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Abstract Geometrical inequalities show how certain parameters of a physical system
set restrictions on other parameters. For instance, a black hole of given mass can not
rotate too fast, or an ordinary object of given size can not have too much electric
charge. In this article, we are interested in bounds on the angular momentum and
electromagnetic charges, in terms of total mass and size. We are mainly concerned
with inequalities for black holes and ordinary objects. The former are the most studied
systems in this context in General Relativity, and where most results have been found.
Ordinary objects, on the other hand, present numerous challenges and many basic
questions concerning geometrical estimates for them are still unanswered. We present
the many results in these areas. We make emphasis in identifying the mathematical
conditions that lead to such estimates, both for black holes and ordinary objects.
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1 Introduction

Geometrical inequalities in General Relativity, that is, relations play an important role
in understanding some physical systems. The basic questions behind these inequalities
are the following. What are the reasons that such inequalities do exist at all? Another,
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more humble but more practical and hopefully illuminating question is about the
elements in Einstein theory, that produce such inequalities. In other words: Why should
we expect such inequalities, and where do they come from? The straightforward answer
is that there are a number of different objects predicted by the theory that live in
different regimes.

This is clear when one thinks about one of the most important class of solutions
to Einstein equations: Black holes. In the evolution of stars, there are two natural
limits to consider. One of them is the maximum mass a star can have, beyond which it
collapses into a black hole. This problem was addressed in the 1930s by Chandrasekhar
(see Wali 1982). The other is the maximum charge and/or angular momentum a black
hole can have, beyond which it becomes a naked singularity. This problem arose
after Reissner (1916) and Nordström (1918) found the solution describing a static,
spherically symmetric, electrically charged object.

These thresholds in physical parameters values can be identified as limit cases of
appropriate geometrical inequalities. In more general terms, we can naively imag-
ine a function f depending on the physical parameters of the system, like the
mass M , size R, angular momentum J , electromagnetic charge Q, etc., denoted by
f := f (M, R, J, Q, . . .), such that when f takes values in [ f −

obj , f
+
obj ], the system

describes a non-black-hole ordinary material object, like a star or soccer ball. When
f takes values in [ f −

bh, f
+
bh], it describes a black hole, and when f takes values in

[ f −
nak, f

+
nak], a naked singularity.

We emphasize that this is a very rough and overly simplified picture of what the
geometrical inequalities found so far actually say, and of what to expect for more
general systems. But, as we see in Sects. 4.2 and 5.2, the above division showing the
different regimes in which the system can exist, is what one actually finds in some
cases.

In this article, we address systems containing ordinary material objects and/or
black holes. The latter, and the frontier between black holes and naked singularities,
is the original and main motivation for the geometrical inequalities presented here.
Therefore, we explore it in what follows in the case of a paradigmatic black-hole
solution.

Consider the Kerr–Newman black hole with positive mass M , angular momentum
J and electric charge Q (see Wald 1984). The area A of the horizon is given by

A = 4π
(

2M2 − Q2 + 2M
√
d
)
, d = M2 − Q2 − J 2

M2 . (1)

The equality (1) implies the following three important inequalities among the param-
eters:

√
A

16π
≤ M, (2)

Q2 + √
Q4 + 4J 2

2
≤ M2, (3)

4π
√
Q4 + 4J 2 ≤ A. (4)
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These inequalities saturate in the two relevant limit values for the parameters: the
Schwarzschild black hole given by Q = J = 0 [where (2) reaches the equality] and
the extreme Kerr–Newman black hole given by d = 0 (where the inequalities (3) and
(4) reach the equality). Note that inequality (3) is equivalent, by a simple computation,
to the condition d ≥ 0.

It is important to recall that the Kerr–Newman metric is a solution of Einstein
electrovacuum equations for any choice of the parameters (M, J, Q). However, it
represents a black hole (and hence the area A of the horizon is well defined) if and
only the inequality (3) holds. Otherwise the spacetime contains a naked singularity.

Above, we have derived inequalities (2)–(4) from a very particular exact solution
of Einstein equations: the Kerr–Newman stationary black hole. However, remarkably,
these inequalities remain valid (under appropriate assumptions) for fully dynamical
black holes. Moreover, they are deeply connected with the expected properties of
the global evolution of Einstein equations, in particular with the cosmic censorship
conjecture.

The inequalities (2)–(4) can be divided into two groups:

1.
√

A
16π ≤ M : the area appears as lower bound.

2. Q2+
√

Q4+4J 2

2 ≤ M2 and 4π
√
Q4 + 4J 2 ≤ A: the angular momentum and the

charge appear as lower bounds.

This division seems rather unnatural at first, due to the quantities involved being
the same and the fact that inequalities (2) (in the first group) and (4) (in the second
group) look like intermediate inequalities of (3) (in the second group). However, at
the moment the division makes sense because the mathematical methods used to study
these two groups are in general different. We expect that in the future new connections
will appear between all these inequalities.

As the title of this article suggests, we will focus on the second group. For dynamical
black holes, the inequality (2) in the first group is the Penrose inequality. There exists
already an excellent and up to date review on this subject by Mars (2009).

Furthermore, the inequalities can also be classified as global or quasilocal. We
explain this distinction in more detail in Sect. 2. Roughly speaking, the total ADM
mass M is a global quantity, in contrast the area A is quasilocal, it depends on a
bounded region of the spacetime. In contrast, there are both global and quasilocal
definitions of charge Q and angular momentum J . With this in mind, (2) and (3) are
global inequalities, and (4) is a purely quasilocal inequality. Global inequalities can
be interpreted as refinements of the positive mass theorem in the presence of a black
hole.

Our main interest in this article is to examine inequalities (2)–(4) for dynamical
black holes and also in related or more general situations like stationary black holes
with surrounding matter fields, ordinary objects, higher dimensions and alternative
theories of gravity. However, in this article there are some topics that are left uncovered.
Some of them are:

– Geometrical inequalities involving quasilocal mass This is a very broad subject
as there are many different notions of quasilocal mass and energy. The problem of
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determining a unique appropriate notion that will give general useful and repre-
sentative geometrical inequalities is open. There is a beautiful review by Szabados
(2004), on quasilocal quantities, and in particular, quasilocal mass, that discusses
this issue

– Geometrical inequalities for black holes in higher dimensions and within alterna-
tive theories of gravity This topic has been growing during the last years and many
very interesting results have been obtained. See the work of Gibbons and Holzegel
(2006), Gibbons (1999), Hollands (2012), Yazadjiev (2013a, b), Fajman and Simon
(2014), Alaee et al. (2016, 2017a, b), Alaee and Kunduri (2014, 2016), Rogatko
(2014, 2017), and references therein.

The results presented in this article can be grouped essentially in three parts. The first
two parts concern black holes. Global inequalities of the form (3) are reviewed in
Sect. 3, and quasilocal inequalities of the form (4) are presented in Sect. 4. In Sect. 4.3
we discuss a partial relation between the global and the quasilocal problems. The
third part, in Sect. 5 addresses geometrical inequalities for non-black-hole objects.
The mathematical methods used to study the various problems are similar in many
ways but the physical implications and scopes of these types of inequalities appear to
be very different, we will address this issue in the following sections.

There are also a number of articles reviewing the subject of geometrical inequalities
that include some of the results presented here. They were written by Dain (2011, 2012,
2014a), and Jaramillo (2013) with slightly different approaches and focuses.

1.1 Motivation from stationary black holes

Before discussing the general setting, it is important to analyze, in a heuristic way, the
physical meaning of the inequalities (2)–(4) for stationary black holes.

Let us begin with inequality (2). This inequality describes the most basic property
of a black hole, that is, its mass is concentrated in a small region of space. More
precisely, in terms of the areal radius R := √

A/4π , this inequality is expressed as

R

2
≤ M. (5)

Inequality (5) can be interpreted as a weak version of the Hoop conjecture (Thorne
1972), in which the area is taken as a measure of the size of the black hole. See Senovilla
(2008) for alternative formulations and references to previous works on the conjecture,
and the more recent articles by Malec and Xie (2015), Yoshino (2008), Gibbons
(2009), Khuri (2009), Murchadha et al. (2010), Hod (2015) and Cvetic et al. (2011b).
Interestingly, there is a related conjectured inequality introduced by Yodzis et al. (1973)
and known as the trapped surface conjecture. It states that is the mass M enclosed in
a region of size R does not satisfy M ≤ R then the region must be trapped.

Consider the second inequality, (3). Using a mixture of classical and relativistic
equations, in the following we will argue that this inequality is essentially a conse-
quence of (5). Take a sphere of radius R with constant electric density and total charge
Q. The classical electromagnetic energy of this sphere is given by

123



 5 Page 6 of 74 S. Dain, M. E. Gabach-Clement

WQ = 3

5

Q2

R
. (6)

In addition, suppose that the sphere has mass M , constant density and it rotates with
constant angular velocity. The Newtonian kinetic energy of the sphere is given by

WJ = 5

4

J 2

MR2 , (7)

where J is the angular momentum of the sphere.
Assume that the sphere collapses and forms a black hole. Since the resulting black

hole is supposed to be stationary, we can identify the ADM mass with the mass of the
resulting black hole (Ashtekar et al. 2000a) and have that it should be greater than the
sum of the energies

WQ + WJ ≤ M. (8)

We use the inequality (5) to bound the radius R by the mass in the energies WQ

and WJ , we obtain

3

10

Q2

M
+ 5

16

J 2

M3 ≤ 3

5

Q2

R
+ 5

4

J 2

MR2 = WQ + WJ . (9)

Hence using (8) we finally get

Q2

M
+ J 2

M3 � M. (10)

Note that inequality (10) is equivalent to the condition d ≥ 0 given in (1) and hence
we recover the inequality (3). The symbol � in (10) means that in the left-hand side
of this equation we have approximated all the numerical factors that appear in Eq. (9)
by one. These numbers depend on some attributes we have chosen for the sphere: i.e.,
constant charge and mass density. We can not expect, by this kind of argument, to
obtain the precise numerical factors involved in the inequality (3), only the order of
magnitude. However, remarkably, we have obtained the correct functional dependence
on the parameters.

Finally, consider the last inequality (4). In the following, using thermodynamics
arguments for stationary black holes (Wald 2001), we will argue that this inequality
is a consequence of the inequality (3) and the existence of extreme black holes [i.e.,
black holes with non-zero area that saturates (3)].

Consider a general stationary black hole which is not necessarily Kerr–Newman,
for example a stationary black hole surrounded by a ring of matter. Assume that
there exists a function of the form A = A(M, J, Q) that relates the parameters of
the black hole. We can include more parameters into this function without altering
the following argument. If we identify the area A as the entropy of the black hole,
then, in the thermodynamical language, the function A(M, J, Q) would be identified
as the fundamental equation of the system. Its existence is one of the postulates of
Thermodynamics (see, for example, Callen 1985). The inverse of the temperature of
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the system is defined as the partial derivative of A(M, J, Q) with respect to M , and it
is a positive quantity. That is, if we define κ by

∂A

∂M
= 8π

κ
, (11)

we have κ ≥ 0. Hence, A(M, J, Q) is an increasing function of M for fixed J and Q.
Assume, in addition, that we have a lower bound for the mass M in terms of J and

Q like the inequality (3). We do not need the particular form given by (3), we assume
some general inequality of the form

M ≥ M0(J, Q), (12)

where M0(J, Q) is a strictly positive given function. Consider the function A(M, J, Q)

for fixed J and Q. The bound (12) implies that for M only values with M ≥ M0 are
allowed. Since A is an increasing function of M we obtain

A(M, J, Q) ≥ A(M0, J, Q) = A0(J, Q), (13)

where we have defined the function A0(J, Q) by

A0(J, Q) = A(M0(J, Q), J, Q). (14)

In order to obtain from (13) a non-trivial inequality we need to assume that A0 > 0 (in
principle we could have A0 identically zero). That is, we need to assume the existence
of non-trivial extreme black holes: black holes for which the bound (12) is saturated
and have non-zero area.

Given that the function A(M, J, Q) ends at the value A0, one can ask what happens
at that point. For the extreme black hole the temperature is zero, hence the derivative
(11) is infinite and then the function A(M, J, Q) can not be extended in any smooth
way beyond the point A0. This can be explicitly checked in the Kerr–Newman case
given by (1).

We have obtained the inequality (13), which has the same general form as (4).
Clearly, in order to obtain the explicit form of (4), one must take the Kerr–Newman
case in the limit values M0 and A0, that is

M2
0 (J, Q) = Q2 + √

Q4 + 4J 2

2
, A0(J, Q) = 4π

√
Q4 + 4J 2. (15)

However, inequality (13), obtained with the Assumptions (11) and (12) does exhibit
some general features similar to (4), namely, it suggests that the area is bounded below
by the angular momentum and charges. Also, that extremal black holes play a key role
in determining the minimum value for the area. And finally that the minimum value
for the mass affects the minimum value for the area.

In summary, these informal results show that inequalities (2)–(4) are partially moti-
vated by the Kerr family of stationary black holes. But there is another interesting
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observation in the above arguments. Namely, that Penrose inequality (2) implies the
global inequality (3) and the global inequality implies the quasilocal inequality (4)

M ≥
√

A

16π
⇒ M2 ≥ Q2 + √

Q4 + 4J 2

2
⇒ A ≥ 4π

√
Q4 + 4J 2. (16)

We note that we use the uncharged and non-rotating version of Penrose inequality
(see Mars 2009 for a review on the subject and Khuri et al. 2017 for a recent result on
the charged Penrose inequality for multiple black holes). The first implication in (16)
may be relevant when extending the Penrose inequality to include angular momentum
and charge. As we will see, the treatments of (3) and (4) are similar in some ways
and in fact, a version of the second implication is obtained in the general dynamical
scenario (see Sect. 4.3).

The implications (16) also put the Penrose inequality in a very especial place as
being, in a sense, more basic than the other inequalities. We come back to this issue
in Sect. 1.2 where it is deduced from standard arguments in collapse scenarios, and in
Sect. 1.3 where it is a result of Newtonian considerations with the only condition that
the speed of any particle should be smaller than or equal to the speed of light.

1.2 Heuristic arguments in dynamical black-hole regimes

The extension of the inequality (2) for dynamical black holes was done by Penrose
(1973) using a remarkable physical argument that connects global properties of the
gravitational collapse with geometric inequalities on the initial conditions. We briefly
review this argument below (see also Mars 2009; Dain 2012, 2014a and references
therein)

We will assume that the following statements hold in a gravitational collapse:

(i) Gravitational collapse results in a black hole (weak cosmic censorship).
(ii) The spacetime settles down to a stationary final state. Furthermore, at some finite

time after the collapse, all the non electromagnetic matter fields have fallen into
the black hole and hence the exterior region is electro-vacuum.

Conjectures (i) and (ii) constitute the standard picture of the gravitational collapse.
The black-hole uniqueness theorem implies that the final state postulated in (ii) is

given by the Kerr–Newman black hole (we emphasize however that many important
aspects of black-hole uniqueness still remain open, see Chruściel et al. (2012) for a
recent review on this problem). Let us denote by MKN, AKN, JKN and QKN the mass,
area, angular momentum and charge of the remainder Kerr–Newman black hole. These
quantities will, of course, satisfy the three inequalities (2)–(4).

Let us consider an initial data set for a gravitational collapse such that the collapse
has already occurred on the data. That means that the initial spacelike surface Σ

intersects the event horizon of the black hole. The intersection is a spacelike, closed,
2-surface denoted by S with area A(S). Let M be the total mass of the spacetime
defined by (69).
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From the black-hole area theorem (Hawking 1971; Chruściel et al. 2001) we have
that the area of the black hole increases with time and hence

A ≤ AKN. (17)

Since gravitational waves carry positive energy, the total mass of the spacetime
(ADM) should be bigger than the final mass of the black hole (Wald 1984)

MKN ≤ M. (18)

Combining (17) and (18) and the fact that the remainder black hole satisfies the
inequality (2), namely √

AKN

16π
≤ MKN, (19)

we finally conclude that √
A

16π
≤ M. (20)

There is still an important issue to be discussed: how to estimate the area A(S) in terms
of geometrical quantities that can be computed from the initial conditions. Recall that
in order to know the location of the event horizon the entire spacetime is needed.
Assume that the surface Σ contains a future trapped 2-surface S0. By a general result
on black-hole spacetimes (Penrose 1965; Hawking 1971), we know that the surface
S0 should be contained in S. But that does not necessarily mean that the area of
S0 is smaller than the area of S. Consider all surfaces S̃ enclosing S0. Denote by
Amin(S0) the infimum of the areas of all such surfaces. Then we clearly have that
A(S) ≥ Amin(S0). The advantage of this construction is that Amin(S0) is a quantity
that can be computed from the Cauchy surface Σ . Using this inequality we finally
obtain the Penrose inequality √

Amin(S0)

16π
≤ M. (21)

In the time symmetric case (i.e. when Ki j = 0) an important simplification occurs. For
that case, a marginally trapped outermost surface is a minimal surface (see Sect. 2.2
for definitions), and hence we do not need to consider the family of enclosing surfaces.
For further discussion we refer to Mars (2009) and references therein.

The key point in the previous argument is that there exist simple inequalities that
relate the quantities M and A on the initial conditions with the quantities MKN and
AKN on the remainder black hole, where the geometrical inequalities are satisfied.
For the second inequality (3) we need to consider the electric charge and the angular
momentum. The problem is that there is no simple inequality, like (18), that relates
the total electric charge and angular momentum of the initial data (Q∞, J∞) with the
corresponding quantities of the final, Kerr–Newman black hole (QKN, JKN). We need
additional assumptions.

Suppose that in the exterior of the black hole the matter fields are not charged. That
is

∇μT
EM μν = 0, (22)
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on Σ\S, where TEM μν is the energy momentum tensor field of electromagnetism.
Then, the electric charge is conserved in the exterior region (see Sect. 2) and hence
we have

Q∞ = QKN (23)

Using (23) and the fact that the remainder black hole satisfies

|QKN| ≤ MKN, (24)

we get
|Q∞| ≤ M. (25)

That is, we have obtained the dynamical version of the inequality (3) for the case
J = 0. Note that we have not used the area theorem. We see in Sect. 3 that the
assumption that the matter fields are non-charged in the black-hole exterior region can
be slightly relaxed: it can be assumed that the electric charge density is small with
respect to the mass density.

To relate the initial angular momentum J∞ with the final angular momentum JKN
is much more complicated. Angular momentum is in general non-conserved. There
exists no general simple relation between the total angular momentum J∞ of the ini-
tial conditions and the angular momentum JKN of the final black hole. For example,
a system can have J∞ = 0 initially, but collapse to a black hole with final angular
momentum JKN �= 0. We can imagine that on the initial surface there are two mat-
ter regions with opposite angular momentum, one of them falls into the black hole
and the other escapes to infinity. Axially symmetric vacuum spacetimes constitute a
remarkable exception because the angular momentum is conserved in electrovacuum.
That is, we have

J∞ = JKN. (26)

For a discussion of this conservation law in detail see Sect. 2. Using (26), (23), (18)
and (15) we finally obtain the dynamical version of the inequality (2)

Q2∞ + √
Q4∞ + 4J 2∞
2

≤ M2. (27)

We emphasize that the inequality (27) holds under the assumption of axial symmetry
and electrovacuum in the exterior region of the black hole. In fact, it is known (Huang
et al. 2011) that axial symmetry is a necessary condition for (27) to be valid.

We have seen that the two inequalities (2) and (3) extend to the dynamical regime in
the forms (21) and (27). These inequalities are global because the mass M is the total
mass of the spacetime. Whether the quantities in these inequalities can be replaced by
an appropriate defined black hole quasilocal mass and angular momentum is unknown.

Penrose argument is remarkable because starting from conjectures (i) and (ii) one is
able to deduce inequalities that can be written purely in terms of the initial conditions.
That is, the inequalities do not involve the unknown parameters MKN, QKN, JKN, AKN

of the remainder black hole. A counter example to inequalities (21) or (27) in axial
symmetry, will be a counter example of the conjectures (i) or (ii). On the other hand, the
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proof of such inequalities gives indirect evidences of the validity of the conjectures
(i) and (ii). In that sense, the physical heuristic argument is quite strong: in either
direction (i.e. if the inequalities are valid or not) it provides highly non-trivial new
insight. In contrast, the physical heuristic arguments for the validity of the quasilocal
inequality (4) in the dynamical regime are less conclusive.

The argument we present in Sect. 1.1 uses thermodynamics, and hence its validity
outside equilibrium is not clear. Nevertheless, the quantities involved in (4) are, as we
have seen in Sect. 2, well defined quasilocal quantities in the full dynamical regime
(in the case of angular momentum we need the additional assumption of axial sym-
metry). Consider a stationary black hole that satisfies inequality (4) (we can assume
instead that it satisfies the more general version (13), the following argument will
be identical). We make a perturbation to this stationary black hole that preserves the
charge and angular momentum of the black hole. For example, a vacuum axially sym-
metric perturbation will have this property. Physically, the stationary black hole will
absorb axially symmetric gravitational waves without changing its charge and angular
momentum. The area, however, will increase. That means that the same inequality (4)
will be satisfied for this dynamical black hole in the future. Slightly more general, if we
have a system of multiple black holes such that in the past they can be approximated
by isolated stationary black holes and such that the whole spacetime is axially sym-
metric and electrovacuum, then, by the same argument we expect that the inequality
(4) will be satisfied for each individual black hole. Head on collision of black holes is
an example of such situation. Hence, by this simple argument, we expect a large class
of dynamical black holes for which the inequality (4) is satisfied. However, it is not
obvious how to rule out black holes that can not be treated as continuous deformation
of stationary black holes (although perhaps such situation does not occur). For those
cases, we can argue as follows. If the inequality is not satisfied for a dynamical black
hole, then it should be possible to perturb it in the same way as above, increasing the
area and preserving the angular momentum and charge. There is in principle no phys-
ical restriction to how much the area changes, as long as it increases. Hence, it should
be possible to increase the area until the equality in (4) is reached. The arguments pre-
sented in Sect. 1.1 suggest that the equality is reached only for extreme black holes.
And there are well known physical arguments which suggest that extremal black holes
can not be produced in a finite process (Bardeen et al. 1973; Carroll et al. 2009).

Finally, we review the original argument in favor of (4) presented in Dain (2010)
(see also Dain 2012). Consider the formula (1) for the horizon area of the Kerr–
Newman black holes. From this expression, we can write the mass in terms of the other
parameters. Since in axial symmetry we have a well defined quasilocal definition of
angular momentum (Sect. 2) we can formally define the quasilocal mass of a black
hole by the same expression as the mass for the Kerr–Newman black hole but replacing
the parameters by its quasilocal definition, namely

Mbh(S) =
√

A(S)

16π
+ Q(S)2

2
+ π(Q(S)4 + 4J (S)2)

A(S)
. (28)

Note that in (28) we have used the total quasilocal angular momentum (i.e. gravitational
plus electromagnetic) [see definition (136) in Sect. 2.5]. The relevant question is: does
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Mbh describe the quasilocal mass of a non-stationary axially symmetric black hole?
This question is closely related to the validity of the inequality (4) in the dynamical
regime. In order to answer it, let us analyze the evolution of Mbh .

By the area theorem, we know that the horizon area will increase. If we assume axial
symmetry and electrovacuum, then the total angular momentum and the charge will be
conserved at the quasilocal level as we see in Sect. 2. On physical grounds, one would
expect that in this situation the quasilocal mass of the black hole increases with the
area, since there is no mechanism at the classical level to extract mass from the black
hole. In effect, the only way to extract mass from a black hole is by extracting angular
momentum through a Penrose process (Penrose and Floyd 1971; Christodoulou 1970).
But angular momentum transfer is forbidden in electrovacuum axial symmetry. Then,
one would expect both the area A and the quasilocal mass Mbh to monotonically
increase with time.

Let us take a time derivative of Mbh (denoted by a dot). To analyze this, it is illustra-
tive to write down the complete differential, namely the first law of thermodynamics
(Bardeen et al. 1973)

δMbh = κ

8π
δA + ΩH δ J + ΦH δQ, (29)

where

κ = 1

4Mbh

(
1 −

(
4π

A

)2

(Q4 + 4J 2)

)
, (30)

ΩH = 4π J

AMbh
, ΦH = 4π(Mbh + √

d)Q

A
, (31)

where Mbh is given by (27) and d [defined in Eq. (1)] is written in terms of A and J
and Q as

d = 1

M2
bh

(
A

16π

)2
(

1 − (Q4 + 4J 2)

(
4π

A

)2
)2

. (32)

Under our assumptions, from the formula (28) we obtain

Ṁbh = κ

8π
Ȧ, (33)

were we have used that the total angular momentum J and the charge Q are conserved.
Since, by the area theorem, we have

Ȧ ≥ 0, (34)

the time derivative of Mbh will be non-negative (and hence the mass Mbh will not
decrease with the area) if and only if κ ≥ 0, that is

4π
√
Q4 + 4J 2 ≤ A. (35)
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Then, it is natural to conjecture that (35) should be satisfied for any black hole in
axially symmetry. If the horizon violates (35) then in the evolution the area would
increase but the mass Mbh would decrease. This would indicate that the quantity Mbh

has not the desired physical meaning. Also, a rigidity statement is expected. Namely,
the equality in (35) is reached only by the extreme Kerr black hole given by the formula

A = 4π
(√

Q4 + 4J 2
)
. (36)

The final picture is that the size of the black hole is bounded from below by the
charge and angular momentum, and the minimal size is realized by the extreme Kerr–
Newman black hole. This inequality provides a remarkable quasilocal measure of
how far a dynamical black hole is from the extreme case, namely an ‘extremality
criteria’ in the spirit of Booth and Fairhurst (2008), although restricted only to axial
symmetry. Note also that the inequality (35) allows to define, at least formally, the
positive surface gravity density (or temperature) of a dynamical black hole by the
formula (30) (see Ashtekar and Krishnan 2002, 2003 for a related discussion of the
first law in dynamical horizons).

If inequality (35) is true, then we have a non-trivial monotonic quantity (in addition
to the black-hole area) Mbh in electro-vacuum

Ṁbh ≥ 0. (37)

There is a different notion of quasilocal energy, known as Hawking energy (Szabados
2004; Bray et al. 2016; Bray and Jauregui 2015; Dafermos 2005), which has monotonic
properties under certain energy conditions in various spacetime settings. Whether this
property can be used to motivate or prove (4) is an open problem.

It is important to emphasize that the physical arguments presented above in sup-
port of (35) are certainly weaker in comparison with the ones behind the Penrose
inequalities (21), (8) and (14). A counter example of any of these inequalities in axial
symmetry would prove that the standard picture of the gravitational collapse is wrong.
On the other hand, a counter example of (35) would only prove that the quasilocal
mass (27) is not appropriate to describe the evolution of a non-stationary black hole.
One can imagine other expressions for quasilocal mass, maybe more involved, in
axial symmetry. On the contrary, reversing the argument, a proof of (35) will certainly
suggest that the mass (27) has physical meaning for non-stationary black holes as a
natural quasilocal mass (at least in axial symmetry). Also, the inequality (35) provides
a non-trivial control of the size of a black hole valid at any time.

1.3 Motivation from Newtonian objects

Geometrical inequalities for ordinary matter fields have gained much interest in the
recent years. These inequalities are not expected to arise in Newtonian theory, unless
some specific systems or matter fields are considered, which have intrinsic restrictions.
With the state of the subject at present, we can not say that geometrical inequalities for
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objects are produced solely by Einstein equations. Other ingredients must be consid-
ered. In particular, one needs an analog of the variational characterization of extreme
black holes, that we showed in the previous sections.

What is interesting is that one obtains geometrical inequalities from Newtonian
considerations if they are supplemented with a key ingredient from General Relativity,
namely, that any speed in the system is not greater than the speed of light. We discuss
these inspirational inequalities in what follows.

We first consider the most basic argument in favor of Hoop inequality when we
look at an ordinary material object in Newtonian theory. For simplicity, take it to be
a spherical, static object of (quasilocal) mass m and radius R. Then the escape speed
from the surface of this object is

vesc =
√

2m

R
. (38)

Now, assuming the speed of any particle escaping from the object is not greater than
the speed of light, vesc ≤ 1, we obtain

m ≤ R

2
(39)

for the object, which agrees with (5).
Now we seek a quasilocal relation between angular momentum and size. We fol-

low Dain (2014b). Consider a Newtonian, spherically symmetric object Ω with mass
density μ, mass m and radius R, rotating with speed v. Then its angular momentum
is

J =
∫

Ω

μvρd3x (40)

where ρ is the distance to the symmetry axis and d3x is the flat volume element. Since
ρ ≤ R we obtain

J ≤ R
∫

Ω

μvd3x (41)

Now we take from Einstein theory, the condition that the speed should be smaller than
the speed of light, v ≤ 1. This allows to bound the angular momentum as

J ≤ R2

2
(42)

where we have also used inequality (39) to bound the quasilocal mass m = ∫
μ d3x .

Finally, we consider a global inequality for Newtonian systems satisfying the con-
dition v ≤ 1. We follow Anglada et al. (2017). Let Ω be an ordinary object with mass
density μ, quasilocal mass m, characteristic radius R, equatorial radius Rc (namely
Rc is the length, divided by 2π , of the greatest axially symmetric circle on ∂Ω) and
angular momentum J . Then we expect that the total energy of the system is a sum
of the gravitational and internal energies (included in the term E0) and the rotational
kinetic energy
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E ≈ E0 + J 2

2I
(43)

where I is the moment of inertia of the object. We bound the euclidean distance ρ

from the rotation axis, by the equatorial radius Rc, and use inequality (39)

I =
∫

Ω

μρ2d3x ≤ mR2
c ≤ RR2

c

2
. (44)

These considerations give

E � E0 + J 2

RR2
c
. (45)

Note that we obtain a lower bound on the total energy of the system in terms of E0,
the angular momentum and two measures of size. One coming from the Hoop-like
inequality (39) and the other coming from rotation. In other words, R measures how
localized matter is in Ω and Rc measures how distributed matter is with respect to the
rotation axis.

As opposed to (39), and (42), which are quasilocal inequalities, (45) is global in
nature as it contains the total energy of the system.

What is remarkable is that these informal and naive arguments lead to similar
inequalities that can be formally obtained from purely relativistic considerations about
ordinary, non-black-hole objects. We review them in Sect. 5.

2 Basic definitions

In order to extend inequalities (2)–(4) to dynamical black holes and even to more
general situations like ordinary objects we need to introduce these elements with detail,
and properly define the physical quantities associated to them (M, Q, J, A, etc) in the
fully dynamical regime.

Black holes are the main type of object we present in this article. That is the setting
that originally motivated the study of the geometrical inequalities given in this article
and where the most important results have been found so far. However, there are
other quasilocal objects that are relevant, namely isoperimetric surfaces and bounded
regions representing ordinary objects. We present these objects in Sect. 2.2

On the other hand, the physical quantities studied in this review can be divided
in three groups: local quantities, global quantities and quasilocal quantities. Local
quantities are tensor fields, global quantities are associated to the whole spacetime and
quasilocal quantities are associated with finite regions. We define them in Sects. 2.3, 2.4
and 2.5 respectively.

Before proceeding further with these concepts, we fix the basic notation we use
throughout the article.

Let M be a 4-dimensional manifold with metric gμν [with signature (− + ++)]
and Levi-Civita connection ∇μ. In the following, Greek indices μ, ν, . . . are 4-
dimensional, they are raised and lowered with the metric gμν and its inverse gμν .
If, in addition, gμν satisfies Einstein equations
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Gμν ≡ 4Rμν−1

2
4Rgμν = 8πTμν − Λgμν on M, (46)

where Λ is a cosmological constant, Tμν is the energy momentum tensor, 4Rμν is the
Ricci tensor of the metric gμν and 4R, its scalar curvature, then we call (M, gμν) a
spacetime.

Initial conditions for Einstein equations (46) are characterized by an initial data set
(Σ, hi j , Ki j , μ, j i ) where Σ is a connected 3-dimensional manifold, hi j a (positive
definite) Riemannian metric, Ki j a symmetric tensor field, μ a scalar field and j i a
vector field on Σ . These fields satisfy the constraint equations

Dj K
i j − Di K = −8π j i (47)

3R − Ki j K
i j + K 2 = 16πμ (48)

on Σ . Here D and 3R are the Levi-Civita connection and scalar curvature associated
with hi j , and K = Ki j hi j . Latin indices i, k, . . . are 3-dimensional, they are raised
and lowered with the metric hi j and its inverse hi j .

2.1 Asymptotically flat and cylindrical ends

The initial data models an isolated system when the fields are weak far away from the
sources. This physical idea is captured in the following definition of asymptotically
flat initial data set. Let BR be a ball of finite radius R in R

3. The exterior region
U = R

3\BR is called an end. On U we consider Cartesian coordinates xi with their

associated euclidean radius r =
(∑3

i=1(x
i )2

)1/2
and δi j to be the euclidean metric

components with respect to xi . A 3-dimensional manifold Σ is called Euclidean
at infinity, if there exists a compact subset K of Σ such that Σ\K is the disjoint
union of a finite number of ends Uk . The initial data set (Σ, hi j , Ki j , μ, j i ) is called
asymptotically flat if Σ is Euclidean at infinity and at every end the metric hi j and the
tensor Ki j satisfy the following fall-off conditions

hi j = δi j + ĥi j , Ki j = O(r−2), (49)

where ĥi j = O(r−1), ∂k ĥi j = O(r−2), ∂l∂kγi j = O(r−3) and ∂k Ki j = O(r−3).
These conditions are written in terms of Cartesian coordinates xi attached at every
end Uk . Here ∂i denotes partial derivatives with respect to these coordinates.

The fall-off conditions (49) are far from being the minimal requirements for the
validity of the theorems presented in this article. We have chosen these particular fall-
off conditions because they are simple to present and they encompass a rich family of
physical models. For more refined assumptions we will refer to the original references.

See however, Sect. 2.4 where the stronger fall-off condition (71) on the second
fundamental form Ki j is imposed. This stronger requirement is necessary to make the
integral in the definition of angular momentum converge.
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An initial data may have more than one asymptotically flat end, and the asymptotic
conditions (49) should hold at each one of these ends.

On the other hand, the initial data may have asymptotically cylindrical ends. They
are defined in the following way, extracted from Chruściel et al. (2013), Chruściel
and Mazzeo (2015) (see also Dain 2010). An asymptotically cylindrical end of Σ is
R

+ × N where N is a compact 2-manifold where hi j and Ki j are conformal to fields
having the asymptotic form

h̃ = dx2 + h̃N + O(e−νx ), K̃ = K̃ N + O(e−νx ) (50)

for some metric hN on N , a symmetric 2-tensor field K N on N , and a positive constant
ν.

2.2 Black holes and other objects

2.2.1 Black holes

Black holes are global concepts referring to the causal structure of the whole space-
time and therefore, can not be defined in terms of local or quasilocal quantities. This
property makes practical applications difficult to study and has led to the development
of quasilocal meaningful characterizations of black holes. The intuitive idea that a
black hole is a region of spacetime from which no signal can escape is captured by the
notion of trapped surface described below. See the articles by Beig and O’Murchadha
(1996), Dain (2004), Booth (2005), Jaramillo et al. (2008), Mars (2009), Hayward
(2011) and Senovilla (2011), for further references, details and discussions on these
quasilocal characterizations.

Consider an oriented spacetime (M, gμν) and a closed, oriented, smooth spacelike
2-surface S in M . Let μ and kν be the null vectors spanning the normal plane to S
and normalized such that μkμ = −1 (note that there is a boost rescaling freedom
′μ = f μ, k′μ = f −1kμ). In terms of μ and kμ, the induced metric and the volume
element on S (written as spacetime projectors) are given by γμν = gμν +μkν +νkμ
and εμν = 2−1ελγμν

λkγ respectively. The expansions of the null congruences of
geodesics with tangent vector fields μ and kμ are

θ+ := γ μν∇μν, θ− := γ μν∇μkν . (51)

The surface S is called trapped if θ± < 0 and weakly trapped if θ± ≤ 0. The rel-
evance of trapped surfaces comes from the singularity theorems of Penrose (1965)
and Hawking (1971) [see also the review article by Senovilla and Garfinkle (2015)].
Under the Weak Cosmic Censorship Conjecture (see Wald 1999 for details on the
conjecture and Christodoulou 1999, 2008; Dafermos 2005 for proofs in spherical
symmetry), future trapped surfaces in asymptotically flat initial data evolve into black
holes and therefore are fair quasilocal representatives of them. Moreover, the location
of the trapped surface is related to the location of the event horizon. This, in particular,
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is important when analyzing size and shape of a trapped surface as a way to obtain
information about the size and shape of a black hole.

In this article we are mainly concerned with two particular cases of trapped surfaces:

– marginally outer trapped surfaces (MOTSs), for which θ+ = 0 on S,
– minimal surfaces for which θ± = 0.

MOTS are typically located inside the event horizon in dynamical black hole space-
times and coincide with compact cross sections of the event horizon in stationary black
hole spacetimes (Andersson and Metzger 2009). There is, however an important point
that one must keep in mind. This is, even when the trapped surfaces are inside the
event horizon, their area need not be smaller than the black hole’s area.

Minimal surfaces have played a key role in the study of geometrical inequalities for
black holes in General Relativity since the early days and especially since the proof
of the positive mass theorem (Huisken and Ilmanen 2001) . Without mention of null
expansions, minimal surfaces are characterized by the vanishing extrinsic curvature
when seen as surfaces S embedded in a 3-dimensional slice Σ . Note also that if
the slice is part of a time symmetric initial data (Σ, hi j , Ki j ≡ 0), then S is also a
MOTS. Moreover, as we show in Sect. 4.2.5, the variational characterization of stable
minimal surfaces is closely related to the one for stable MOTSs. Roughly speaking,
stability for minimal surfaces and MOTS (and also for isoperimetric surfaces, see
Sects. 2.2.2, 5.2.3) implies a minimization of the area function under certain surface
deformations (see Sect. 4.1.1 for precise definitions). The relation between stability
of MOTS, black holes and black hole inequalities is discussed by Mars (2014).

With the concept of trapped regions, one can study a (globally hyperbolic) black
hole spacetime as the manifold (M = R × Σ, gμν) where Σ is a spacelike Cauchy
surface with trapped inner boundary S. This is the approach taken to study quasilocal
Lorentzian inequalities in Sect. 4. Other alternative, mainly used in the study of global
and quasilocal Riemannian inequalities is to consider Σ as a surface with one asymp-
totically flat end (representing the region far away from the black holes), and as many
extra ends as black holes one wishes to consider (Chruściel 2008). The extra ends will
be asymptotically flat if the black holes are subextremal and asymptotically cylindri-
cal if they are extremal black holes. These extra ends are usually called punctures in
the numerical community and this type of topology seems to be more appropriate to
numerical simulations than 3-surfaces with inner boundaries (Immerman and Baum-
garte 2009). So, in a sense, the black holes are represented by non-trivial topology on
the initial surface Σ (see Gannon 1975; Lee 1976; Meeks et al. 1982; Andersson and
Metzger 2009; Eichmair 2007; Andersson et al. 2011; Chruściel et al. 2011; Eichmair
et al. 2013).

As an example, consider the Schwarzschild metric is standard coordinates

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (52)

This metric describes a black hole as the manifold M = R × Σ with metric (52),
where Σ is an asymptotically flat Riemannian manifold with inner boundary ∂Σ =
{r = 2M}. The inner boundary indicates the location of the event horizon. In this
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case, the sphere r = 2M is a minimal surface and a MOTS. There exists a coordinate
system where a doubling of Σ is performed. Indeed, make the transformation to the
isotropic coordinate r̄ defined as

r̄ := 1

2

[
r − M ± √

r(r − 2M)
]
. (53)

Then the transformed metric

ds2 = −
(

1 − M/2r̄

1 + M/2r̄

)
dt2 +

(
1 + M

r̄

)4 [
dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2

]
(54)

is smooth on the doubled manifold. Note that r̄ is double valued, it describes two
copies of the exterior region of Schwarzschild. The horizon corresponds to the surface
r̄ = M/2. This metric is invariant under the inversion through the surface r̄ = M/2.
The doubled Riemannian manifold has two asymptotically flat ends at r̄ → 0 and
r̄ → ∞ connected by a minimal surface at r̄ = M/2. In this construction the presence
of the black hole is manifested through the extra end at r̄ → 0.

2.2.2 Isoperimetric surfaces and ordinary objects

As we mention in the introduction, Sect. 1.3, geometrical inequalities for non-black
hole objects have gained impetus in recent years.

The first difficulty when studying these systems is the characterization of such
ordinary objects. This problem does not appear in the black hole case where there is a
well identified surface (the trapped surface) locating the black hole, to which one can
associate convenient stability properties.

Away from black holes, one can consider isoperimetric surfaces. These surfaces
have been studied within the context of geometrical inequalities in General Relativ-
ity, mainly in the context of Penrose inequality (Gibbons 1984, 1997; Malec 1992;
Gibbons and Holzegel 2006; Corvino et al. 2007). Isoperimetric surfaces are such that
its area is a critical point with respect to nearby surfaces enclosing a given volume.
This variational characterization what makes them potentially useful for the study of
inequalities.

Ordinary objects, on the other hand, are connected, open, bounded sets with smooth
boundary in an initial spacelike hypersurface. Intuitively, an ordinary material object
would be the bounded region where smooth matter fields have support. The main
difficulty in this case is the lack of a variational characterization, which makes the
obtention of geometrical inequalities hard to achieve. In Sect. 5.2 we describe what
conditions have been imposed on the objects in order to produce the desired physical-
geometrical estimate.
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2.3 Local physical quantities

The local physical quantities relevant for General Relativity are shown in Einstein
equations (46) and, in particular, in Einstein constraints (47), (48). We focus in this
section on the energy momentum tensor Tμν describing matter fields.

It is useful to decomposeTμν into an electromagnetic part and a non-electromagnetic
part

Tμν = TEM
μν + T M

μν, (55)

where TEM
μν is the electromagnetic energy momentum tensor given by

TEM
μν = 1

4π

(
FμλFν

λ − 1

4
gμνFλγ F

λγ

)
, (56)

and Fμν is the (antisymmetric) electromagnetic field tensor that satisfies Maxwell
equations

∇μFμν = −4π jEMν , (57)

∇[μFνα] = 0. (58)

where jEMν is the electromagnetic current.
No specific matter model will be used, the only equation that Tμν is required to

satisfy is the local conservation law (74)
It is important to emphasize that, unless otherwise stated, the tensors TEM

μν and T M
μν

are not, individually, divergence free.
We assume that the matter fields satisfy the dominant energy condition, that is

Tμνv
μwν ≥ 0, (59)

for all future-directed causal vectors vμ and wν . We usually impose this condition also
on T M

μν .
Summarizing, the relevant local quantity is the energy momentum tensor Tμν , which

satisfies the local conditions (74) and (59). Two important particular cases are vacuum
Tμν = 0 and electrovacuum T M

μν = 0.

2.4 Global physical quantities

Global quantities are associated to isolated systems. An isolated system is an ideal-
ization in physics that assumes that the sources are confined to a finite region and
the fields are weak far away from the sources. This kind of systems are expected to
have finite total energy, linear momentum, angular momentum and charge. In General
Relativity there are several ways of defining isolated systems. For our purpose the
most appropriate definition is through initial conditions for Einstein equations. Most
results concerning global inequalities discussed in this article has been proved, so far,
in terms of initial conditions.
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Consider an initial data set (Σ, hi j , Ki j , μ, j i ) satisfying Einstein constraints (47),
(48). If we take the initial data as a spacelike surface in the spacetime, with unit
timelike normal tμ, then the matter fields μ and j i are given in terms of the energy
momentum tensor by

μ = Tμν t
μtν, ji = Tμi t

μ. (60)

The dominant energy condition (59) implies

μ2 ≥ ji j
i . (61)

The decomposition (55) of the matter fields translates into

μ = μEM + μM , ji = jEMi + j Mi , (62)

where we have defined

μEM = 1

4π

(
Ei Ei + Bi Bi

)
, jEMi = εi jk E

j Bk, (63)

and the electric field E and magnetic field B are given by

Eμ = Fμν t
ν, Bμ = −∗Fμν t

ν, (64)

where the dual of Fμν is defined with respect to the volume element εμνλγ of the
metric gμν by the standard formula

∗αμ1···μ4−p = 1

p!α
ν1···νpεν1···νpμ1···μ4−p . (65)

The electric charge density ρE is defined by

Di Ei = 4πρE . (66)

In vacuum we have μ = 0, j i = 0, and in electrovacuum, μM = 0, j iM = 0.
For asymptotically flat initial data the expressions for the total energy and linear

momentum of the spacetime were presented in Arnowitt et al. (1962) (see also Bartnik
1986; Chruściel 1986) and they are called the ADM energy and linear momentum.
They are defined as integrals over 2-spheres Sr at infinity at every asymptotically flat
end by the following formulae

E = 1

16π
lim
r→∞

∮

Sr

(
∂ j hi j − ∂i h j j

)
si ds0 (67)

Pi = 1

8π
lim
r→∞

∮

Sr

(Kik − Khik) s
kds0, (68)
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where si is its exterior unit normal and ds0 is the surface element of the 2-sphere
with respect to the euclidean metric. The energy E and the linear momentum Pi are
components of a 4-vector (E, Pi ). The total mass of the spacetime is defined by

M =
√
E2 − P2, (69)

where we have used the notation P2 = Pi Pjδ
i j .

Let β i be an infinitesimal generator for rotations with respect to the flat metric
associated with the asymptotically flat end U , then the angular momentum J in the
direction of β i is given by

J∞(β) = 1

8π
lim
r→∞

∮

Sr

(Ki j − Khi j )β
i s j ds0. (70)

The fall-off conditions (49) are not sufficient to ensure the convergence of the inte-
gral (70), extra assumptions are needed. For the results presented in this review which
involve the angular momentum J∞, a stronger fall-off condition on the second funda-
mental form Ki j is imposed

Ki j = O(r−3). (71)

In particular this assumption implies that the linear momentum vanishes.
The total electric and magnetic charges are given by Ashtekar et al. (2000b)

QE∞ = 1

4π
lim
r→∞

∮

Sr

Ei s
i ds0. (72)

QB∞ = 1

4π
lim
r→∞

∮

Sr

Bi s
i ds0 (73)

and we will usually denote them collectively as Q∞. Note that the magnetic charge
does not refer to a magnetic monopole, as it is believed that they do not exist in nature,
but it reflects a non-trivial U (1) fiber bundle (see Ashtekar and Krishnan 2004 for
details).

We emphasize that for every asymptotically flat endUk we have the corresponding,
in principle different, quantities E(k), Pi

(k), J
i
(k)∞, Q(k)∞.

We use a subscript ∞ in the notation for J∞ and Q∞, to distinguish them from
the quasilocal quantities presented in Sect. 2.5. However, since we will not discuss
geometrical inequalities involving quasilocal mass or linear momentum we will not
use a subscript ∞ in E and Pi . We expect future extensions of inequalities (2)–(4) in
this direction, giving purely quasilocal geometrical inequalities.

2.5 Quasilocal physical quantities

Quasilocal quantities depend on a bounded spacelike 3-dimensional region Ω , which
can be thought as a subset of some initial dataΩ ⊂ Σ . There are two kinds of quasilocal
quantities, the first ones depend only on the boundary of the region Ω , that is a 2-
dimensional spacelike closed surface that we will denote byS. The second ones depend
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also on the interior of Ω (for more details on this classification, that is both subtle and
important, see Szabados 2004). See also Wieland (2017), Chen et al. (2016), Epp et al.
(2013), Tung (2009), Yoon (2004) and Nester et al. (2004). It turns out that for black
holes only quasilocal quantities of the first kind are relevant. For objects, quantities
of the second kind are also needed. For example, in spherical symmetry the geodesic
distance to the center is a relevant quasilocal measure of size. We will present some
of these measures with more detail in Sect. 5. Below, we concentrate on quasilocal
quantities that depend only on 2-dimensional closed spacelike surfaces S.

On S we define intrinsic and extrinsic quantities. The former depend only on the
induced Riemannian 2-dimensional metric on the surface that we denote by qi j . The
extrinsic quantities depend also on the extrinsic curvature of the surface and possible
additional fields like the electromagnetic fields. The most important intrinsic quantity
is the area A(S) of the surface. For black holes, this is certainly the most relevant
intrinsic quantity. But, even for black holes, there exists also other intrinsic quantities
that measure the shape of the surface and satisfy geometrical inequalities. We will
present them in Sect. 4.2.

2.5.1 Conserved quantities

For the discussion of conserved quasilocal quantities, we essentially follow Sect. 2
in Szabados (2004) and Weinstein (1996), see also Dain (2014a).

Consider an arbitrary energy-momentum tensor Tμν which satisfies the conserva-
tion equation

∇μT
μν = 0. (74)

on the curved background (M, gμν) [we are not assuming Einstein equations (46)].
Assume that the spacetime admits a Killing vector field ημ, that is

∇(μην) = 0. (75)

For the present discussion, the vector ημ is an arbitrary Killing field, later on we will
fix it to be the axial Killing field (i.e. the Killing field associated to axial symmetry).
From Eqs. (74) and (75) we deduce that the vector

Zμ = 8πTμνην, (76)

is divergence free
∇μZ

μ = 0. (77)

The calculations involved in the definitions of quasilocal quantities require integration
over domains with different dimensions and the use of Stokes’ theorem on them.
Hence, it is sometimes convenient to use differential forms instead of tensors in order
to highlight the geometrical meaning of the integrals. In this section we denote them
with boldface.

Let Z be the 1-form defined by (76). Equation (77) is equivalent to

d∗Z = 0. (78)
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Integrating (78) over an orientable, compact but otherwise arbitrary 4-dimensional
region of the spacetime and using Stokes’ theorem we obtain the integral form of this
conservation law. A particular relevant case is when the 4-dimensional region is a
timelike cylinder such that its boundary is formed by the bottom and the top spacelike
surfaces Ω1 and Ω2 and the timelike piece C. For that case, we have

∫

Ω2

∗Z −
∫

Ω1

∗Z = −
∫

C
∗Z, (79)

where the minus sign in the integral over Ω1 comes from the choice of the normal.
The charge associated to Z of the 3-dimensional spacelike surface Ω is defined by

Z(Ω) =
∫

Ω

∗Z, (80)

then we may write Eq. (79) as

Z(Ω2) − Z(Ω1) = −
∫

C
∗Z, (81)

Note that the quantities Z(Ω) are defined in terms of integrals over 3-dimensional
spacelike surfaces. However, Eq. (78) implies, at least locally, that there exists a 2-form
∗V such that

∗Z = d∗V . (82)

The 2-form V is called a superpotential for the 3-form ∗Z. We have chosen the dual
∗V instead of V in the definition (82) in order to make the analogy below, with the
Maxwell form ∗F more transparent. Then, using (82) and Stokes’ theorem once again
we have

Z(Ω) =
∫

Ω

∗Z =
∫

Ω

d∗V =
∫

∂Ω

∗V (83)

Denoting by S the boundary ∂Ω we arrive at the conservation law

Z(S2) − Z(S1) = −
∫

C
∗Z, (84)

where we have defined the quasilocal quantity Z(S) by

Z(S) =
∫

S
∗V . (85)

For example, consider the electromagnetic energy momentum tensor TEM, and let ημ

be a spacelike Killing vector (for instance, the axial Killing vector). Assume that ημ

is tangent to Ω . Then we have a rotation axis β and

ZEM(Ω) = 8π
∫

Ω

TEM
μν tμην (86)
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= 8π
∫

Ω

E j Bkηiεi jkdv (87)

where tμ is the unit vector field normal to Ω . In Minkowski, a rotation around an
arbitrary vector β i �≡ 0 is given by

ηi = εi jkβ
j xk, (88)

where xi are Cartesian coordinates. Then, the expression (86) reduces to

ZEM(Ω) = 8π
∫

Ω

E[i B j]xiβ j . (89)

This is the formula for the angular momentum (in the direction of β) of the electro-
magnetic field used in textbooks (see, for example, Jackson 1999; Zangwill 2013).

In Minkowski this construction provides, for each Killing vector field ημ, the con-
servation law for all relevant physical quantities associated with the matter field Tμν

(i.e. energy, linear momentum, angular momentum).

2.5.2 Electromagnetic charge

The most simple and important extrinsic quasilocal quantity on a closed 2-surface S
is the electromagnetic charge Q(S). Its definition and properties serve as model for
all the other quasilocal quantities defined on S. Let F be the 2-form corresponding
to the electromagnetic tensor Fμν , and let ∗F be its dual. In terms of forms, Maxwell
equations (57) are written as

d∗F = 4π∗ jEM, (90)

dF = 0. (91)

The conservation law for the current jEM is obtained by taking an exterior derivative
to Eq. (90), namely

d∗ jEM = 0. (92)

Integrating (92) over a 4-dimensional timelike cylinder with boundaries Ω1, Ω2 and
C, as in Sect. 2.5.1, gives

∫

Ω2

∗ jEM −
∫

Ω1

∗ jEM = −
∫

C
∗ jEM. (93)

The electric charge of the 3-dimensional spacelike surface Ω2 is defined by

QE (Ω) =
∫

Ω

∗ jEM. (94)
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Using Eq. (90) in the left-hand side of Eq. (93) we can apply again Stokes’ theorem
over the 3-surfaces Ω1 and Ω2 with boundaries S1 and S2 respectively. We obtain

QE (S2) − QE (S1) = −
∫

C
∗ jEM, (95)

where now the electric charge Q(S) is defined by the following surface integral over
S

QE (S) = 1

4π

∫

S
∗F. (96)

Equation (95) is the conservation law for the electric charge. It depends only on
Eq. (92). This equation implies that, at least locally, there exists a 2-form ∗F such that
(90) holds.

In electromagnetism, we start with the field Eqs. (90)–(91) and then we deduce (92)
and hence the conservation of QE .

Similarly, by taking the exterior derivative of (91) one obtains that the magnetic
charge

QB(S) = 1

4π

∫

S
F (97)

is conserved (Ashtekar et al. 2000b), that is

QB(S1) = QB(S2). (98)

Equation (98) means that QB depends only on the homology class of S. If S can be
shrunk to a point, then QB(S) = 0.

In particular, when jEM = 0 in Ω the charge has the same value, namely

QE (S1) = QE (S2). (99)

That is, when no sources are present the electric charge QE (S) also depends only on
the homology class of S.

In order to make contact between quantities written in terms of differential forms
and other equivalent expressions used in the literature written in terms of tensors it
is convenient to choose a tetrad adapted to a closed, oriented, spacelike 2-surface S.
Consider null vectors μ and kν spanning the normal plane to S and normalized as
μkμ = −1, leaving a (boost) rescaling freedom ′μ = f μ, k′μ = f −1kμ. The
induced metric and the volume element on S (written as spacetime projectors) are
given by qμν = gμν + μkν + νkμ and εμν = 2−1ελγμν

λkγ respectively. The area
measure on S is denoted by ds.

Using tensors and the adapted null vectors μ and kμ defined above, the electric
and magnetic charges (96), (97) are equivalent to

QE (S) = 1

4π

∫

S
Fμν

μkν ds. (100)

QB(S) = 1

4π

∫

S
∗Fμν

μkν ds. (101)
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To relate quasilocal quantities with global quantities it is useful to consider 2-
surfaces S that are boundaries of compact subsets Ω of the initial data Σ . Let tμ

denote the spacetime unit, timelike normal of Ω . Let sμ be the unit, spacelike, normal
of S pointing in the outward direction to Ω lying on Ω . The outgoing and ingoing
null geodesics orthogonal to S defined above are given by μ = (tμ + sμ)/

√
2 and

kμ = (tμ − sμ)/
√

2.
The quasilocal electric and magnetic charges are given by the same expressions

(72), (73) but the integrals are taken over the surface S, that is

QE (S) = 1

4π

∮

S
Ei s

i ds. (102)

QB(S) = 1

4π

∮

S
Bi s

i ds. (103)

In particular, the total charge Q∞ (that is, the charge contained in Σ) is obtained as
the limit

Q∞ = lim
r→∞ Q(Sr ), (104)

where the sequence of surfaces Sr are chosen in the same asymptotic end.

2.5.3 Angular momentum

To define quasilocal angular momentum in general is a difficult problem (see the
review by Szabados 2004). However, for axially symmetric spacetimes there exists
a simple and well defined notion of quasilocal angular momentum which was intro-
duced by Komar (1959) (see also Wald 1984). In the literature this definition is usually
discussed in vacuum settings, where the angular momentum is conserved. Remark-
ably, it turns out that the quasilocal inequalities of the form (4) are still valid in the
non-vacuum case. The inclusion of matter fields (in particular, electromagnetic fields)
presents some peculiarities in the definitions and also in the discussion of the conser-
vation (and non-conservation) of angular momentum.

We have seen in Sect. 2.5.2 that the superpotentials V for electric and magnetic
charges are given by V E = F/4π and V B = ∗F/4π .

However, there is in general no explicit formula for the superpotential V J that
gives rise to angular momentum, in terms of the fields. For example, consider the
electromagnetic tensor TEM

μν . Let Aμ be the electromagnetic potential defined by

Fμν = ∇μAν − ∇ν Aμ, F = dA. (105)

Since V J is calculated as an integral of TEM
μν (which involves squares of Fμν), a naive

counting of derivatives suggests that V J could be written as products between Fμν

and Aμ. However, it appears not to be possible to obtain such explicit expression
independent of the solutions.1 In order to get such expression we need to impose the
solution to be symmetric with respect to the Killing vector ημ and also the surface

1 We thanks L. Szabados for clarifying this point.
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of integration to be tangent to the Killing vector. In the following, we will explicitly
find the superpotential V J for axially symmetric solutions of Maxwell equation. We
generalize the discussion presented in Dain (2012) to include a non-zero electromag-
netic current jEM and also we make contact with other equivalent expressions for the
quasilocal angular momentum of the electromagnetic field used in the literature.

Denote by ημ the Killing field generator of the axial symmetry. The orbits of ημ are
either points or circles (Beetle and Wilder 2015). The set of point orbits Γ is called the
axis of symmetry. Assuming that Γ is a surface, it can be proven that ημ is spacelike in
a neighborhood of Γ (see Mars and Senovilla 1993). We will further assume that the
Killing vector is always spacelike outside Γ . Note that if this condition is not satisfied
then the spacetime will have closed causal curves, in particular it will not be globally
hyperbolic. The form ημ will be denoted by η, and the square of its norm by η, namely

η = ημημ = |η|2. (106)

We have used the notation ημ to denote the Killing vector field and η to denote the
square of its norm to be consistent with the literature. However, to avoid confusions
between ημ and its square norm η, we will denote the vector field ημ by η̄ in equations
involving differential forms in the index free notation.

We assume that the Maxwell fields are axially symmetric, namely

£ηF = 0, (107)

where £ denotes Lie derivative. Consider the 1-forms defined by

α = F(η̄), β = ∗F(η̄), (108)

where we have used the standard notation F(η̄) = Fμνη
μ to denote contractions of

forms with vector fields. From Maxwell equations (90)–(91) and the condition (107)
we obtain

dα = 0, dβ = −4π∗ jEM(η̄). (109)

The first equation in (109) implies that, locally, there exists a function χ such that

α = dχ. (110)

We calculate the 1-form Z defined in (76) for the electromagnetic tensor TEM
μν where

now ημ is the Killing vector field associated to axial symmetry. We denote it again by
ZEM and obtain

ZEM = 2

(
F(α) − 1

4
η|F |2

)
. (111)

We want to write the integral of the 3-form ∗ZEM as a boundary integral of a 2-form.
In order to do that, we use that η and β satisfy the following identity

∗(η ∧ (F(α)) = α ∧ β, (112)
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and we also use the following general identity valid for arbitrary 1-forms

∗(η ∧ Z) ∧ η = η∗Z − ∗η(Z(η̄)). (113)

Inserting (112) and (113) in (111) we obtain

∗ZEM = 2α ∧ β ∧ η̂ + ∗η̂(Z(η̄)), (114)

where the 1-form η̂ is defined by

η̂ = η

η
. (115)

To write the first term in the right-hand side of (114) as the exterior derivative of a
2-form we use the following simple identity

d(χβ ∧ η̂) = α ∧ β ∧ η̂ + χdβ ∧ η̂ + χβ ∧ dη̂, (116)

where the potential χ is defined by (110). Putting (116) in (114) we finally obtain

∗ZEM = 2d(χβ ∧ η̂) + 8πχ η̂ ∧ ∗ jEM(η̄) + χβ ∧ dη̂ + ∗η̂(Z(η̄)), (117)

where we have used Eq. (109) to replace the term with dβ by jEM in (116).
We integrate Eq. (117) over a 3-surface Ω tangential to ημ, with boundary S. The

third and the fourth term in (117) do not contribute to the integral because

dη̂(η̄) = 0, β(η̄) = 0, (118)

and also the restriction of the 3-form ∗η̂ to Ω is zero. Hence, we obtain the final result

1

8π

∫

Ω

∗ZEM = −JEM(S) +
∫

Ω

χ η̂ ∧ ∗ jEM(η̄), (119)

where we have defined the quasilocal angular momentum of the electromagnetic field
JEM(S) by

JEM(S) = − 1

4π

∫

S
χβ ∧ η̂. (120)

The 2-form χβ ∧ η̂ is the superpotential ∗V J used in (85). We remark, however,
that the expression (120) is valid only for axially symmetric solutions [i.e. we have
assumed (107)] and axially symmetric surfaces (i.e. the Killing field ημ is tangent to
S).

Note that Eq. (119) is valid for non-zero sources jEM. We discuss the case jEM =
0, and more generally, the case jEM(η̄) = 0 for axially symmetric initial data in
Sects. 3.2.5 and 4.2.5.

To write the angular momentum (120) in terms of the potential Aμ defined by (105)
we use that

χ = Aμη
μ, (121)
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where we have assumed that the potential Aμ is also axially symmetric, that is

£ηA = 0. (122)

Then inserting (121) in (120) we get

JEM(S) = 1

4π

∫

S
(Aλη

λ)Fμνl
μkν ds. (123)

We consider now the angular momentum of the gravitational field. The analog of
the electromagnetic current 1-form jEMμ is played by the 1-form Ẑ defined by

Ẑ ≡ Ẑμ = 4Rμνη
ν. (124)

Using the Killing equation for ημ we obtain

∇μ Ẑ
μ = 0. (125)

This equation is equivalent to
d∗ Ẑ = 0. (126)

Hence, we have conservation law for Ẑ, as we have discussed above for the matter
fields and the form Z defined by (76). For Ẑ, the Komar identity given by (see Wald
1984)

d∗dη = 2∗ Ẑ, (127)

provides an explicit formula for the superpotential of Ẑ. The quasilocal Komar angular
momentum is defined by

JK (S) = 1

16π

∫

S
∗dη, (128)

where S is an arbitrary spacelike closed 2-surface. The conservation law for angular
momentum in axial symmetry, which is the exact analog to the charge conservation,
reads

J (S1) − J (S2) = 1

8π

∫

C
∗ Ẑ. (129)

The right-hand side of this equation represents the change in the angular momentum
of the gravitational field which is produced by the left-hand side, namely the angular
momentum of the matter fields.

As in the case of the charge, integrating on the spacelike domain Ω with boundaries
S1 and S2, gives

JK (S2) − JK (S1) = −
∫

Ω

∗ Ẑ. (130)

In particular, in vacuum we have Ẑ = 0 and hence the angular momentum has the
same value on both surfaces, namely

JK (S1) = JK (S2). (131)
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That is, for axially symmetric vacuum solutions of Einstein equations the angular
momentum JK (S) depends only on the homology class of S. If S can be shrunk to a
point, then Jk(S) = 0.

In terms of tensors we have the equivalent expression for the Komar angular momen-
tum

JK (S) = 1

16π

∫

S
εμνλγ ∇ληγ ds. (132)

Using Einstein equations (46) we can relate the form Z of the matter fields (76)
and the form Ẑ of the gravitational field

Ẑμ = 8π

(
Tμνη

ν − 1

2
Tημ

)
− Λημ, (133)

that is
Ẑ = Z − (4πT + Λ)η. (134)

According to (55) and (46) we decompose Z into the electromagnetic part and the
non-electromagnetic part

Z = ZEM + ZM . (135)

The total angular momentum is defined by

J (S) = JEM(S) + JK (S). (136)

It satisfies the conservation law

J (S) = 1

8π

∫

Ω

∗ZM + χ η̂ ∧ ∗ jEM(η̄). (137)

Note that the cosmological constant term does not contribute because the surface is
tangential to ημ. In terms of tensors, (137) is written as

J (S) =
∫

Ω

T M
μν t

μην + Aμημ jEMν tν dv (138)

There exists a very simple expression for the Komar integral on an initial data,
namely

JK (S) = 1

8π

∫

S
Ki jη

i s j ds. (139)

As in the case of the electric charge, this expression is the quasilocal version of the
global expression (70) (recall that siηi = 0 near infinity). In particular, assuming the
fall-off conditions (49), we have

J∞(η) = lim
r→∞ JK (Sr ) = lim

r→∞ J (Sr ), (140)

and
lim
r→∞ JEM(Sr ) = 0. (141)
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3 Global inequalities for black holes

In this section we present results involving the total mass of a black hole and some
of its quasilocal physical parameters like the electromagnetic charge and angular
momentum. We group the results into two sections. The first group, in Sect. 3.1 refers
to inequalities involving total mass and electromagnetic charge, with zero angular
momentum. The second group incorporates angular momentum. As we discuss in
Sect. 2, in order to have a well defined conserved angular momentum, axial symmetry
is required, whereas the pure charge case needs no symmetry at all to be well formu-
lated. This difference makes the techniques used to solve the problems very different
as we discuss below. Before going into the details, we want to make two remarks.

Settings The geometrical inequalities presented in this section are proven for a
set of initial data (Σ, hi j , Ki j ) for Einstein equations. Evolution arguments are not
considered. Moreover, Einstein constraint equations are used in a crucial way. The
initial surface has an asymptotically flat end, where the ADM mass is computed.
Also, it may have an inner boundary, connected or not, or be complete, with at least
one more end. These features capture the presence of the black hole (see Sect. 2.2).
In the introduction, Sect. 1.2, we give arguments indicating that the global black hole
inequalities are valid for all times if they are valid at some initial time.

Inequality producer We wish to mention here the features in the systems considered
that ultimately produce the inequalities. Note that we are not thinking about the general
qualities of systems in the theory that allow such inequalities (this was discussed at
the beginning of the introduction). But we wonder about the underlying mathematical
hypothesis or condition on the initial data (Σ, hi j , Ki j ) that translate into the desired
relation between the physical and geometrical parameters. Interestingly, in order to
derive the global inequalities presented in this section, the only requirement are certain
energy conditions and the presence of at least two ends on Σ if Σ has no inner
boundary (one of which needs to be asymptotically flat to have a well defined ADM
mass). However, as we present in Sect. 3.1, the mass–charge inequality is also proven
when Σ is an asymptotically flat manifold with inner trapped boundary. This is in
contrast with the Penrose inequality (Mars 2009), which is also global, but where the
area of a closed 2-surface is included explicitly into the estimate and therefore, extra
assumptions on such 2-surface must be imposed.

3.1 Mass–charge

The mass–charge inequality arises as a way to refine the positive mass theorem (Schoen
and Yau 1979, 2017, 1981; Witten 1981) and to give a strictly positive lower bound
for the total mass in the Einstein–Maxwell theory.

3.1.1 Results

Below is the main theorem showing this result. Its proof is greatly due to Gibbons and
Hull (1982), and to Gibbons et al. (1983), but many authors have contributed to the
final version. We describe their particular input after the statement.
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Theorem 1 Let (Σ, hi j , Ki j , Ei , Bi , μM , j iM ) be a strongly asymptotically flat initial
data for the Einstein–Maxwell equations, with (Σ, hi j ) complete or having a weakly
outer trapped inner boundary. Assume that matter fields satisfy the energy condition

ρEM ≤
√
μ2
M − | jM |2. (142)

Then, on every end
|Q∞| ≤ M, (143)

where M and Q∞ =
√
Q2

E,∞ + Q2
B,∞ are computed at the same end. Moreover

(i) if the equality in (143) is attained then the associated spacetime is, locally, an
Israel–Wilson–Perjés metric.

(ii) if the initial data are maximal (i.e. K = 0) and electro-vacuum, then the equality
in (143) holds if and only if the data set arises from the Majumdar–Papapetrou
spacetime.

(iii) if the Dirac–Jang equations have an appropriate solution then the equality in
(143) holds if and only if the data set arises from the Majumdar–Papapetrou
spacetime.

As we mention above, (143) is proven in Gibbons and Hull (1982) and Gibbons
et al. (1983). They use spinorial arguments similar to ones used in Witten’s proof of
the positive mass theorem (Witten 1981). Gibbons and Hull (1982) shows that the
equality in (143) holds if and only if there exists a super covariantly constant spinor,
and the Israel–Wilson–Perjés and Majumdar–Papapetrou metrics are discussed in this
context.

Tod (1983) (see also Herzlich 1998; Horowitz 1984) addresses the rigidity statement
(i) by finding all smooth spacetimes admitting such super covariantly constant spinors.
They are gravitational and electromagnetic plane waves possibly with dust, and metrics
describing charged rotating dust. Particular cases of the latter are the Israel–Wilson–
Perjés metrics, some of the Bonnor metrics and the Majumdar–Papapetrou metric.

Chruściel et al. (2006b) prove the rigidity statement (ii) by showing that under
certain conditions, the Israel–Wilson–Perjés metrics are of Majumdar–Papapetrou
class.

Bartnik and Chruściel (2005) generalize the proof of (143) to include low differ-
entiable metrics, namely hi j ∈ H2

loc and Ki j , Ei , Bi ∈ H1
loc. However, the equality is

left open, as the classification of metrics admitting super covariantly constant spinors
of Tod (1983) does not apply in the rigidity case.

The rigidity statement (iii) is proven by Khuri and Weinstein (2013) assuming that
a system of equations, namely the Dirac–Jang equations, has appropriate solutions.
They also assume what they call the charged dominant condition, which reads ρEM ≥
μM − | jM | and is stronger than condition (142).

A related mass–charge inequality was proved by Moreschi and Sparling (1984)
with similar spinorial techniques, and also later by Bartnik and Chruściel (2005).
More precisely, if instead of (142), matter fields satisfy

αρEM ≤
√
μ2
M − | jM |2 (144)
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for some α ∈ (0, 1], then the inequality |Q∞| ≤ αM holds. Note that when α = 1
it reduces to (142). This result is relevant for ordinary matter (see the first remark
below).

3.1.2 Discussion

A few comments about the hypotheses and applications follow.
The energy condition (142) can be interpreted as a local version of the global

inequality (143) . Namely, write (143) as

√
P2 + Q2∞ ≤ E, (145)

then P , Q∞ and E are the global quantities corresponding to the local quantities jM ,
ρE and μM in (142). In that sense, condition (142) looks rather natural. However it
is important to recall that ordinary charged matter can violate this condition and, of
course, also the global inequality (143) (see the discussion in Gibbons and Hull 1982;
Horowitz 1984; Moreschi and Sparling 1984; Dain 2012). The ultimate reason for that
is that the mass charge relation of the electron violates the inequality (143) for several
orders of magnitude. In fact, the local condition (142) allows only matter fields with
very small amount of electric charge. One way to avoid this limitation is to relax the
condition on matter fields, for instance, by asking (144). Then the inequality obtained
has a much wider applicability. In the electro-vacuum case we have ρE = 0, then
condition (142) reduces to the dominant energy condition for the non-electromagnetic
matter fields.

The manifold Σ can have multiple asymptotic ends, on different ends the value
of the quantities E, P, Q∞ are different and the inequality (143) holds on every end.
Also, the theorem admits a manifold with an inner boundary given by the 2-surface
S. Consider the simplest case, where the manifold Σ is R3 (which, of course, means
that it has only one asymptotic end and no inner boundary). For that case, in order to
have non-zero Q∞ we need to have charged matter in the interior, that is ρE �= 0. The
value of Q∞ represents the total charge of the spacetime, it will be in general different
than the value of the charge calculated for an arbitrary surface Q(S) in the interior. An
important spacetime that satisfies these conditions is the electrically counterpoised
dust studied by Bonnor (see Bonnor 1980, 1998 and reference therein). These are
explicit solutions that describe static configurations of charged dust with μM = |ρE |,
and hence the gravitational attraction is exactly balanced by the electric repulsion.
The shape of the configuration can be arbitrary and does not need to have any spatial
symmetry. These spacetimes achieve the equality M = |Q∞| in (143).

If we assume electro-vacuum, in order to have a non-zero Q∞ we need to allow
either a non-trivial topology with multiple asymptotic ends or a non-trivial inner bound-
ary S. The Reissner–Nordström black hole initial data are the model example of both
cases: either we consider them as a complete manifold with two asymptotically flat
ends or as a manifold with inner boundary S at the black hole horizon which is
weakly outer trapped. The equality M = |Q∞| is achieved by the extreme Reissner–
Nordström black hole, which has one asymptotically flat end and one cylindrical end.
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On the other hand, initial data of the super extreme Reissner–Nordström metric does
not satisfy the hypotheses since the Riemannian manifold (Σ, hi j ) is not complete
and does not have any weakly outer trapped 2-surface.

The Majumdar–Papapetrou spacetime also satisfies the hypotheses of Theorem 1.
The initial data has only one asymptotically flat end and an arbitrary number of extra
cylindrical ends. This spacetime describes the equilibrium configuration of multiple
extreme black holes for which the gravitational attraction is balanced by the electric
repulsion. It satisfies M = |Q∞| (see Hartle and Hawking 1972 for a discussion of
these spacetimes). The extreme Reissner–Nordström black hole is a particular case of
Majumdar–Papapetrou with only one cylindrical end.

The Israel–Wilson–Perjés metrics are characterized by the existence of a ‘super-
covariantly constant’ spinor field (for details about this metrics see Tod 1983; Chruściel
et al. 2006b and references therein). Example of this class of metrics are the above
mentioned electrically counterpoised dust and the Majumdar–Papapetrou metrics. We
emphasize that the equality in (143) can be achieved by a non-electro-vacuum solution.
However, for the electro-vacuum case a stronger result is given in statement (i).

3.2 Mass–angular momentum–charge

The inclusion of the angular momentum in the inequality (3) involves completely
different techniques as the one used in Theorem 1. In particular no spinorial proof of
this inequality with angular momentum is available so far (see however Zhang 1999,
where a related inequality is proven using spinors).

3.2.1 Results

Below is the mass–angular momentum–charge theorem, the proof in vacuum is mainly
due to Dain (2008). Some of the later generalizations and refinements by other authors
are included in the statement and discussed after it.

Theorem 2 Let (Σ, hi j , Ki j , Ei , Bi ) be an electrovacuum, axially symmetric, max-
imal, initial data set with two asymptotic ends. One end is asymptotically flat, where
the fall-off condition (25) is assumed for the second fundamental form. The other end
is asymptotically flat or cylindrical.

Then, the following inequality holds at the asymptotically flat end

Q2∞ + √
Q4∞ + 4J 2∞
2

≤ M2. (146)

The equality in (146) holds if and only if the initial data corresponds to the extreme
Kerr–Newman black hole.

The proof of the inequality (146) was provided by Dain in a series of articles (Dain
2006a, b, c), which end up in the global proof given in Dain (2008). There it is shown
that (146) holds in vacuum and for a class of axially symmetric black hole initial
data known as Brill data. The argument exploits the relation between a certain mass
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functional M(η, ω) and the energy for harmonic maps from R
3 to the Hyperbolic

plane (Carter 1973; Ernst 1968) (η and ω are the norm and twist potential of the axial
Killing vector). See Sect. 3.2.5 for the definition and properties ofM and details about
the proof of Theorem 2.

Along the same lines, Chruściel (2008) and Chruściel et al. (2008) give a simpler
proof of the theorem and avoid some technical assumptions on Dain’s proof but con-
sider a class of axially symmetric initial data that do not contain the limit case in
vacuum, namely, extreme Kerr. They allow positive matter density that does not enter
explicitly into the inequality. Moreover, they assume the existence of a twist potential
ω which is known to exist in vacuum.

Electromagnetic charge is brought into the inequality by Chruściel and Lopes Costa
(2009) and Costa (2010). In particular, in Costa (2010) an appropriate potential, related
to the twist potential for the axial Killing vector is shown to exist. This allows the
definition of a new mass function M(η, ω,ψ, χ), where η and ω are as before and ψ ,
χ are the electromagnetic potentials (see Sect. 3.2.5). As in Chruściel et al. (2008),
the initial data considered does not include extreme Kerr–Newman and therefore, the
rigidity statement can not be analyzed.

Schoen and Zhou (2013) make several improvements on the assumptions, they
give a relevant lower bound for the difference between general data and the extreme
Kerr–Newman data and they prove the rigidity statement in the charged case.

In Theorem 2 the data are assumed to be maximal. For the case with no charge, the
maximal condition is relaxed to a small trace case assumption by Zhou (2012).

The maximality condition is replaced in Cha and Khuri (2014, 2015) by the assump-
tion that a system of equations has appropriate solutions. Also, non-electromagnetic
matter fields μM , jM that satisfy the charged dominant energy condition μM ≥ | jM |
are included in the hypotheses. In these articles a deformation procedure of the initial
data is constructed that provides a natural and clean way to automatically generalize
geometrical inequalities proved in the maximal case.

The key role that extreme Kerr–Newman black holes play in giving the limit values
for inequality (146) (and, as we will see later, in the quasiliocal inequalities for black
holes) is confirmed and reinforced by the gedanken experiments performed by Sorce
and Wald in Sorce and Wald (2017). There it is proven that an extremal Kerr–Newman
black hole can not be over-charged or over-spun.

3.2.2 Discussion

Before presenting related results to Theorem 2, a few remarks are in order.
We begin by comparing Theorem 2 and the pure charge Theorem 1. In Theorem 2

axial symmetry is assumed globally on the initial data, in contrast with Theorem 1
where there are no symmetry assumptions. As we have seen in Sect. 1.2, on physical
grounds, the inequality (146) is not expected to hold for non-axially symmetric data.
General families of non-axially symmetric counter examples of the inequality (146)
have been constructed by Huang et al. (2011) for pure vacuum and complete manifolds.

In Theorem 2 electrovacuum is assumed. It is conceivable that, using similar tech-
niques as in the current proof of this theorem, the electrovacuum assumption can be
slightly relaxed by assuming, in analogy with the Assumption (142) in Theorem 1,
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that the matter fields have small angular momentum and charge. We expect that this
assumption will be rather unphysical, since ordinary rotating matter can easily violate
the inequality (146). It is however interesting that in Theorem 1 a rigidity statement
is obtained even in the non-electrovacuum case. It is not known whether an analo-
gous rigidity result holds for axially symmetric matter fields with non-trivial angular
momentum in which the equality in (146) is achieved. Note however, that the rigid-
ity statement in Theorem 1 depends strongly on the spinorial proof. It appears to
be unlikely that a generalization of this rigidity result holds for the case of angular
momentum.

On the other hand, we expect that the dominant energy condition should be required,
as there are numerical examples by Bode et al. (2011) of spinning black holes with
matter violating the null (and dominant) energy condition, with J ≥ M2.

No inner boundary is allowed in Theorem 2. The inclusion of an inner boundary
(which presumably should be a weakly trapped surface as in Theorem 1) appears to be
a difficult and a relevant problem. An inner boundary requires appropriate boundary
conditions for the variational problem used in the proof of Theorem 2. The results pre-
sented by Gibbons and Holzegel (2006) and Chruściel and Nguyen (2011) contribute
in this direction, but so far the problem remains open.

Since electrovacuum is assumed, in order to have non-zero charge and angular
momentum the manifold should have a non-trivial topology. In Theorem 2 a particular
geometry is assumed: manifolds with two ends. This is certainly the stronger restriction
of this theorem. Let us discuss this point in detail.

The model initial data set that satisfies all the hypotheses of Theorem 2 is a slice
t = constant in the standard Boyer–Lindquist coordinates of the Kerr–Newman black
hole. In the non-extreme case these initial data have two asymptotically flat ends, where
the standard fall-off conditions (49) are satisfied, plus the stronger fall-off condition
(71) of the second fundamental form. However, in the extreme case, the geometry of
the initial data changes: one end is cylindrical and the other is asymptotically flat. That
is, in order to include the extreme case more general fall-off conditions need to be
allowed on one of the ends.

3.2.3 Multiple black holes

For multiple ends the problem is open. There exist however the following very inter-
esting results. In order to describe them, we need to highlight some properties of the
mass functionalM (see Sect. 3.2.5 for more details). This functional represents a lower
bound for the mass. Moreover, the global minimum of this functional (under appro-
priate boundary conditions which preserve the angular momentum) is achieved by a
harmonic map with prescribed singularities. This is the main strategy in the proofs
of all the previous theorems which are valid for two asymptotic ends. Remarkably
enough, Chruściel et al. (2008) prove the existence and uniqueness of this singular
harmonic map for manifolds with an arbitrary number of asymptotic ends, and then,
as a corollary they prove the following result

Theorem 3 Consider an axially symmetric, vacuum asymptotically flat and maximal
initial data with N asymptotic ends. Denote by Mi , Ji (i = 1, . . . N ) the mass and
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angular momentum of the end i . Take an arbitrary end (say 1), then the mass at this
end satisfies the inequality

M(J2, . . . , JN ) ≤ M1, (147)

where M(J2, . . . , JN ) denotes the numerical value of the mass functional M evalu-
ated at the corresponding harmonic map.

This theorem reduces the proof of the inequality with multiples ends to compute the
value of the mass functional on the corresponding harmonic map.

Khuri and Weinstein (2016) extend the result by Chruściel et al. (2008) in that
electromagnetic charge is included and weaker fall-off conditions are assumed on the
extrinsic curvature. Also, the rigidity statement is proven.

Some numerical calculations have been made to get insight about the value
M(J2, . . . , JN ). Dain and Ortiz (2009) perform numerical calculations of the mass
functional mentioned above (see Sect. 3.2.5) and find evidence for the validity of an
intermediate inequality of the form M ≥ |J1|, where J1 is the angular momentum
of a system of two Kerr black holes with positive individual masses, computed at the
end 1 in the notation of Theorem 3. Following this result, Cabrera-Munguia et al.
(2010) work on the Tomimatsu and Dietz–Hoenselaers solution describing two Kerr
black holes, one of which has negative mass. They find that there is a rank in the
parameters of the individual black holes such that the total mass is smaller than the
total angular momentum, that is M2<|J1| and therefore M2<|J1|, which opposes to
Dain and Ortiz result. These are intesting results that open up the questions of what
the reasonable hypotheses on the multiple black hole system should be and of what the
precise form the inequality should have. Since the Tomimatsu and Dietz–Hoenselaers
solution has a naked singularity, one might expect that inequality M2 ≥ |J1| holds for
regular multiple black hole solutions. But on the other hand, there is the possibility
of conjecturing and proving a different inequality involving not only ADM mass and
angular momentum (whether total or individual), but also other phyisical parameters
like separation distance between black holes or some other properties of the system.
This is certainly an interesting open problem.

3.2.4 Non-asymptotically flat manifolds

Recently, global inequalities for asymptotically hyperboloidal initial data have started
to be explored. Cha et al. (2016) generalize a procedure used by Schoen and Yau
(1981) which consists in a deformation that transforms an asymptotically hyper-
boloidal structure into an asymptotically flat one. By doing this, they are able to
use the geometrical inequalities known to hold in the asymptotically flat case, to prove
them in the hyperboloidal case. More precisely, they consider a smooth, simply con-
nected, axially symmetric initial data satisfying the charged dominant energy condition
and the matter condition μM ≥ | jM | and the matter condition j iMηi = 0. The data
is assumed to have two ends, one asymptotically hyperboloidal and the other either
asymptotically flat or asymptotically cylindrical. If certain system of equations, con-
sisting of a Jang-like equation, and two extra equations on the deformed data, admits a
smooth solution with prescribed asymptotics, then inequality (146) holds. Moreover,
if equality is attained, then the initial data arise from an embedding into the extreme
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Kerr–Newman spacetime. This result effectively reduces the proof of the geometri-
cal inequality to proving existence of solutions to certain equations with appropriate
fall-off conditions.

Cha and Khuri (2017) apply the same arguments to obtain an identical global
inequality to (146) in the case that the initial data has two ends, one AdS hyperbolic
and the other either asymptotically AdS hyperbolic or asymptotically cylindrical. The
cosmological constant is not, however, explicitly included into the inequality. See
Sect. 3.3 for a conjectured global inequality including cosmological constant.

3.2.5 The mass functional M

We present in this section the main arguments behind the mass–angular momentum
inequalities (146) and (147). They are heavily based on a certain mass functional
M and its relation with the energy of harmonic maps. For simplicity we assume
electrovacuum and maximality to present the basic properties of M that are crucial
for proving (146). We also assume only two ends on the initial data.

The proof consists of two steps. The first one is to prove m ≥ M for the given black
hole initial data, using the Hamiltonian equation and some energy conditions. The
second step is to prove that extreme Kerr–Newman black hole with the same angular
momentum as the given data, is a minimizer for M, that is M ≥ M|extr Kerr–Newman
using known results on harmonic maps with prescribed boundary conditions. Let us
see this in more detail.

Step 1. m ≥ M
Consider an asymptotically flat, axially symmetric, maximal initial data set

(Σ, hi j , Ki j , Ei , Bi ). This means that Ki j hi j = 0 and that there exists a rotational
Killing vector field ηi such that

£ηh = 0, £ηK = 0, £ηF = 0, £η
∗F = 0, (148)

where £ is the Lie derivative.
Assuming jEMi ηi = 0, the non-trivial constraint equation reads

R = Ki j K
i j + 16π(Ei E

i + Bi B
i ) (149)

and the Maxwell constraints without sources are

dF = 0, d∗F = 0 (150)

Due to axial symmetry, there exists a coordinate system such that the metric hi j can
be written in the form

h = eσ+2q(dρ2 + dz2) + ρ2eσ (dφ + ρAρdρ + Azdz)
2, (151)

where the functions σ, q and Aρ, Az depend only on ρ, z. See the article by Chruściel
(2008), where a careful constructive proof of the existence of such coordinate system
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is done. The two ends correspond to the regions r = √
ρ2 + z2 → ∞, which is an

asymptotically flat end, and r → 0, which is either asymptotically flat or cylindrical.
We follow Costa (2010) to introduce the following 3-dimensional potentials. Let

ψ be the electric potential (compare with the 4-dimensional potential ψ presented in
Sect. 2.5) and χ , the magnetic potential given by

dχ := F(η̄), dψ := ∗F(η̄), (152)

where [F(η̄)]i = Fi jη j . We also introduce the potential ω as given by

dω := K (η̄) ∧ η − χdψ + ψdχ, (153)

where, similarly, [K (η̄)]i = Ki jη
j .

These potentials have two properties that make them highly suited for the problem
at hand. The first one is that ψ, χ and ω are constant on each connected component
of the symmetry axis Γ . This, in particular, gives a close and simple relation between
these potentials and the physical quantities QE , QB , J∞:

QE∞ = ψ+ − ψ−
2

, QB∞ = χ+ − χ−
2

, J∞ = ω+ − ω−
8

(154)

where the subindex + and − on a quantity f indicate the constant values of the
function on each connected component of Γ , namely: f+ = f (ρ = 0, z > 0) and
f− = f (ρ = 0, z < 0).

The second property is that they allow us to write the following important expres-
sions

Ki j K
i j ≥ 2

e−3σ−2q

ρ4 (∂ω + χ∂ψ − ψ∂χ)2 (155)

and

Ei E
i + Bi B

i ≥ e−2(σ+q)

ρ2

[
(∂ψ)2 + (∂χ)2

]
, (156)

where in the left-hand sides of (155) and (156), indices are moved with the metric hi j
and the right-hand sides involve square gradients with respect to the flat 2-dimensional
metric dρ2 + dz2.

Also, the curvature scalar R of the metric hi j is bounded as

− 1

8
Reσ+2q ≥ 1

4
Δσ + 1

16
(∂σ )2 + 1

4
Δ2q, (157)

where Δ is the flat Laplacian in 3-dimensions, (∂σ )2 = 1
ρ2 (∂ρσ )2 + (∂zσ)2 and

Δ2 := ∂2
ρ + ∂2

z .
Now we integrate the Hamiltonian equation (149) on R

3 with the flat volume
element d3x and use the bounds (155), (156) and (157) to obtain

m ≥ 1

32π

∫

R3
(∂σ )2 + 4

(∂ω + χ∂ψ − ψ∂χ)2

η2 + 4
(∂ψ)2 + (∂χ)2

η
d3x, (158)
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where we have used the expression of the ADM mass computed from (69) for the
particular metric (151)

m = − 1

8π

∫
Δσ d3x, (159)

the explicit square norm of the axial Killing vector, η = eσ ρ2, and also the asymptoti-
cally flat fall-off conditions at infinity and the regularity at the axis q|Γ = 0 to discard
the term with Δ2q.

Defining the right-hand side of (158) as the mass functional M

M := 1

32π

∫

R3
(∂σ )2 + 4

(∂ω + χ∂ψ − ψ∂χ)2

η2 + 4
(∂ψ)2 + (∂χ)2

η
d3x, (160)

we obtain the desired inequality m ≥ M.

Step 2. M ≥ M|extr Kerr–Newman

We start by restricting the integral in the definition of M to an open set Ω ⊂ R
3,

and denoting the corresponding functional as MΩ . We also write it fully in terms of
η by taking into account that

(∂σ )2 =
(
∂η

η
− 2∂ ln ρ

)2

=
(
∂η

η

)2

+ 4∂ ln ρ∂ (ln η − ln ρ) . (161)

We obtain

MΩ = 1

32π

∫

Ω

(∂η)2

η2 + 4
(∂ω + χ∂ψ − ψ∂χ)2

η2 + 4
(∂ψ)2 + (∂χ)2

η
d3x

(162)

+ 1

8π

∫

Ω

∂ ln ρ∂ (ln η − ln ρ) d3x . (163)

We integrate by parts the last integral and use that ln ρ is harmonic (Δ ln ρ = 0) to
obtain

MΩ = 1

32π

∫

Ω

(∂η)2

η2 + 4
(∂ω + χ∂ψ − ψ∂χ)2

η2 + 4
(∂ψ)2 + (∂χ)2

η
d3x

+ 1

8π

∫

∂Ω

∂s ln ρ (ln η − ln ρ) d3x, (164)

where ∂s denotes the derivative in the (outward) direction normal to ∂Ω .
Here is where the connection with harmonic maps becomes evident. Recall that

given the harmonic maps (η, ω, χ,ψ):Ω ⊂ R
3\Γ → H

2
C

, where Γ is the symmetry
axis and H

2
C

is the hyperbolic complex plane, the energy M̃ of such harmonic maps
is defined by
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M̃Ω := 1

32π

∫

Ω

(∂η)2

η2 + 4
(∂ω + χ∂ψ − ψ∂χ)2

η2 + 4
(∂ψ)2 + (∂χ)2

η
d3x .

(165)

Therefore we have the relation

MΩ = M̃Ω + B∂Ω, (166)

where B∂Ω is the boundary term introduced in (164).
We can apply the results of Hildebrandt et al. (1977) (see also Chruściel 2008) stat-

ing that whenΩ is compact and does not contain the axisΓ , and the target manifold has
negative curvature (asH2

C
in our case), the minimizers ofM̃Ω with Dirichlet boundary

conditions exist, are unique, smooth and satisfy the Euler Lagrange equations.
Since the difference between MΩ and the harmonic energy M̃Ω is the boundary

term B∂Ω , the minimizer of M̃Ω is the minimizer of MΩ as well. This minimizer is
the extreme Kerr–Newman solution, and we obtain MΩ ≥ MΩ |ext Kerr–Newman.

After a subtle limit procedure that allows to extend the inequality valid in Ω to all
R

3, one arrives at the desired inequality M ≥ M|extr Kerr–Newman.

3.3 Cosmological constant

As we discuss in Sect. 3.2, Cha and Khuri (2017) study asymptotically AdS hyperbolic
initial data and prove a global inequality where the cosmological constant does not
appear explicitly. They conjecture, though, that an inequality of the form

M ≥ 1

3
√

6

⎡
⎣

√(
1 + J 2

M2

)2

+ 12J 2

M2 + 2

(
1 + J 2

M2

)⎤
⎦ (167)

×
⎡
⎣

√(
1 + J 2

M2

)2

+ 12J 2

M2 −
(

1 + J 2

M2

)⎤
⎦

1/2

(168)

should hold, with equality in the extreme Kerr–Newman AdS black hole.
Related inequalities are given by Chruściel et al. (2006a), which is an extension of

a previous work by Maerten (2006).

4 Quasilocal inequalities for black holes

The geometrical inequalities presented in this section relate purely quasilocal quanti-
ties defined on a closed 2-surface. By this we mean that no bulk quantities defined on
the 3-dimension region inside the surface are considered.

As is the case with global inequalities, here we divide the subject in three parts,
the pure charge case, in Sect. 4.1, the inequalities involving angular momentum, in
Sect. 4.2 and the inequalities involving (explicitly) a cosmological constant in Sect. 4.4.
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We do this for two reasons. First, the pure charge case problem does not need axial
symmetry to be formulated, whereas it is needed in order to have a well defined
quasilocal angular momentum (see Sect. 2). Also, even when the electric charge gives
a flavor and a hint of what may happen with angular momentum, the techniques
employed in the three treatments are usually different.

Let us analyze the settings and the factors that produce these quasilocal inequalities.
Settings As opposed to the global inequalities, which can be proven for complete

initial surfaces, quasilocal inequalities need a well identified surface representing the
black hole, where things are computed. Even then, the problem can be formulated
from two different perspectives: a Riemannian and a Lorentzian points of view. These
two approaches have to do with the different surfaces used in the derivation of the
inequality. In the Riemannian setting, a minimal surface in an initial data set is studied.
In the Lorentzian case, it is a MOTS in spacetime

Inequality producer In the quasilocal inequalities some form of a stability condition
for the 2-surface considered is the main factor that produces the estimate. The Rie-
mannian treatment requires the positivity of the second variation of the area function.
In the Lorentzian setting the inequalities arise from stability of the MOTS.

4.1 Area–charge

The relation between the area and the electromagnetic charges of a closed 2-surface
was the first result obtained in the form of a quasilocal geometrical inequality.

It was first studied in a spacetime setting where trapping properties of 2-surfaces
embedded in a Cauchy surface were assumed. Later, the inequality was proved purely
from an initial data view point. And finally, from a purely Lorentzian one. We state
a precise version of the result in the latter form below, and then discuss the different
contributions, the hypotheses and conclusions.

4.1.1 Results

We extract the following theorem from the work of Dain et al. (2012).

Theorem 4 Given an orientable closed marginally trapped surface S satisfying
the spacetime stably outermost condition, in a spacetime which satisfies Einstein
equations, with non-negative cosmological constant Λ and such that the non-
electromagneticmatter fields satisfy the dominant energy condition, then the inequality

A ≥ 4πQ2 (169)

holds, where A is the area of S and Q2 = Q2
E + Q2

M is the total charge of S.
We define the stability condition and address the other hypotheses below. Let us first
review the different previous results on the subject.

Gannon (1976) obtains an inequality in the spirit of (169) when analyzing prop-
erties of electrovacuum black hole spacetimes that are strongly future asymptotically
predictable from a partial Cauchy surface Σ regular near infinity. This means that
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Σ = ∪∞
i=1Ωi , with Ωi ⊂ Ωi+1 such that ∂Ωi := Si are future inner trapped surfaces

(i.e. θ− < 0). These 2-surfaces are expected to be found in most isolated gravitat-
ing systems after moving sufficiently far from the center of the system and are the
alternative to stable MOTS and minimal surfaces used by later authors. In this setting,
Gannon proves that if the boundary of the black hole can be foliated by spacelike two-
surfaces whose surface area is bounded above by Amax, then Amax ≥ 4πQ2, provided
the electric charge Q is not zero (this restriction guarantees that the 2-surfaces are
topological spheres). Strictly speaking, Gannon’s result is not quasilocal as it makes
assumptions about all Σ . Nevertheless, we present the result here because of the great
role it plays in the subject as a model and inspiration to subsequent work.

Later, Gibbons (1999), using the positivity of the second variation of the area func-
tion, obtains the inequality (169) as a particular case of results in higher dimensions.
For our purposes here, he considers maximal, electrovacuum initial data with a stable
minimal surface S. Recall that given a maximal initial data (Σ, hi j , Ki j , μ, j i ), and
an embedded surface S in Σ , we say it is a minimal surface if the mean curvature of
S vanishes and it is stable if the second variation of the area function is non-negative,
namely δ2

αs A ≥ 0 for all functionsα, where si is a normal vector toS inΣ (see Gibbons
1999, also Andersson et al. 2008a; Mars 2014). The stability condition gives the desired
inequality (169) between the area A and the charge Q of S. This result is a refinement
of a previous work of Gibbons et al. (1996) in the spherically symmetric case.

In the Lorentzian settings, Dain et al. (2012) study the inequality between area and
charge of a MOTS in a spacetime, satisfying certain stability property. Let us see it in
some detail. Andersson et al. (2005, 2008b) introduce a notion of stability for a closed
marginally trapped surface S which motivates the notion used in Theorem 4. S is said
to be spacetime stably outermost if there exists an outgoing vector Xμ = fμ − fkkμ

with functions f ≥ 0 and fk > 0 such that the variation δX of θ+ with respect to Xμ

satisfies δXθ+ ≥ 0, where δ is the variation operator associated with a deformation of
S. Charged matter fields are included, although the non-electromagnetic matter fields
must satisfy the dominant energy condition. Extensions of this inequality are also
proven for regions in the spacetime which are not necessarily black hole boundaries,
but ordinary objects (see Sect. 5 for more details). They prove Theorem 4. They also
prove a similar inequality to (169) for an oriented surface screening an asymptotically
flat end. A screening surface of an end is a closed 2-surface that encloses an open,
connected region Ω ⊂ Σ which contains the mentioned end and no other.

As noted by Jaramillo (2013), the area charge inequality relies on the algebraic
properties of the electromagnetic energy momentum tensor. This observation provides
a straightforward generalization of (169) to other matter fields having similar algebraic
properties. In particular, in Jaramillo (2013), the inequality (169) is extended to include
the Yang–Mills charges.

4.1.2 Discussion

We wish now to make a few observations about this result.
As in the global case for the inequality between mass and charge (see the beginning

of Sect. 3), no axial symmetry is required to obtain (169) due to the area and charge
being well defined quasilocal quantities.
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On the other hand, as opposed to the global inequalities involving the ADM
mass, (169) is a quasilocal relation, it refers to the properties of one 2-surface describ-
ing the horizon. This means that if one considers a spacetime containing many black
holes, that inequality should hold for each one of them. The paradigmatic example of
this case is the Majumdar–Papapetrou solution (Majumdar 1947; Papapetrou 1945),
which consists of an arbitrary number of extreme Reissner–Nordström-like black
holes, all with charges of the same sign. This is a very special solution as each black
hole saturates the bound (169), i.e., Ai = 4πQ2

i , where Ai and Qi are the individual
areas and charges respectively of each black hole.

The Majumdar–Papapetrou solution is static, nevertheless, inequality (169) holds
in completely dynamical scenarios as well, even in the presence of charged matter
fields satisfying the dominant energy condition. This is in contrast with the mass–
charge inequality presented in Sect. 3.1, where a strong (and in a sense, unnatural)
local condition is imposed on matter fields [see the discussion after Eq. (145)].

Note that there is no rigidity statement saying that if equality is attained in (169),
then the solution must be the near horizon geometry of Reissner–Nordström.

In fact, the key ingredient used to prove Theorem 4 is the notion of stability for the
2-surface. This condition plays an analogous role as the non-negativity condition on
the second variation of area function in Riemannian settings.

4.2 Area–angular momentum–charge

At the beginnings of 2007, two results relating horizon area and angular momentum
of black holes were given, one for stationary black holes by Ansorg and Pfister and the
other for isolated horizons by Booth and Fairhurst (see the Living Review by Ashtekar
and Krishnan 2004 for definitions and general results on isolated horizons). These two
works have motivated the more general study of quasilocal inequalities that explicitly
include the angular momentum of a given surface in a dynamical system.

The different settings where the desired inequality have been proven are stationary
spacetimes, maximal initial data and finally trapped surfaces.

4.2.1 Results

We present here one of the results, taken from the article by Gabach Clément et al.
(2013) that is valid for dynamical as well as stationary black holes represented by an
appropriate closed 2-surface.

Theorem 5 Let S be either

1. a smooth spacetime stably outermost axisymmetric marginally outer trapped sur-
face (MOTS) embedded in a spacetime, satisfying the dominant energy condition,
or

2. a smooth stable axisymmetric minimal surface in a maximal data set, with non-
negative scalar curvature,
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with a non-negative cosmological constantΛ, angular momentum J , charges QE and
QB and area A. Then,

A ≥
√
(8π J )2 + (4πQ2)2 (170)

with Q2 = Q2
E + Q2

B.
Moreover, the equality in (170) is achieved if and only if the surface is the extreme

Kerr–Newman sphere.

We review the many results that led to this theorem and discuss the theorem after-
wards, in Sect. 4.2.2.

The first, known to us, work on a geometrical inequality in the spirit of (170) is
due to Ansorg and Pfister (2008). They treat stationary and degenerate black holes
and find that they must satisfy the equality in (170). More precisely, the equality
in (170) holds for every element in a parametric sequence of axially and equatorially
symmetric, stationary systems consisting of a degenerate black hole surrounded by
matter such that the limit system is the Kerr–Newman black hole. Moreover, the
authors conjecture that for axially and equatorially symmetric, stationary black holes
surrounded by matter, the inequality (170) should hold, with equality at the degenerate
case.

A few months later, Booth and Fairhurst (2008) argue that the allowed values for the
angular momentum of an isolated horizon S should be determined from the intrinsic
horizon geometry. They find

2
√
eγ A ≥ 8π |J | (171)

where e is the surface integral of the evolution equation for the inward expansion at the
horizon and γ := π A−2

∫
S η, where η = ηiηi is the square norm of the rotation vector

field. Moreover, e ≤ 1 and e = 1 at an extremal horizon and γ < 1/4 for axially
symmetric horizons whose cross sections can be embedded in Euclidean space. In that
case, i.e., when γ < 1/4, one obtains the strict inequality

A > 8π |J |. (172)

However, the authors argue that otherwise, γ can become arbitrarily large making the
bound (171) to lose its meaning.

The Ansorg and Pfister conjecture is finally proven in vacuum by Hennig et al. (2008,
2010), and Ansorg et al. (2011). They show that every axially symmetric and stationary
black hole with surrounding matter satisfies (170) and equality holds if the black hole
is extremal. The proof consists in showing that if A ≤ √

(8π J )2 + (4πQ2)2, then the
black hole can not be subextremal in the sense of Booth and Fairhurst (2008). Recall
that a black hole is subextremal if there exist trapped surfaces in every small interior
vicinity of the event horizon. Einstein equations near the horizon are then considered
and a variational problem is formulated and solved. As we discuss in Sect. 4.2.2 this
stationary variational problem is closely related to the variational problem arising in
the dynamical regime.

Dain (2010) conjectures the validity of the vacuum case of (170) for the connected
component of the apparent horizon in a dynamical scenario. The proof was given later,
as in the pure charge case, from two perspectives, one Riemannian and one Lorentzian.
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With a Riemannian approach, Aceña et al. (2011) prove that extreme Kerr ini-
tial data is the global minimum for certain mass functional M related to the second
variation of the area functional and analogous to the mass functional M presented in
Sect. 3.2.5. They prove the inequality (170) with Q = 0 for vacuum axially symmetric
initial data containing a minimal surface and such that the metric hi j satisfies certain
technical conditions. However, this class considered includes many known black hole
initial data. They extend the validity of the inequality to include a non-negative cos-
mological constant, not appearing explicitly into the inequality though. However, this
generalization is relevant because there exists a counter-example of the inequality
(170) with Q = 0 for the case of negative cosmological constant, as it was pointed
out in Booth and Fairhurst (2008).

In Gabach Clément (2011), the author relaxes some of the restriction on the type of
surfaces studied and Dain and Reiris (2011) prove the inequality (170) with Q = 0,
in vacuum, replacing the technical conditions of Aceña et al. (2011) by the stability
condition on the minimal surface (see Sect. 4.1.1 for definition of stable minimal
surface).

With a Lorentzian treatment, Jaramillo et al. (2011) prove (170) for an axially sym-
metric closed marginally trapped surface S satisfying the spacetime stably outermost
condition (see Sect. 4.1.1), in a spacetime with non-negative cosmological constant
and matter fields satisfying the dominant energy condition. The rigidity statement with
the extreme Kerr sphere, instead of the extreme Kerr–Newman sphere is also proven
for the Q = 0 case.

The inclusion of electromagnetic charges is done by Gabach Clément and Jaramillo
(2012) and by Gabach Clément et al. (2013). Through the introduction of appropriate
electromagnetic and angular momentum potentials, they prove Theorem 5 in two
different ways and show the connection with the variational problem for the stationary
case (see the remarks below). Also a relation between the two mass functionals M
introduced in Sect. 3.2.5, Eq. (160) andM is pointed, which suggests a relation between
the global inequality (146) and the quasilocal inequality (170). We explore this in
Sect. 4.2.5 with more detail.

In Gabach Clément (2012), an extension of (170) to systems of many black holes
with struts are obtained, and in Manko et al. (2013, 2014), Cabrera-Munguia et al.
(2013) and Cabrera-Munguia (2015), binary systems saturating this inequality are
presented.

4.2.2 Discussion

We wish to make a few remarks about the hypotheses and statements of Theorem 5.
Theorem 5 calls for stable closed surfaces. As we mention at the beginning of

Sect. 4, it is this stability property what drives the inequalities. Both concepts of
stability appeared already in problem with no angular momentum, see Sect. 4.1 for
definitions. The only extra assumptions we make in this result is that the functions α

and f, fk entering the stability criteria for minimal surfaces and MOTSs respectively
must be axially symmetric. In Sect. 4.2.5 the connection between these two stability
conditions is revised. The interesting point made in Gabach Clément et al. (2013) is
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that the corresponding stability assumptions both for minimal surfaces and MOTS
lead to exactly the same integral condition.

The theorem admits a non-negative cosmological constant, but it does not enter
explicitly into the inequality. The treatment of such problem needs different techniques
and is reviewed in Sect. 4.4. The relevant property of the cosmological constant in this
theorem is that its positivity allows one to disregard it altogether from the Einstein
or constraint equations. Clearly, the same can not be made for negative Λ and the
problem of determining and proving the appropriate inequality for negative Λ is still
open (see Sect. 4.4).

Non-electromagnetic matter fields are admitted in the hypotheses of Theorem 5
and they are not required to satisfy the dominant energy condition. Only the complete
energy momentum tensor T M

μν + TEM
μν must satisfy the dominant energy condition.

Also there can be matter surrounding and crossing the surface S. This in particular
extends the results in Ansorg et al. (2011) and Hennig et al. (2010).

A major difference between Theorems 4 and 5 is the rigidity statement. The horizon
in extreme Reissner–Nordström clearly saturates inequality (169), but so far it is not
proven that it is the only horizon that does. On the other hand, the horizon in extreme
Kerr–Newman is the unique solution that satisfies the equality in (170). In the latter
case, it is the connection between a certain mass functional M and the energy of
harmonic maps and the uniqueness of minimizers of that energy what ultimately gives
uniqueness in Theorem 5. See Sect. 4.2.5 for details.

The extreme Kerr–Newman sphere mentioned in Theorem 5 has a precise meaning
in terms of intrinsic and extrinsic quantities defined on the surface S (Gabach Clément
et al. 2013). Basically the surface has the geometry of a horizon section in the extremal
Kerr–Newman black hole. In Sect. 4.2.5 we give proper definitions, here, however,
we want to emphasize that the rigidity statement refers to the extreme Kerr–Newman
horizon, not the entire initial data. Interestingly, the fact that the equality in (170) is
only attained by the extreme Kerr–Newman sphere has been known since the work
of Hájiček (1974), Lewandowski and Pawlowski (2003), and Kunduri and Lucietti
(2009, 2013) on isolated horizons and near horizon geometries of extreme black
holes. See also the more recent results of Reiris (2014a) and Chruściel et al. (2017).

Finally, we want to mention the relation between the variational problem used to
prove Theorem 5 and the one used in the stationary case in Ansorg et al. (2011). The
argument in Ansorg et al. (2011) to prove the strict inequality (170) is based on the
implication

subextremal horizon ⇒ A >
√
(8π J )2 + (4πQ2)2. (173)

The counterreciprocal of (173) is written as a variational problem for an action func-
tional on a Killing horizon section. As it is shown in Gabach Clément and Jaramillo
(2012), this action and variational problem are identical to the corresponding mass
functional M and the variational problem formulated for a stable MOTS. This connec-
tion is particularly remarkable. We mentioned already a link between the variational
problems for stable minimal surfaces and stable MOTS. This is essentially a man-
ifestation of the close relation between the two different characterizations of black
holes. However, the great similarities with the stationary case are not at all a priori
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obvious, especially considering that the treatment in Ansorg et al. (2011) makes use of
the particular form of the 4-dimensional stationary, axially symmetric metric, whereas
the arguments in the proof of Theorem 5 refer solely to the stable surface S.

4.2.3 Area products

We want to mention a close relation valid for axially symmetric, charged, rotating and
stationary black holes with surrounding matter. It not only involves the event horizon
area, A, but also the Cauchy horizon area ACauchy. It reads

(8π)2
(
J 2 + Q4

4

)
= AACauchy (174)

The remarkable observation is that the area product does not depend on the total mass,
Eq. (174) is quasilocal. Is is a consequence of the fact that there can not be matter
between the event and Cauchy horizon due to stationarity. Equation (174) has been
proven by Ansorg and Hennig (2008, 2009), Hennig and Ansorg (2009) and by Ansorg
et al. (2011). See also Visser (2013) on the validity of such mass independent, area-
related functions. It also received a huge interest in string and other theories, see the
work by Cvetic et al. (2011a) and the review by Compere (2017) on the Kerr/CFT
correspondence.

4.2.4 Shape of black holes

A closely related quasilocal inequality for black holes is obtained by Gabach Clément
and Reiris (2013). They link black-hole shape parameters with angular momentum.
More precisely, for a rotating, axially symmetric spacetime stably outermost horizon,
the length Ce of the greatest axially symmetric circle and the length of the meridian L
satisfy

16π2|J |√
4π A

≤ Ce ≤ √
4π A (175)

4|J | ≤ A

2π
≤ L2 (176)

and
A

L2 ≤ Ce
L

≤ 2
√

2π. (177)

There are three effects that show up in these results. The most expected one is a thick-
ening of the bulk of the horizon due to rotation. They also show that rotation stabilizes
the horizon’s shape in that the area and angular momentum control completely its
local shape. Finally, at high angular momentum, the geometry of the horizon goes to
that of extreme Kerr horizon, even in non-vacuum.
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4.2.5 The mass functional M

Analogous to the global case, the proof of the quasilocal inequality (170) is based on
some remarkable properties of a quasilocal mass functional M and consists of two
intermediate inequalities for M. Again, for simplicity, we assume electrovacuum.

The proof consists of two steps. The first one is to prove a lower bound on the area
of the 2-surface S in terms of a mass functional M. One starts with the appropriate
stability condition (for either type of surface, minimal or marginally outer trapped) and

proves A ≥ 4πe
M−8

8 . The second step is to prove that extreme Kerr–Newman horizon
is the unique minimizer for M, that is M ≥ M|extr Kerr–Newman. We follow Gabach
Clément et al. (2013).

Step 1. A ≥ 4πe
M−8

8

For an axially symmetric, stable, minimal surface S, the stability condition δ2
αs A ≥

0 is written in an integral form as

∫

S
|Dα|2 +

2R

2
α2 ds ≥

∫

S
1

2

(
3R + |Θ|2

)
α2 ds (178)

for arbitrary and axially symmetric functions α, and where 2R and 3R are the scalar
curvature of the metrics on S and on Σ respectively. Θ is the traceless part of the
extrinsic curvature of S. The norms and surface element ds are computed with respect
to the intrinsic metric on S.

On the other hand, for an axially symmetric, spacetime stably outermost MOTS S,
the stability condition δXθ+ ≥ 0 with Xμ = αμ +Ψ kμ where α > 0 and Φ ≥ 0 are
axially symmetric arbitrary functions, can be written (after using Einstein equations
and disregarding terms with the appropriate sign)

∫

S
|Dα|2 +

2R

2
α2 ds ≥

∫

S
|Υ (η)|2 + E2⊥ + B2⊥ ds, (179)

where Υ (η) is the projection on the axial Killing vector η of the normal fundamental
form of S and E⊥ := μkνFμν , B⊥ := μkν∗Fμν are the electromagnetic fluxes
across the surface S.

The two inequalities (178) and (179) become identical when the Hamiltonian con-
straint (149) is inserted in (178) and the relation Υ

(η)
μ ημ = −Kμνη

μsν is considered.
Here sμ is a spacelike normal to S.

One starts by writing the metric on the surface as (see Dain and Reiris 2011 where
such coordinate system is constructed)

ds2 = e2c−σdθ2 + eσ sin2 θdϕ2 (180)

where σ = σ(θ) and c is a constant related to the area of S by A = 4πec and to σ by

σ |θ=0,π = c. (181)
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In these coordinates, the axial Killing vector field on S is ηi = ∂ iϕ and its square

norm is given by η = eσ sin2 θ . The component Υ (η) of the normal form can be written
in terms of a function ω̃ as

Υ
(η)
θ = 0, Υ (η)

ϕ = −eσ−c sin θω̃′. (182)

where a prime denotes derivative with respect to θ .
As in the proof of the global inequality, suitable potentials ψ, χ, ω for the electro-

magnetic fields and rotation are introduced via the equations

ψ ′ = −E⊥ec sin θ, χ ′ = −B⊥ec sin θ (183)

ω′ = 2ηω̃′ − 2χψ ′ + 2ψχ ′. (184)

Note that we use the same letters to denote these 2-dimensional potentials and the
3-dimensional potentials introduced in section Sect. 3.2.5. As the latter, the potentials
defined by (183), (184) have the important property

QE = ψ(π) − ψ(0)

2
, QB = χ(π) − χ(0)

2
, J = ω(φ) − ω(0)

8
, (185)

where the charges and angular momentum refer to the surface S.

Writing the stability condition in terms of these potentials, and setting the arbitrary
function α to be

α = ec−σ/2 (186)

(see Gabach Clément et al. 2013 for a discussion about this choice) one finds

A

4π
≥ e

M−8
8 , (187)

where the mass functional M is defined by

M := 1

2π

∫

S2

[
4σ + (σ ′)2 + (ω′ + 2χψ ′ − 2ψ ′χ ′)2

η2 + 4
(ψ ′)2 + (χ ′)2

η

]
ds0,

(188)
where the norms and surface element are computed with respect to the round metric
on the unit sphere dθ2 + sin2 θdϕ2. The great resemblance between M and the mass
functional M defined in (160) is discussed in Sect. 4.3.

One of the most remarkable property of the functional M is that the boundary
conditions for the functions it depends on are the angular momentum and charges (185)
and the area (181). This is especially relevant for the formulation and solution of the
variational problem in the next step.

Step 2. M ≥ M|extr Kerr Newman
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The second step is the resolution of a variational principle for the functional M
giving the global minimum in terms of the angular momentum and charges:

e
M−8

4 ≥ 4J 2 + Q4, (189)

with Q2 = Q2
E + Q2

B .
The proof of the inequality (189) can be approached in several ways, as presented

in Gabach Clément and Jaramillo (2012) and Gabach Clément et al. (2013). We already
commented the reduction to the variational problem in stationary settings. Here we
mention the other two arguments.

One of them follows the lines of Step 2 in Sect. 3.2.5. Here, the energy M̃ of
harmonic maps (η, ω, χ,ψ):U ⊂ S2\{θ = 0, π} → H

2
C

is considered. It reads

M̃U := 1

2π

∫

U

[
(η′)2

η2 + (ω′ + 2χψ ′ − 2ψ ′χ ′)2

η2 + 4
(ψ ′)2 + (χ ′)2

η

]
ds0. (190)

There are two differences between (188) and (190). One is the integration region, M
involves an integration over S2 while M̃ involves the integration over U ⊂ S2. The
second difference concerns the integrand. M contains the integral of σ and σ ′, while
M̃ contains the integral of η and η′. when we restrict the integral in the definition of
M to the region U and denote it by MU , we obtain the relation

M̃U = MU + 4
∫

U
ln sin θ ds +

∮

∂U
(4σ + ln sin θ)∂ν ln sin θ dl (191)

where ∂ν is the derivative in the direction of the exterior unit vector normal ν to ∂U
and dl is the line element in ∂U . We see that the difference between MU and M̃U is
a constant plus a boundary term, which implies that both functionals have the same
Euler–Lagrange equations. The result of Hildebrandt et al. (1977) is again used to
give existence of a unique minimizer for M̃U . That minimizer is the extreme Kerr–
Newman sphere, defined as the set (σ0, ω0, χ0, ψ0) that can be obtained by computing
the geometry on a horizon section of the extreme Kerr–Newman solution.

Finally a very subtle limit procedure must be performed to arrive at the desired
inequality M ≥ M|extr Kerr Newman.

It is worth mentioning that the previous variational problem can be solved without
assuming axial symmetry on the functions σ, ω,ψ, χ .

The second approach is restricted to axial symmetry and hence in the minimiza-
tion problem for M, the Euler–Lagrange equations reduce to a system of ordinary
differential equations. When solving these equations, the boundary conditions J , QE

and QM determine uniquely the boundary conditions for the remaining potential σ .
This is the key fact under the sharpness of inequality (170). A constructive explicit
proof of existence and uniqueness for the minimizer of M is given in Gabach Clément
et al. (2013) with prescribed values of J, QE , QM and without any reference to the
boundary values of σ . This is different to what one does in the first approach discussed
above, where the boundary values of σ are prescribed from the relation A = 4πeσ |θ=0
valid for the particular coordinate system employed.
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4.3 Relation between M and MMM

It is remarkable that both, the global (146) and the quasilocal (170) inequalities involv-
ing angular momentum are derived from mass functionals M and M respectively, and
that these functionals are minimized by some form of the extreme Kerr–Newman solu-
tion. In Gabach Clément et al. (2013), a connection between these two functionals is
presented, which in turn, gives a connection between the two inequalities.

More precisely, it is shown there that the inequality m ≥ M ≥ M0 implies that the
extreme Kerr–Newman horizon is a local minimum of the mass functional M, which
suggests that the global inequality (146) implies the quasilocal inequality (170):

M2 ≥ Q2∞ + √
Q4∞ + 4J 2∞
2

⇒ A ≥
√
(8π J )2 + (4πQ2)2. (192)

On the other hand, Penrose inequality together with the quasilocal inequality (170)
give

[
M2 ≥ A

16π

]
+

[
A ≥

√
(8π J )2 + (4πQ2)2

]
⇒ M2 ≥ A

16π
≥ 4J 2 + Q4

4
(193)

for stable MOTS, which is a weaker version of the global inequality (146).
Whether there exist a deeper connection and a full implication of the form

M2 ≥ Q2 + √
Q2 + 4J 2

2
⇐⇒ A2 ≥ (8π J )2 + (4πQ2)2 (194)

is far from settled. See also the discussion given in Sect. 1.1 about this issue in the
context of stationary black holes.

4.4 Cosmological constant

The results of Sects. 4.1 and 4.2 admit non-negative cosmological constants, but do
not include them explicitly into the inequalities. These results are presented in this
section as, in general, they require different techniques.

By analyzing explicit solutions and collapsing black holes, Hayward et al. (1994)
and Shiromizu et al. (1993), prove that a positive cosmological constant sets restrictions
on how large a black hole can be (see also Maeda et al. 1998). They study black-hole
spacetimes with positive cosmological constant Λ, that satisfy the dominant energy
condition, and find that the area of the black hole horizon, as described by an outer
marginal surface, is bounded as A ≤ 4π/Λ. The same inequality holds for the area of
a connected section of the event horizon in the case of strongly future asymptotically
predictable, asymptotically de Sitter spacetime. The inequality is saturated for the
extreme Schwarzschild–de Sitter horizon.

For negative Λ, Gibbons (1999) (in the time symmetric settings) and Woolgar
(1999) (in the non-time-symmetric case) find the bound A > 4π(g − 1)/|Λ|, for the
area of an outermost MOTS of genus g > 1.

123



 5 Page 54 of 74 S. Dain, M. E. Gabach-Clement

These inequalities show the important role that the cosmological constant plays in
determining the size of a black hole. Note in particular, that the positive and negative
cosmological constants bound the area in opposite directions. Namely a de Sitter-like
black hole can not be too large and an anti de Sitter-like black hole can not be too
small. This has interesting implications for studying possible colliding scenarios.

Gibbons (1999) also considers the combined effect of a cosmological constant and
matter fields satisfying the dominant energy condition. He finds that the area of a stable
minimal surface S in a time symmetric 3-surface is bounded as 4π(1 − g) − ΛA −∫
S 8πT00 > 0, where T00 is the energy density of the matter fields on the 3-surface.

Simon (2012) arrives at the same inequality for stable MOTS in a spacetime satis-
fying the dominant energy condition. Interestingly, when Maxwell fields are explicitly
taken into account, he is able to write the inequalities as

2π
(

1 −
√

1 − 4ΛQ2
)

≤ ΛA ≤ 2π
(

1 +
√

1 − 4ΛQ2
)

Λ > 0, (195)

2π

[
g − 1 +

√
(g − 1)2 − 4ΛQ2

]
≤ −ΛA Λ < 0. (196)

Note that Simon (2012) maintains the (non-negative) principal eigenvalue of the sta-
bility operator in his inequality. We omit it here for simplicity. Inequalities (195) show
that for positive cosmological constant one obtains both an upper and a lower bound
to the area. This in essence is a manifestation of a competition of two effects. On one
hand, the charges forbid the black hole to become too small (due to electric repulsion).
On the other hand, the positive cosmological, through the cosmological radius, sets an
upper limit to the horizon area. Inequality (196) shows that when Λ is negative, both
effects, the ‘cosmological’ and the electric repulsion combine to give a lower bound
to the area.

The inequalities (195)–(196) are saturated in spherical symmetry by the Reissner–
Nordström–de Sitter black holes if and only if the surface gravity vanishes. Simon
also discusses the time evolution of MOTSs and the application of his inequalities
as restrictions on the merging. He deduces an interesting Corollary, non-trivial only
when Λ �= 0, which gives lower and upper bounds on the quotient between the initial
and final areas of MOTSs (homologous MOTSs). This result is applied to the situation
where only a single MOTS is initially present, and to the problem of merging of
MOTSs.

As has been previously pointed out, the inclusion of angular momentum into geo-
metrical inequalities requires different techniques. The extension of (195) to rotating
black holes was done by Gabach Clément et al. (2015). They consider an axially sym-
metric, stable MOTS, with Λ > 0 and matter satisfying the DEC, and find that the
allowed values of angular momentum J are given by

|J | ≤ A

8π

√(
1 − ΛA

4π

)(
1 − ΛA

12π

)
, (197)

where A is the area of the MOTS. The inequality (197) is saturated by the extreme
Kerr–deSitter horizons. One can read from (197) that the presence of a positive cosmo-
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logical constant sets stronger limits to the allowed values of the angular momentum.
Namely, a cosmological horizon must rotate more slowly than the non-cosmological
one. This observation agrees with the intuitive idea mentioned above, that the cosmo-
logical constant has an attractive effect. Hence, if the area is fixed, then the rotation
must be slowed down. Another way of looking at (197) is to consider the right-hand
side of (197) as an effective area Aef f , with Aef f ≤ A due to being Λ > 0. In this
notation, (197) reads |J | ≤ Aef f /8π . It is worth remarking that the proof of inequal-
ity (197) follows the lines of the proof the Area–Angular momentum inequality (see
Sect. 4.2.5), in that the stability condition is used to obtain a lower bound on the area
in terms of a mass functional MΛ defined by

M
Λ(σ, ω, A, a)

:= 1

2π

∫ [
σ ′2 + ω′2

η2 + 4σ
1 + Λa2 cos2 θ

ζ
+ 4

(
A

4π

)2

Λe−σ

]
ζ d3x, (198)

where

ζ := 1 + Λa2 cos2 θ

3
(199)

and we have explicitly written the elements that MΛ depends on, because they make
the variational principle much harder than when one bounds away the cosmological
constant (as was shown in Sect. 4.2.5). The first difficulty that arises when one keeps
the term containing Λ (to ensure that it will come up in the final inequality) is that the
mass functional also depends explicitly on A

The second difficulty is proving existence and uniqueness of a minimizer forMΛ, as
there is no direct relation between M

Λ and energy of harmonic maps. These obstacles
are overcome as follows. The first one is dealt with by a scaling argument where A and
J are frozen to the extreme Kerr–deSitter values and the dynamical variables in M

Λ

change appropriately. For the second one, it is proven that every critical point of MΛ

is a local minimum and then the mountain pass theorem is used to obtain the global
existence. In the presence of Maxwell fields, the inequality

J 2 ≤ A2

64π2

[(
1 − ΛA

4π

) (
1 − ΛA

12π

)
− 2ΛQ2

3

]
− Q4

4
(200)

is conjectured to hold in Gabach Clément et al. (2015) under the same hypotheses.
Inequality (200) was proven by Bryden and Khuri (2017) following the same ideas

as in Gabach Clément et al. (2015), but simplifying the resolution of finding the
minimizer of MΛ. The argument is based on the result of Schoen and Zhou (2013),
which states that MΛ is convex along geodesic deformations within H

2
C

.
The case of negative cosmological constant is considerably more complicated as Λ

appears with the wrong sign in the mass functional M. In a different context, Kunduri
and Lucietti (2009, 2013) prove that the near horizon geometry of axisymmetric
and stationary black holes is the one of the extremal Kerr–Newmann-anti-de Sitter
horizon and therefore they saturate (200) (see Hennig 2014 for an explicit expression
and discussion).
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4.5 An application: non-existence of two black holes in equilibrium

A very interesting application of the area–angular momentum inequality (170), with
Q = 0, is the result by Neugebauer and Hennig (2009, 2012, 2014) and Hennig and
Neugebauer (2011) where they prove that a two black hole configuration in equilibrium
does not exist. This problem has been open since the early days of General Relativity
(see Neugebauer and Hennig 2014 for further references and Beig and Chruściel 1996;
Beig and Schoen 2009; Manko et al. 2011 for different approaches and results on the
subject); an alternative proof of non-existence was given by Manko and Ruiz (2001).
The Neugebauer and Hennig argument is the following: Start out with the spacetime
metric for an axially symmetric, stationary system containing two disconnected Killing
horizons on the symmetry axis. Use the Ernst formulation Ernst (1968) to obtain
a system of equations equivalent to Einstein vacuum equations. Then the inverse
scattering method is used to build a unique and exact solution to the Ernst equations,
known as the double Kerr-NUT solution. A particular property of this solution is
that both black holes can not satisfy the A ≥ 8π |J | inequality simultaneously, which
proves the non-existence of two black holes in equilibrium. This result was generalized
by Chruściel et al. (2011) to I+ regular black hole spacetimes.

5 Inequalities for objects

The inequalities presented in Sects. 3 and 4 are valid for black holes. The presence
of such black hole is manifested through the hypothesis of the existence of a trapped
surface or of a non-trivial topology in the initial data.

The interest in geometrical inequalities for ordinary objects is twofold. The most
basic question is whether Einstein equations set restrictions on the values that physical
parameters for objects can attain. This is not the case in Newtonian theory unless some
specific matter model with intrinsic restrictions is used. Is this the case in General
Relativity? Are there some conditions on the mass, size, rotation, and charge of an
object, such that if they are not fulfilled, the object can not exist within the theory?
This is related to the second question we want to address in this section. Are there
geometrical inequalities for objects such that if violated, the object collapses to form
a black hole? Clearly, the formation of a black hole after the collapse of an ordinary
object is one possible scenario leading to the non-existence raised in the first question.
However, we emphasize that these two situations, i.e., an object exists and satisfies
certain inequalities, and an object does not exist because it forms a black hole are in
principle very different and require different treatments.

The problem of finding geometrical inequalities in the non-black hole setting is wide
open. At this point it is not all that clear what kind of inequalities one should look for
(some of them have been motivated in the introduction though, see Sect. 1.3), nor what
the proper systems and physical quantities are, that will produce such inequalities (we
discuss this point below). This makes research in this area look a bit erratic, where new
ideas are proposed or applied in almost every article. Because of this, we choose to
present the results and discussions in a different manner as we do in previous sections.
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We discuss the general problems first and then present the results with specific remarks
for them.

5.1 Discussion

There are two major differences between non-black hole objects and black holes. The
first is the problem of how to characterize the object in such a way that it produces
the desired relation between physical quantities (like mass, electromagnetic charges
or angular momentum) and size or shape parameters. That is, we would need some
positivity condition to play the role of the stability of MOTS or minimal surfaces used
for obtaining black hole inequalities (a non-trivial topology for the underlying initial
surface is not considered when studying physically reasonable ordinary objects).

The second problem, maybe less challenging but still open, is how to properly
measure the object. When non-black hole objects are considered, one may want to
consider measures of 3-dimensional subsets of an initial data, and not just measures
of 2-surfaces. This raises several difficulties as there does not seem to exist consensus
about what the best or more appropriate measure is for the size of a non-black hole
object. Indeed, a proper and suitable measure of size of an object should satisfy cer-
tain requirements. Namely, it should give a good, intuitive idea of size, it should be
relatively easy to compute, it should be so chosen as to actually appear in the aimed
geometrical inequalities.

These problems are aggravated by the fact that in general, there is not a special
non-trivial ordinary object known to saturate an estimate of the form

[Size] � [Mass] or [Angular momentum] or [Charge], (201)

where the symbol [·] indicates only the dependence of each term (by applying dimen-
sional arguments one could propose a great number of more precise inequalities). This
leaves us without a model solution to look at, as opposed to the extreme black holes in
black hole inequalities. In fact, if such paradigmatic fully relativistic object satisfying
certain geometrical inequality existed (as extreme Kerr–Newman black hole in the
black hole scenario), it would give us a path to what kind of inequality we should look
for.

Note that to explore the rigidity case in (201) means to address the problem of
minimizing [Size] for given [Mass] (or given charge or angular momentum). Which
in turn is closely related to the isoperimetric problem of minimizing area for given
volume.

As a measure of size in the left-hand side of (201), one may attempt, inspired by
the quasilocal inequalities for black holes (Sect. 4), to use the area of the surface
enclosing the object. However, there are counter examples to an inequality of the form
A ≥ 4πQ2. The electrically counterpoised spheroids of dust, presented by Bonnor
(1998), are regular, static, isolated systems that satisfy the energy conditions and whose
enclosing surface can be made arbitrarily small relative to the charge enclosed, namely,
A < kQ2 for any positive, arbitrary number k. Since these objects are highly prolate,
it is expected that by assuming some kind of roundness on the enclosing surface, the
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area may give the desired estimate of charge. This example does not mean that the
area should not be considered as a measure of size for the not round enough objects.
But it says that in some cases, the area alone is not enough to control the amount of
charge the object can carry.

Taking this observation into account, two paths can be taken to arrive at estimates of
the form (201). One is to use special surfaces that are round enough. The other possi-
bility is to use a measure that takes into account the deformation away from sphericity.
In the first approach we encounter the following surfaces that capture the notion of
round enough surface: isoperimetric surfaces (Sect. 5.2.3) coordinate spheres and con-
vex surfaces (Sect. 5.2). Within the second approach, one may, as a first step, seek
estimates using combinations of different well known measures, like area, distance to
the boundary, etc. We come back to this point in Sect. 5.2.

There is another important issue referred to ordinary objects that is closely related
to black holes, and it is the question of the collapse of an object to form a black hole.
A few black hole formation criteria were constructed from geometrical inequalities
stating that if certain inequality is not satisfied, then a black hole is formed. We review
them below.

5.2 Results

As is the case for black holes, we divide the results according to whether angu-
lar momentum is considered explicitly into the inequality or not. This has to do
mainly with the requirement of axial symmetry needed to define quasilocal angular
momentum. As we see below, some of the results for ordinary objects employ similar
techniques as the ones used in the treatment of black holes, i.e., harmonic maps theory,
inverse mean curature flow, stability conditions, etc. Some results are quasilocal and
some are global as they also incorporate the ADM mass. Various approaches have
been taken to obtain the estimates. However, no variational problem has been formu-
lated. This, in particular, implies that there is no (non-trivial) rigidity statement on the
inequalities.

We mention here the setting where these inequalities are proven, and the main
properties that lead to them.

Settings. All inequalities presented in this section are proven for objects in an initial
data set (Σ, hi j , Ki j , μ, j i ). The objects themselves are taken to be open, bounded
regions Ω ⊂ Σ with smooth boundaries ∂Ω .

Inequality producer. The various results we show in Sects. 5.2.1 and 5.2.2 use very
different and apparently unrelated conditions that translate into the found inequalities.

– Strict positivity of the first eigenvalue of the linear differential operator −Δ+ 1
2

3R.
– Stability of minimal surfaces and MOTSs.
– Stability of the quotient space of maximal slices in axial symmetry.
– Positivity and monotonicity properties of the Geroch energy.
– Stability of isoperimetric surface.
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5.2.1 Inequalities for objects without angular momentum

Schoen and Yau (1983) study the black hole formation problem. They consider a
maximal initial data (Σ, hi j , Ki j , μ, j i ) and an open subset Ω ⊂ Σ (the object) such
that μ ≥ λ > 0 on Ω , where λ is a constant. Then

R2
SY (Ω) ≤ π

6λ
, (202)

where the radius RSY (Ω) is defined as follows. Take a simple closed curve Γ in Ω

which bounds a disk in Ω . Let r be the greatest distance from Γ such that the set of
all points within this distance form a torus embedded in Ω . RSY (Ω) is the supremum
of this r over all curves Γ .

The key point in this result is the fact that the first Dirichlet eigenvalue of the
operator −Δ + 1

2
3R, if it is strictly positive, sets an upper bound to RSY .

Inequality (202) is purely quasilocal, the initial data does not need to be asymptot-
ically flat.

Shoen and Yau also obtain the following black hole formation criterion: If Σ is
asymptotically flat and matter fields satisfy the energy condition μ − | j | ≥ λ > 0
on Ω ⊂ Σ , then the opposite inequality to (202) implies that Σ contains an apparent
horizon.

As stated by Murchadha (1986), the radius RSY captures the idea that the object
must be large in every direction to avoid collapsing, but may be hard to compute in
practical situations. He defines a new size measure (Murchadha 1986) as follows.
ROM is the size of the largest stable minimal 2-surface S that can be embedded in
Ω . By size we mean the maximum of the distances (with respect to hi j ) from interior
points to the boundary S. The existence of such minimal surfaces is guaranteed when
Ω is mean convex (i.e., ∂Ω has positive mean curvature). He finds ROM ≥ RSY and
obtains a sharpened version of (202), that is

R2
OM (Ω) ≤ π

6λ
. (203)

Galloway and O’Murchadha (2008) generalize the above result to not necessarily
maximal initial data and with MOTS replacing the minimal surfaces. More precisely,
they consider an object to be a relatively compact null mean convex open set Ω with
connected boundary in an initial data set (Σ, hi j , Ki j , μ, j i ). Define the radius of Ω ,
RGOM (Ω) as the size of the greatest compact connected stable MOTS S contained
in Ω (size has the same meaning as in the O’Murchadha’s definition of ROM ). Then,
assuming μ − | j | ≥ λ > 0 with λ constant, obtain

R2
GOM (Ω) ≤ π

6λ
. (204)

Note that the convexity condition is needed to guarantee the existence of the MOTSs
in Ω (Eichmair 2007).

We wish to remark that inequalities (203) and (204) use stable minimal or trapped
surfaces inside the object under study. In this way, they introduce the positivity con-
dition which ultimately produces the inequality.

123



 5 Page 60 of 74 S. Dain, M. E. Gabach-Clement

Reiris (2014b) shows that the quotient space of maximal slices in axial symmetry
satisfies a stability property. This is an interesting and strong argument which gives the
desired positivity condition similar to that of stable minimal surfaces on the ambient
space. The well known techniques of minimal surfaces are then adapted to obtain a
similar bound to that of Schoen and Yau in spherical symmetry. Namely, in spherically
symmetric and asymptotically flat initial data

R2
A(Ω) ≤ 2π

3λ
, (205)

where λ is a positive constant bounding the energy density, λ ≤ μ, and RA(Ω) is the
areal radius of the constant radius sphere Ω .

This result gives also the following black hole existence criterion: If the energy
density of the object satisfies ρ > π/6M2 where M is the ADM mass, then the object
lies inside a black hole and is not in static equilibrium.

He also obtains

RA ≥ Q2

2MADM
(206)

for spherically symmetric, asymptotically flat initial data, satisfying the dominant
energy condition.

Khuri (2015b) decomposes the matter density as an electromagnetic part (subindex
EM) and a non-electromagnetic part (subindex M) as ρ = ρM + ρEM and j =
jM + jEM and assumes that the non-electromagnetic part satisfies the dominant energy
condition, that is μM ≥ | jM |. Moreover, μM is taken to be constant. Then from this
condition and the definition of electromagnetic charge he obtains

Q2 ≤ A

2π

∫

∂Ω

μM − | jM |, (207)

where A is the area of ∂Ω . Then, using the Schoen and Yau bound (202) he obtains

|Q| ≤ A√
12RSY

(208)

Moreover, if Ω is mean convex, then the same bound holds for ROM instead of RSY .
Anglada et al. (2016) study the spherically symmetric, electrovacuum case. They

find that if the initial data is asymptotically flat and spherically symmetric, and if
outside a ball Ω with finite areal radius RA, it is electrovacuum and untrapped, then

RA ≥ |Q|
2

. (209)

This inequality is weaker than (206) and it is saturated at Q = 0 with vanishing radius
and total mass. Moreover, every non-trivial objet satisfies the strict inequality. (209)
is not quasilocal in the sense that asymptotic flatness is required for (209) to hold and,
in fact there are non-asymptotically-flat examples were it is violated. Note that (209)
does not use the bound (202) nor the radius RSY , as RA is a more natural size measure
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in spherical symmetry (see the discussion about the convenience of using the surface
area as a size measure for objects, in Sect. 5.1).

5.2.2 Inequalities for objects with angular momentum

The key ingredient needed to include the angular momentum into a geometrical
inequality is to relate it with the Einstein constraints. This is done via the relation
with the current density j i or with the extrinsic curvature Ki j of Σ .

Dain (2014b) considers maximal axially symmetric initial data (Σ, hi j , Ki j , μ, j i )
with constant energy density μ and non-vanishing current density j i �= 0, satisfying
the dominant energy condition. He takes an object to be an axially symmetric open
subset Ω of Σ . From the definition of angular momentum [see Eq. (138)] he bounds
the angular momentum J of Ω in terms of the integral of the current density (and via
the energy condition, in terms of μ) and the norm of the Killing vector ηi associated
to the axial symmetry, that is η = ηiηi ,

|J | ≤
∫

Ω

| j |√η ≤ μ

∫

Ω

√
η. (210)

Then, using the Hamiltonian constraint he obtains R ≥ 16πμ, and therefore, (202)
gives the geometrical inequality between the angular momentum J of Ω and the
Schoen and Yau size.

|J | ≤ π

6

∫
Ω

√
η

R2
SY

. (211)

In fact, Dain proposes the right-hand side of (211) as a new measure of size.
By assuming Ω to be mean convex, the same inequality is obtained when ROM is

used in the definition of RD .
Khuri (2015a) extends this result to not necessarily maximal initial data satisfying

a stronger version of the dominant energy condition, namely ρ ≥ | j̄ | + | jη| where
jη is the current density in the direction of the axial Killing vector field ηi and j̄ is
the current in the orthogonal directions. More precisely, Khuri considers an axially
symmetric initial data, without compact apparent horizons, which is asymptotically
flat or has a strongly untrapped boundary, then for an open set Ω in the initial data it
holds

|J | ≤ 3πC0

16

∫
Ω

√
η

R2
SY

. (212)

where C0 := maxΩ(μ − | j̄ |)/minΩ(μ − | j̄ |).
This result gives the following black hole formation criteria: Given an axially sym-

metric initial data such that the initial surface Σ is asymptotically flat or has a strongly
untrapped boundary. Under the energy condition stated above, if there exists a bounded
region Ω where (212) does not hold, then Σ contains an apparent horizon.

Without using the Schoen and Yau bound (202), Reiris (2014b) goes a different route
to obtain geometrical inequalities for objects. Using techniques of minimal surfaces
he finds estimates on the shape of an axially symmetric object in terms of the angular
momentum when the object does not intersect the symmetry axis and is connected:
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|J | ≤
(

1 + P

πD

)
π

2
R2

C , (213)

where P is the transversal perimeter of Ω , D is the distance from Ω to the symmetry
axis and 2πRC is the length of the greatest axisymmetric orbit in Ω . Note that this
result gives information, not only about the size, but about the shape of the object. This
implies that in order to control the angular momentum of an ordinary object, size in all
directions should be considered, an observation that may also be valid for electrically
charged ordinary objects (see the discussion about the Bonnor example mentioned in
Sect. 5.1).

The inequalities (211), (212) and (213) suggest the existence of an appropriate size
measure, R, probably defined in terms of the norm of the Killing vector η, as well as
measures in relevant spatial directions, such that an inequality of the form

|J | � R2 (214)

holds for ordinary objects.
We finally present an inequality that is global in the sense that in includes the ADM

mass.
Using the inverse mean curvature flow on asymptotically flat, axially symmetric

initial data (Σ, hi j , Ki j , μ, j i ), Anglada et al. (2017) study convex regions Ω where
the current density has compact support. Assuming that the initial data satisfies the
dominant energy condition and has no minimal surfaces, they find

MADM ≥ mT + J 2

5RAR2
c

(215)

where RA and Rc are the areal and circumferential radius of the convex flow surface
ST such that St is convex for t ≥ T . Also, mT is a positive constant

mT := 1

16π

∫ RA

0
dξ

∫

Sξ
RdS (216)

and ξ is the areal radius coordinate and R is the curvature scalar of h.
One of the main ingredients in the argument is the use of the Geroch energy (Huisken

1998; Szabados 2004) defined on a 2-surface S with area A and mean curvature H

EG(S) := A1/2

(16π)3/2

(
16π −

∫

S
H2ds

)
. (217)

The positivity and monotonicity properties of the Geroch energy are crucially used
to relate the ADM with the curvature scalar and the norm of the Killing vector field,
η, on the surfaces defined by the flow. Using the Hamiltonian constraint together with
the definition (139), the scalar curvature is bounded by the angular momentum of the
surfaces. Finally convexity of the flow surfaces is used to control the evolution of η

along the flow.
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Inequality (215) also gives information about the shape of the object. It says that if
the total mass is fixed, then the angular momentum determines how oblate or prolate
the object can be. We also notice that the term mT plays the role of a quasilocal mass
(see Malec et al. 2002).

It is remarkable that the inequalities obtained in this section, although with different
technical conditions, give rise to inequalities similar to the ones discussed in Sect. 1.3,
which were informally derived from Newtonian considerations and the condition that
nothing travels faster than light.

5.2.3 Isoperimetric surfaces

As we mention in Sect. 2.2, isoperimetric surfaces in initial data are an important sys-
tem from which relations between physical and geometrical quantities can be obtained.
We refer the reader to the articles by Eichmair and Metzger (2013a, b) for a detailed
account on the results related to isoperimetric surfaces in Riemannian manifolds with
application to General Relativity. See also Sect. 2.2 for references on discussions about
the Penrose inequality for isoperimetric surfaces.

In this section we focus on inequalities relating size, angular momentum and
charges, so, in this sense, they are quasilocal inequalities.

Dain et al. (2012) study electro-vacuum, maximal initial data, possibly with a non-
negative cosmological constant and find that if S is a stable isoperimetric sphere,
then

A(S) ≥ 4π

3
Q2(S). (218)

Stability here means that the area function is not only critical at the isoperimetric
surface S, but also a minimum.

Aceña and Dain (2013), characterize the behavior of isoperimetric surfaces in
Reissner–Nordström and find, among other results that the spheres r = constant
in the Reissner–Nordström metric are isoperimetric stable for 0 ≤ |Q| ≤ M and
satisfy the bound

A ≥ 16

9
πQ2. (219)

Moreover, there is not a sphere in Reissner–Nordström where the inequality (219) is
saturated. The inequality is saturated in the limit when the extreme case is approached
from the superextreme case.

Up to now, the only result involving angular momentum for isoperimetric surfaces
is proven by Reiris (2014b). Let S be a stable isoperimetric, axisymmetric sphere
enclosing an object Ω (and nothing else). Then,

|J | ≤ c1R
√
A ≤ c22RL , (220)

where c1 = 6/(8π3/2), c2 = 6/(4π), |J | is the angular momentum of Ω and A, R
and L are, respectively, the area of S, the length of the greatest axisymmetric orbit in
S and the distance from the North to the South Pole of S.
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6 Open problems

There are a number of open problems that need to be addressed in order to understand
more completely the type of estimates one can obtain both for black holes and ordinary
objects. Most of them were mentioned and/or discussed in the appropriate section. We
list them below as well.

– Removing axial symmetry Axial symmetry is a requirement in all the geometrical
inequalities involving angular momentum presented in this article. However, devi-
ations from axial symmetry are of major importance, especially in astrophysics
and numerical simulations. As was previously discussed, axial symmetry is an
unremovable condition for the global inequalities (Huang et al. 2011). However,
for quasilocal inequalities, the necessity of axial symmetry is not so clear. On
one hand, there are heuristic and Newtonian-like considerations that suggest the
possibility of non-axially symmetric quasilocal geometrical inequalities. Also, the
fact that the variational problem for the mass functional M presented in Sect. 4.2.5
holds for not necessarily axially symmetric functions is somewhat encouraging. In
particular, this last point shows the major role that extreme Kerr–Newman black
holes plays as a limit solution, among a wider class of solutions. We need to
emphasize that the problem of quasilocal geometrical inequalities involving angu-
lar momentum outside axial symmetry is not a well defined mathematical problem,
because there is no proper quasilocal notion of angular momentum in this setting.
Solving this problem, for one way or another is a major open problem.

– Maximality and Jang-like equationsAs we have seen in several parts of this article,
most inequalities for initial data were originally proved assuming maximality.
Whether this condition could be lifted or not was an unsolved question for some
time. Later maximality was replaced by the existence of solutions to especific
equations including equations of the Jang type. To prove that such solutions do
exist is key to regard the maximality condition a removable one.

– Mass–angular momentum inequality for data with inner boundaryWe have seen in
Sect. 3.1 that the mass–charge inequality can be formulated in terms of initial data
where the initial surface Σ is either complete with non-trivial topology, or has a
weakly trapped inner boundary. On the other hand, the mass–angular momentum
inequalities presented in Sect. 3.2 are proven only for complete initial surfaces
with non-trivial topology. Extending this result to manifolds with boundaries is
important for three reasons: first it would complete and unify the results about this
type of global inequalities. Second, the proper formulation and resolution of the
variational problem needed to derive the desired inequality when an inner boundary
is present (analogous to the one used in the proof for the case of complete manifold),
would clarify the role that extreme black holes play as borderline solutions. Finally,
it seems that if one wants to make a connection between this geometrical inequality
and the Penrose inequality, (see next item) a careful understanding of this case may
be of use.

– Connection with Penrose inequality The connection of the geometrical inequalities
presented in this article and the positive mass theorem and the Penrose inequality
seems to become deeper as further studies are performed. Not only they involve
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the same physical and geometrical quantities, i.e., mass, area (or size), angular
momentum, charge, but also the techniques used in both problems seem to not
be so different (see Sect. 5.2 for an inequality for objects using the inverse mean
curvature flow). Exploring this connection may shed light into the problems and
possible resolutions. In this respect, see the article by Anglada (2017), where he
adapts the results in Anglada et al. (2017) for ordinary objects to study the Penrose
inequality.

– Minimumofmass functional formultiple rotating black holesThe global inequality
for multiple black holes, (147) is written in terms of the value of the mass functional
on a minimizer solution. This minimizer is not known explicitly although there
are a few numerical calculations indicating that for two regular Kerr black holes,
the total mass square should be greater than the total angular momentum. Whether
this relation holds for more general configurations or some other parameters are
needed is unclear. Obtaining an explicit form of this value is of great importance
because it would tell us, in particular, whether the total mass controls the individual
angular momenta of the black holes, or the total angular momentum of the system,
and exactly how it does it.

– Global inequality with Λ Global inequalities relating mass, angular momentum
and/or charge that also include explicitly a cosmological constant Λ have not been
proven yet. A negative cosmological constant, however, has been admitted in the
statements of the mass–angular momentum–charge inequalities (Cha and Khuri
2017).

– Connection between M and M Another issue that must be better understood is
the connection between the global and quasilocal inequalities for black holes that
include the angular momentum. A partial implication was presented in Sect. 4.3
but there are many issues that are not entirely clear yet. This is not an easy problem
since it involves relating global and quasilocal settings. Its full resolution might
give a hint into the connection with the Penrose inequality.

– Quasilocal estimate with negative Λ The way the cosmological constant appear
into the mass functional M makes the procedure used to prove the area–angular
momentum–cosmological constant inequality hard to adapt when Λ is negative.
Note that the problem with the negative Λ is not about how it enters into a gener-
alization of the Area–Angular momentum inequality, but about whether such an
inequality does exist. The works mentioned in Sect. 4.4 suggest that it does exist
and a particular inequality motivated by extreme Kerr–Newman AdS black hole
has been proposed. This problem is far from solved and new techniques must be
implemented.

– Ordinary objectsAs was discussed in Sect. 5, there are very basic questions that are
unanswered with respect to geometrical inequalities for objects. Things like: what
inequality we expect to obtain, how we should characterize the object and how we
should measure them, are not clear. Concerning the first two issues, it is crucial to
understand in what class of ordinary objects one expects to obtain a geometrical
inequality. By this we mean that a positivity condition seems to be needed in order
to derive the desired estimate. This leads naturally to the following question: Do
all objects, say, in axial symmetry for simplicity, have a restriction on the allowed
valued of their parameters? In particular, should they be round enough?
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– Measure of size for ordinary objects This issue was discussed in Sect. 5. There are
various alternative notions of size but more work needs to be done. As seen in the
results presented in Sect. 5.2.2, in the case of axial symmetry, it may be convenient
to study measures constructed from the norm of the axial Killing vector field,

√
η.

This is supported by the following observations: The norm
√
η is bounded by

the equatorial radius Rc (defined as the length, divided by 2π of the greatest
axially symmetric circle. This gives a clear and natural measure of size relevant
for rotating objects. Also, for convex surfaces the variation of η along the inverse
mean curvature flow is controlled by η itself. Also, the measure should take into
account deviations from sphericity in all directions.

– Connection with hoop conjecture Some versions of the hoop conjecture suggest
to look for geometrical inequalities relating size, angular momentum and some
measure of quasilocal mass of a certain region of spacetime (Senovilla 2008).
There are several different quasilocal masses in the literature (Szabados 2004),
but the problem of identifying the appropriate one(s) that simultaneously capture
the matter content of the region, and that give rise to the desired meaningful
geometrical inequalities is still open.
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Chruściel PT, Reall HS, Tod P (2006b) On Israel–Wilson–Perjes black holes. Class Quantum Grav 23:2519–
2540. https://doi.org/10.1088/0264-9381/23/7/018. arXiv:gr-qc/0512116
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Chruściel PT, Szybka SJ, Tod P (2017) Towards a classification of near-horizons geometries. ArXiv e-prints
arXiv:1707.01118

Compere G (2017) The Kerr/CFT correspondence and its extensions. Living Rev Relativ 20:1. https://doi.
org/10.1007/s41114-017-0003-2. arXiv:1203.3561

Corvino J, Gerek A, Greenberg M, Krummel B (2007) On isoperimetric surfaces in general relativity. Pacific
J Math 231:63–84. https://doi.org/10.2140/pjm.2007.231.63

Costa JL (2010) Proof of a Dain inequality with charge. J Phys A 43:285202 arXiv:0912.0838
Cvetic M, Gibbons G, Pope C (2011a) Universal area product formulae for rotating and charged black holes

in four and higher dimensions. Phys Rev Lett 106:121301. https://doi.org/10.1103/PhysRevLett.106.
121301. arXiv:1011.0008

Cvetic M, Gibbons GW, Pope CN (2011b) More about Birkhoff’s invariant and Thorne’s hoop conjec-
ture for horizons. Class Quantum Grav 28:195001. https://doi.org/10.1088/0264-9381/28/19/195001.
arXiv:1104.4504

Dafermos M (2005) Spherically symmetric space-times with a trapped surface. Class Quantum Grav
22:2221–2232. https://doi.org/10.1088/0264-9381/22/11/019. arXiv:gr-qc/0403032

Dain S (2004) Trapped surfaces as boundaries for the constraint equations. Class Quantum Grav 21:555–573
arXiv:gr-qc/0308009

Dain S (2006a) Angular momemtum–mass inequality for axisymmetric black holes. Phys Rev Lett
96:101101 arXiv:gr-qc/0511101

Dain S (2006b) Proof of the (local) angular momemtum–mass inequality for axisymmetric black holes.
Class Quantum Grav 23:6845–6855 arXiv:gr-qc/0511087

Dain S (2006c) A variational principle for stationary, axisymmetric solutions of Einstein’s equations. Class
Quantum Grav 23:6857–6871 arXiv:gr-qc/0508061

Dain S (2008) Proof of the angular momentum–mass inequality for axisymmetric black holes. J Differ
Geom 79:33–67 arXiv:gr-qc/0606105

Dain S (2010) Extreme throat initial data set and horizon area–angular momentum inequality for
axisymmetric black holes. Phys Rev D 82:104010. https://doi.org/10.1103/PhysRevD.82.104010.
arXiv:1008.0019

Dain S (2011) Geometric inequalities for axially symmetric black holes. ArXiv e-prints arXiv:1111.3615
Dain S (2012) Geometric inequalities for axially symmetric black holes. Class Quantum Grav 29:073001.

https://doi.org/10.1088/0264-9381/29/7/073001. arXiv:1111.3615
Dain S (2014a) Geometric inequalities for black holes. Gen Relativ Gravit 46:1715. https://doi.org/10.1007/

s10714-014-1715-1. arXiv:1401.8166
Dain S (2014b) Inequality between size and angular momentum for bodies. Phys Rev Lett 112:041101.

https://doi.org/10.1103/PhysRevLett.112.041101. arXiv:1305.6645
Dain S, Ortiz OE (2009) Numerical evidences for the angular momentum–mass inequality for multiple

axially symmetric black holes. Phys Rev D 80:024045. https://doi.org/10.1103/PhysRevD.80.024045.
arXiv:0905.0708

123

https://doi.org/10.1088/0264-9381/28/12/125001
http://arxiv.org/abs/1102.1175
https://doi.org/10.1007/PL00001029
http://arxiv.org/abs/gr-qc/0001003
https://doi.org/10.1088/1126-6708/2006/11/084
https://doi.org/10.1088/1126-6708/2006/11/084
http://arxiv.org/abs/gr-qc/0606064
https://doi.org/10.1088/0264-9381/23/7/018
http://arxiv.org/abs/gr-qc/0512116
https://doi.org/10.1016/j.aop.2007.12.011
https://doi.org/10.1016/j.aop.2007.12.011
http://arxiv.org/abs/0712.4064
https://doi.org/10.1088/0264-9381/28/24/245017
http://arxiv.org/abs/1111.1448
https://doi.org/10.12942/lrr-2012-7
http://arxiv.org/abs/1205.6112
https://doi.org/10.4310/ATMP.2013.v17.n4.a4
https://doi.org/10.4310/ATMP.2013.v17.n4.a4
http://arxiv.org/abs/1203.5138
http://arxiv.org/abs/1707.01118
https://doi.org/10.1007/s41114-017-0003-2
https://doi.org/10.1007/s41114-017-0003-2
http://arxiv.org/abs/1203.3561
https://doi.org/10.2140/pjm.2007.231.63
http://arxiv.org/abs/0912.0838
https://doi.org/10.1103/PhysRevLett.106.121301
https://doi.org/10.1103/PhysRevLett.106.121301
http://arxiv.org/abs/1011.0008
https://doi.org/10.1088/0264-9381/28/19/195001
http://arxiv.org/abs/1104.4504
https://doi.org/10.1088/0264-9381/22/11/019
http://arxiv.org/abs/gr-qc/0403032
http://arxiv.org/abs/gr-qc/0308009
http://arxiv.org/abs/gr-qc/0511101
http://arxiv.org/abs/gr-qc/0511087
http://arxiv.org/abs/gr-qc/0508061
http://arxiv.org/abs/gr-qc/0606105
https://doi.org/10.1103/PhysRevD.82.104010
http://arxiv.org/abs/1008.0019
http://arxiv.org/abs/1111.3615
https://doi.org/10.1088/0264-9381/29/7/073001
http://arxiv.org/abs/1111.3615
https://doi.org/10.1007/s10714-014-1715-1
https://doi.org/10.1007/s10714-014-1715-1
http://arxiv.org/abs/1401.8166
https://doi.org/10.1103/PhysRevLett.112.041101
http://arxiv.org/abs/1305.6645
https://doi.org/10.1103/PhysRevD.80.024045
http://arxiv.org/abs/0905.0708


 5 Page 70 of 74 S. Dain, M. E. Gabach-Clement

Dain S, Reiris M (2011) Area–angular-momentum inequality for axisymmetric black holes. Phys Rev Lett
107:051101. https://doi.org/10.1103/PhysRevLett.107.051101. arXiv:1102.5215

Dain S, Jaramillo JL, Reiris M (2012) Area–charge inequality for black holes. Class Quantum Grav
29:035013 arXiv:1109.5602

Eichmair M (2007) The plateau problem for apparent horizons. J Differ Geom. https://doi.org/10.4310/jdg/
1264601035. arXiv:0711.4139

Eichmair M, Metzger J (2013a) Large isoperimetric surfaces in initial data sets. J Differ Geom 94:159–186.
https://doi.org/10.4310/jdg/1361889064. arXiv:1102.2999

Eichmair M, Metzger J (2013b) Unique isoperimetric foliations of asymptotically flat manifolds in all
dimensions. Invent Math 194:591. https://doi.org/10.1007/s00222-013-0452-5. arXiv:1204.6065

Eichmair M, Galloway GJ, Pollack D (2013) Topological censorship from the initial data point of view. J
Differ Geom 95:389–405. https://doi.org/10.4310/jdg/1381931733. arXiv:1204.0278

Epp RJ, McGrath PL, Mann RB (2013) Momentum in general relativity: local versus quasilocal con-
servation laws. Class Quantum Grav 30:195019. https://doi.org/10.1088/0264-9381/30/19/195019.
arXiv:1306.5500

Ernst FJ (1968) New formulation of the axially symmetric gravitational field problem. Phys Rev 167:1175–
1179. https://doi.org/10.1103/PhysRev.168.1415

Fajman D, Simon W (2014) Area inequalities for stable marginally outer trapped surfaces in Einstein–
Maxwell-dilaton theory. Adv Theor Math Phys 18:687–707. https://doi.org/10.4310/ATMP.2014.v18.
n3.a4. arXiv:1308.3659

Gabach Clément ME (2011) Comment on “Horizon area–angular momentum inequality for a class of axially
symmetric black holes”. ArXiv e-prints arXiv:1102.3834

Gabach Clément ME (2012) Bounds on the force between black holes. Class Quantum Grav 29:165008.
https://doi.org/10.1088/0264-9381/29/16/165008. arXiv:1201.4099

Gabach Clément ME, Jaramillo JL (2012) Black hole area–angular momentum–charge inequality in dynam-
ical non-vacuum spacetimes. Phys Rev D 86:064021. https://doi.org/10.1103/PhysRevD.86.064021.
arXiv:1111.6248

Gabach Clément ME, Reiris M (2013) On the shape of rotating black-holes. Phys Rev D 88:044031. https://
doi.org/10.1103/PhysRevD.88.044031. arXiv:1306.1019

Gabach Clément ME, Jaramillo JL, Reiris M (2013) Proof of the area–angular momentum–charge inequality
for axisymmetric black holes. Class Quantum Grav 30:065017. https://doi.org/10.1088/0264-9381/
30/6/065017. arXiv:1207.6761

Gabach Clément ME, Reiris M, Simon W (2015) The area–angular momentum inequality for black holes
in cosmological spacetimes. Class Quantum Grav 32:145006. https://doi.org/10.1088/0264-9381/32/
14/145006. arXiv:1501.07243

Galloway GJ, O’Murchadha N (2008) Some remarks on the size of bodies and black holes. Class Quantum
Grav 25:105009. https://doi.org/10.1088/0264-9381/25/10/105009. arXiv:0802.3247

Gannon D (1975) Singularities in nonsimply connected space-times. J Math Phys 16:2364–2367. https://
doi.org/10.1063/1.522498

Gannon D (1976) On the topology of spacelike hypersurfaces, singularities, and black holes. Gen Relativ
Gravit 7:219–232. https://doi.org/10.1007/BF00763437

Gibbons GW (1984) The isoperimetric and Bogomolny inequalities for black holes. In: Willmore TJ, Hitchin
N (eds) Global Riemannian geometry. Wiley, New York, pp 194–202

Gibbons GW (1997) Collapsing shells and the isoperimetric inequality for black holes. Class Quantum
Grav 14:2905–2915. https://doi.org/10.1088/0264-9381/14/10/016

Gibbons GW (1999) Some comments on gravitational entropy and the inverse mean curvature flow. Class
Quantum Grav 16:1677–1687. https://doi.org/10.1088/0264-9381/16/6/302. arXiv:hep-th/9809167

Gibbons GW (2009) Birkhoff’s invariant and Thorne’s hoop conjecture. ArXiv e-prints arXiv:0903.1580
Gibbons GW, Holzegel G (2006) The positive mass and isoperimetric inequalities for axisymmetric black

holes in four and five dimensions. Class Quantum Grav 23:6459–6478. https://doi.org/10.1088/0264-
9381/23/22/022. arXiv:gr-qc/0606116

Gibbons GW, Hull CM (1982) A Bogomolny bound for general relativity and solitons in N = 2 supergravity.
Phys Lett B 109:190–194. https://doi.org/10.1016/0370-2693(82)90751-1

Gibbons GW, Hawking SW, Horowitz GT, Perry MJ (1983) Positive mass theorems for black holes. Commun
Math Phys 88:295–308. https://doi.org/10.1007/BF01213209

123

https://doi.org/10.1103/PhysRevLett.107.051101
http://arxiv.org/abs/1102.5215
http://arxiv.org/abs/1109.5602
https://doi.org/10.4310/jdg/1264601035
https://doi.org/10.4310/jdg/1264601035
http://arxiv.org/abs/0711.4139
https://doi.org/10.4310/jdg/1361889064
http://arxiv.org/abs/1102.2999
https://doi.org/10.1007/s00222-013-0452-5
http://arxiv.org/abs/1204.6065
https://doi.org/10.4310/jdg/1381931733
http://arxiv.org/abs/1204.0278
https://doi.org/10.1088/0264-9381/30/19/195019
http://arxiv.org/abs/1306.5500
https://doi.org/10.1103/PhysRev.168.1415
https://doi.org/10.4310/ATMP.2014.v18.n3.a4
https://doi.org/10.4310/ATMP.2014.v18.n3.a4
http://arxiv.org/abs/1308.3659
http://arxiv.org/abs/1102.3834
https://doi.org/10.1088/0264-9381/29/16/165008
http://arxiv.org/abs/1201.4099
https://doi.org/10.1103/PhysRevD.86.064021
http://arxiv.org/abs/1111.6248
https://doi.org/10.1103/PhysRevD.88.044031
https://doi.org/10.1103/PhysRevD.88.044031
http://arxiv.org/abs/1306.1019
https://doi.org/10.1088/0264-9381/30/6/065017
https://doi.org/10.1088/0264-9381/30/6/065017
http://arxiv.org/abs/1207.6761
https://doi.org/10.1088/0264-9381/32/14/145006
https://doi.org/10.1088/0264-9381/32/14/145006
http://arxiv.org/abs/1501.07243
https://doi.org/10.1088/0264-9381/25/10/105009
http://arxiv.org/abs/0802.3247
https://doi.org/10.1063/1.522498
https://doi.org/10.1063/1.522498
https://doi.org/10.1007/BF00763437
https://doi.org/10.1088/0264-9381/14/10/016
https://doi.org/10.1088/0264-9381/16/6/302
http://arxiv.org/abs/hep-th/9809167
http://arxiv.org/abs/0903.1580
https://doi.org/10.1088/0264-9381/23/22/022
https://doi.org/10.1088/0264-9381/23/22/022
http://arxiv.org/abs/gr-qc/0606116
https://doi.org/10.1016/0370-2693(82)90751-1
https://doi.org/10.1007/BF01213209


Geometrical inequalities bounding angular momentum… Page 71 of 74  5 

Gibbons GW, Kallosh R, Kol B (1996) Moduli, scalar charges, and the first law of black
hole thermodynamics. Phys Rev Lett 77:4992–4995. https://doi.org/10.1103/PhysRevLett.77.4992.
arXiv:hep-th/9607108
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