinelibrary.com]
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solvent and it is different from the energy of the core/corona
interface. It can also be anisotropic and depend on curvature,
which would favor polygonal over disk-like micelles, but this
effect is beyond the scope of the present analysis.

The dimensionless free energy per unit volume of the
micelle system can be defined and calculated as:

Nv

/BCP

FT
2VwvBNReq

2
5

Fbrush
2wvBNrhReq

2
1

cd
2wvBNrReq

3
kR1

�
� �

1 . . .

(31)

where V is the total volume of the system (BCP1 solvent),
/BCP the volume fraction of BCP in the system, and k, as
before, is 1 for stripes and 2 for disks. The terms that do not
depend on the micelle structure are not shown. Note that, in
the real case the variables d and r are not independent, and
there is an extra “chain folding” energy in the crystalline
phase that depends on those variables, but this effect is
neglected in this simplified analysis.

The free energy of the micelles, eq 31, is minimized with
respect to R�1, to find the equilibrium size of the micelle (which
is proportional to R�1

21) and the equilibrium free energy of
the micellar system as a function of the dimensionless surface
energy, defined as c*5 cd/wvBNrReq

3. Note that this dimen-
sionless free energy includes the effect of both the surface ten-
sion and the micelle core thickness, so the relative size of the
crystalline block is included in this parameter. The minimiza-
tion of eq 31 is not numerically simple, as the dependence of
the free energy on R�1, is implicit and it is given through the
functional minimization of Fbrush, as discussed in the previous
sections. To simplify the calculations, the dimensionless brush
free energy for both geometries was fitted with arbitrary ana-
lytical functions which are explicit in R�1. These functions were
constructed by fitting the line tension for relatively small val-
ues of R�1 (where it does not deviates significantly from 1),
and combining this expression with the one corresponding to
line- or point- brushes, as follows:

F�stripe5 12kstripe� R1�ð ÞR1�
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Equations 32 and 34 are shown in Figure 6(a,b) along with
the calculated values of free energy and line tension, it can
be seen that the fitting of the free energy is very good in the
whole range of R�1. Special care was taken in the region of
small R�1, that is critical for assessing the micelle stability.
Note that the fitting of the line tension starts deviating from
the calculated values at about R�15 10, but at this point the
term corresponding to line or point brushes has most of the
weight in the free energy fitting.

The approximated expressions given by eqs 32a and 33a for
the brush free energy can be introduced in eq 31, which
now becomes explicit in R�1 and can be easily minimized.
Figure 7 shows the equilibrium value of R�1

21 as a function
of c*. It can be seen that it increases with c* and diverges
when c*5 k1*. This can be understood considering that
both the effect of the line tension and the surface energy are
proportional to R�1, that is, the free energy of the micellar
system can be written as:

FT
�5F�brush;11 c�2k� R1

�ð Þ½ �kR1� (34)

so the line tension will always be larger than the surface
energy for a minimum at finite R�1, if the surface energy is
larger, the minimum is at R�15 0 (infinite lamellar micelle).

Figure 8 shows the difference in free energy between the
stripe- and disk-like micellar system, DFT, as a function of c*.
It can be seen that stripe micelles are stable for c*>0.155
and disk micelles for c*<0.155. Although it should be noted
that the free energy difference between the two types of
micelles is relatively small, so consideration of some
neglected effects (particularly the anisotropy in the surface
tension of the crystalline phase), would modify the calcu-
lated range of stability for the stripe micelle phase. If the
surface tension depends on curvature, or on crystallographic

FIGURE 7 Dimensionless size of disk-like and stripe-like

micelles as a function of the dimensionless surface energy.

[Color figure can be viewed at wileyonlinelibrary.com]
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orientation such that faceted micelles are formed, this would
lead to a higher surface energy for the disks micelles,
increasing the range of stability of the stripe micelles.

CONCLUSIONS

A theory for a polymer brush grafted to a finite substrate,
based in Milner parabolic strong-stretching theory, was
developed. Disk-like and stripe-like geometries were consid-
ered. A single dimensionless parameter, R�1, which is the
ratio between the equilibrium height of an infinite-brush and
the size of the grafting surface, controls the structure and
thermodynamics of the brush.

The model was solved in a broad range of R�1, such that
limiting behaviors were observed. For small R�1, the brush
behaves as semi-infinite, such that the chain paths are per-
pendicular to the substrate everywhere except in a region
close to the edge where they tilt outwards. The structure
of this region becomes independent of R�1 in this regime.
For large R�1, the line brush and point brushes limits are
observed for the stripe and disk cases respectively; in this
regime the chain paths behaves as if they were grafted to
a line or a point, and extend outwards radially. In the
intermediate regime, a deformed, non-uniform planar
brush is observed, where the chains are significantly tilted
everywhere, and the tilting increases as the edge is
approached.

The dimensionless line tension was also evaluated and a lim-
iting value of k1*5 0.18 was approached as R1* goes to
zero. The penetration length of the edge is found to be about
R�1. The edge of a stripe brush, to a good approximation, can
be considered to be in the low-R�1 regime for R�1 <0.5,
while for disk brushes, due to the curvature of the grafting
surface, deviations from this regime are observed for
smaller R�1.

A simple model for micellar suspensions of block copolymer
micelles with a crystalline core was constructed, and the rel-
ative stability of disk- and stripe-like micelles was assessed
with this model. When the dimensionless surface energy of
the lateral surface of the micelle is higher than the

dimensionless line tension, infinite lamellar micelles are sta-
ble, while stripe micelles are stable when the surface energy
is close but smaller than the line tension, and disk-like
micelles are stable for smaller values of surface energy.

APPENDIX: DERIVATION OF THE CHAIN VOLUME
CONSTRAINT

In this appendix, the constraints to the free-energy func-
tional minimization, given by the consistency between the
polymer composition profile and the total volume of polymer
molecules, eqs 14 and 16, are derived. A differential volume,
bounded between two chains located at x0 and x01 dx0, is
considered, as shown in Figure 9. The transversal area of
this differential volume is a parallelogram can be calculated
as:

dK5dxndy (A1)

So an expression for dxn is needed.
As shown previously in the Finite brushes: edge effects sec-
tion, xn can be calculated as:

xn5x01yn
S

H
(A2)

So, considering that both S and H are functions of x0, the dif-
ferential is:

dxn5dx01yn
S1dS

H1dH
2

S

H

� �
(A3)

Considering a Taylor expansion, and leaving only first-order
terms:

dxn5dx01yn
dS
H

2
S
H2

dH

� �

5dx0 11
yn
H

dS

dx0
2

Syn
H2

dH

dx0

� � (A4)

Combining eqs A1 and A4, for a stripe brush:

dV5Z 11
yn
H

dS

dx0
2

Syn
H2

dH

dx0

� �
dydx0 (A5)

Which leads to eq 12 for the number of chains per unit
length in x0. For a disk brush:

FIGURE 8 Free energy difference between stripe-like and disk-

like micelles.

FIGURE 9 Representation of the differential volume used to

calculate the total volume of a polymer chain.
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dV52p x01yn
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Which leads to

2prvNx0dx05
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and, after integration, to eq 16.
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