
Robust edge states induced by electron-phonon interaction in graphene nanoribbons

Hernán L. Calvo,1, 2 Javier S. Luna,1 Virginia Dal Lago,1 and Luis E. F. Foa Torres3

1Instituto de Fı́sica Enrique Gaviola (CONICET) and FaMAF, Universidad Nacional de Córdoba, Argentina
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The search of new means of generating and controlling topological states of matter is at the front of many
joint efforts, including bandgap engineering by doping and light-induced topological states. Most of our un-
derstading, however, is based on a single particle picture. Topological states in systems including interaction
effects, such as electron-electron and electron-phonon, remain less explored. By exploiting a non-perturbative
and non-adiabatic picture, here we show how the interaction between electrons and a coherent phonon mode
can lead to a bandgap hosting edge states of topological origin. Further numerical simulations witness the ro-
bustness of these states against different types of disorder. Our results contribute to the search of topological
states, in this case in a minimal Fock space.

I. INTRODUCTION

The search of topological states of matter is now reshap-
ing condensed matter physics.1,2 The pioneering works in the
1980s3,4 bloomed about 20 years later with the prediction5,6

and discovery of topological insulators in two7 and three di-
mensions.8 This field is today more active than ever, with
new trends and discoveries expanding its frontiers. This in-
cludes, for example, the search for gapless but topological
phases such as Weyl semimetals,9 topological states induced
by time-dependent fields (the so-called Floquet topological in-
sulators),10–12 time-dependent lattice distortions13 and, more
recently, topological states in non-Hermitian systems.14,15 To-
day, topological states have a main role in the global search
for means of achieving on-demand properties.16

However, most of the current understanding of topological
states remains at the level of a single-particle. The effect of
interactions, both on topological phases predicted on the ba-
sis of a single-particle picture or as a mean of inducing new
ones, stands out as a major problem. Previous studies along
this direction have shown that electron-phonon interaction can
either suppress17 or even induce18–21 non-trivial topological
phases as the temperature increases. But the interaction be-
tween electrons and coherent phonons can also induce dressed
states (even in the low-temperature limit), thereby requiring a
careful analysis of the excitation spectrum of the composed
system (electron and phonons). This type of interaction typ-
ically requires going beyond the adiabatic limit and has been
predicted to lead to a phonon-induced bandgap opening in car-
bon nanotubes.22,23 Experiments have also evidenced a break-
down of the Born-Oppenheimer approximation in graphene
with the same type of high-symmetry optical phonons.24 The
recent observation of chiral phonons in 2D materials25 also
adds much interest in the context of possible ARPES experi-
ments.26 Furthermore, other authors have put forward the pos-
sibility of using optical means to control the electron-phonon
interaction.27

Here we examine a model for electron-phonon interaction
in a quasi-one dimensional system and show that it may lead
to robust topological edge states in a sample that otherwise
lacked them. Specifically, we consider a graphene nanoribbon
in the presence of a strong electron-phonon interaction with a

single high-symmetry optical phonon mode. By exploiting a
Fock space picture incorporating non-perturbative and non-
adiabatic effects,28,29 we find that at the center of the phonon
induced bandgaps (located at half the phonon energy above
the Dirac point) there are edge states of topological origin in-
duced by the electron-phonon interaction. Furthermore, our
numerical simulations show that these states remain robust to
different types of disorder and ribbon geometries.

II. HAMILTONIAN MODEL AND FOCK SPACE
SOLUTION SCHEME

To investigate the effects of the electron-phonon (e-ph) in-
teraction, we use the framework introduced in Refs. [28] and
[29]. The purpose of this section is to write the system’s
Hamiltonian in a basis for the electron-phonon Fock space
corresponding to a single electron plus the excitations of the
phonon mode. Since the description is coherent and as such
the quantum phases are fully preserved, the e-ph interaction
does not produce any phase randomization. This approach
has been used for a variety of problems including vibration
assisted tunneling in STM experiments,30 transport through
molecules31,32 and resonant tunneling in double barrier het-
erostructures.33

Let us consider a tight-binding description of graphene
nanoribbons (GNRs) through the Hamiltonian

Ĥ = −
∑
〈i,j〉

γij ĉ
†
i ĉj , (1)

where the sum runs over nearest neighbor carbon atoms and
γij represents the hopping amplitude connecting them. The
fermion operator ĉ†i (ĉi) creates (annihilates) an electron at site
i of the lattice. Carbon displacements δri from their respec-
tive equilibrium positions r0i are incorporated as a renormal-
ization of the bare hopping amplitude γ0 = 2.7 eV through34

γij = γ0 exp[−b(dij/a0 − 1)], where dij = |r0i − r0j +
δri − δrj | accounts for the distance between carbons i and
j, a0 = |r0i − r0j | ' 1.42 Å is the equilibrium C-C distance,
and b ' 3.37 is the rate of decay.

As depicted in Fig. 1(a), we consider a single phonon mode
characterized by a rigid displacement δr = a0Qu between
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III ELECTRON-PHONON INDUCED EDGE STATES

Figure 1. Armchair GNR with phonon mode A1(L). (a) ac-GNR of
Ny = 4 carbon atoms wide (Ly = 8.61 Å). The shaded rectangle
encloses a “transversal layer”, i.e. a single line of Ny carbon atoms.
The longitudinal optical phonon is depicted by red and blue arrows.
(b) Eigenmode decomposition of the lattice. In the non-interacting
case, each eigenmode consists of a dimer chain with intracell hop-
pings γ(0)

q,a and intercell hoppings γ(0)
q,b. (c) Interacting case: Each

dimer chain (eigenmode q), now splits into infinite replicas with dif-
ferent number of phonon excitations.

sublattices A and B, whereQ sets the strength of the displace-
ment and u = (cosφ, sinφ) its direction.35 The positions of
the carbon atoms thus depend on which sublattice they belong,
i.e. ri = r0i ± δr/2, for i ∈ {A, B}, respectively. Assuming
small displacements, i.e. Q� 1, we linearize the hoppings as
γij = γ0(1 − bQ cosαij), where αij is the angle subtended
by the C-C bond and the displacement direction. Now we
impose quantization on the mechanical coordinate, such that
the above hoppings introduce the electron-phonon interaction.

The full Hamiltonian therefore reads

Ĥ = Ĥel + Ĥph −
∑
〈i,j〉

γx cosαij ĉ
†
i ĉj(â

† + â), (2)

where â† (â) creates (annihilates) one phonon excitation of
frequency ω, and γx sets the strength of the e-ph interaction.
The pure electronic Hamiltonian is given by the C-C hoppings
in equilibrium, and writes as in Eq. (1) but with the replace-
ment γij → γ0. In Eq. (2) we also included the phonon
Hamiltonian, given by

Ĥph = ~ωâ†â. (3)

We work within a Fock space spanned by |i, n〉 = |i〉 ⊗ |n〉
states, where |i〉 describes a single electron state (usually re-
ferred to the site basis), while |n〉 sets the number of phonon
excitations in the lattice. In this basis, the Hamiltonian of
Eq. (2) can be represented as the following matrix:

H = H0 ⊗ 1ph + 1el ⊗ ~Ω + H1 ⊗X. (4)

Here, H0 and H1 are electronic matrices representing the γ0
and γx hoppings in the hexagonal graphene lattice, 1ph and
1el are the identity matrices in phonon and electron subspaces,
respectively, while the remaining phonon matrices are defined
as:

Ω =


0 0 0
0 ω 0
0 0 2ω

. . .

 , X =


0
√

1 0√
1 0

√
2

0
√

2 0
. . .

 . (5)

Expressed in the Fock space basis, the Hamiltonian in
Eq. (4) can be visualized as the original one without inter-
actions together with the replicas corresponding to different
phonon excitations and the interactions between them. The
presence of these excitations is accounted for by the additional
energies n~ω. In this representation, the e-ph coupling enters
through the last term, which enables the absorption and emis-
sion of a single phonon each time the electron ‘hops’ between
two carbon atoms.

III. ELECTRON-PHONON INDUCED EDGE STATES

As introduced in the previous section, here we consider a
fully quantized vibrational mode of frequency ω, and describe
the vibrating nanoribbons through a Fock space spanned by
the states |i, n〉, which accounts for both the electronic and
vibrational degrees of freedom.

This might remind the reader of a similar picture used for
time-periodic Hamiltonians: Floquet theory.36 Indeed, there
are several parallels stemming from a seeming isomorphism
between the Floquet space and the Fock space,37 but a few
crucial differences must be noticed: (i) Unlike for the case
of time-dependent potentials, for the case of phonons, tem-
perature plays a natural role in defining the phonon popu-
lation. (ii) In Floquet theory, the replica index is unbound
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A Vibration induced bandgaps III ELECTRON-PHONON INDUCED EDGE STATES

while in the case of phonons described here it is bounded
from below (n ≥ 0). (iii) The matrix elements for phonon
emission and absorption change with the phonon population.
Both descriptions (i.e. Fock space and Floquet space) match
only when the system is in a highly excited state, a fact that
is far from correct for optical phonons with typical energies
exceeding kBT at room temperature. Aside from these dif-
ferences, inspired from what we learned from Floquet topo-
logical states,10,11,38 one might then search for similar physics
induced by the electron-phonon interaction.

Another issue one might notice is the role of time-reversal
symmetry (TRS): While a gap in irradiated graphene re-
quires circularly polarized light so as to break TRS,10,3940

the phonons considered here do not break such a symmetry
(though they do open a bandgap22,23,41 at ~ω/2 in the bulk ma-
terial). However, one needs also to point out that in this work
we are restricting ourselves to a ribbon geometry (i.e. a quasi
one-dimensional system) rather than a two-dimensional sys-
tem. Interestingly, chiral phonons,25,42 lying at the corners of
the Brillouin zone, could be used in two-dimensional hexago-
nal lattices to break TRS (at least locally in the valleys). Car-
rying on with the Fock-Floquet analogy, one could expect in
the latter case similar physics as that of irradiated graphene
with circularly polarized light.

A. Vibration induced bandgaps

The proposed vibration of the lattice consists in a single
mode characterized by a rigid displacement between the two
sublattices. We will work in the case where the displace-
ment direction coincides with the longitudinal direction of the
ribbon, i.e. φ = 0, motivated by the strong e-ph coupling
observed in the optical mode A1(L) in CNTs leading to a
Peierls-like mechanism43–45 and Kohn anomalies;46 and also
in graphene samples.24

To begin with, we consider a graphene nanoribbon with
armchair edge geometry (ac-GNR). The reason of this par-
ticular choice rests in the possibility it offers to decompose
the system into a series of decoupled eigenmodes. To do so,
we start from the non-interacting case (γx = 0) and we use
the basis transformation proposed in Ref. [47]. This trans-
formation takes the ac-GNR into a series of Ny eigenmodes,
each one consisting on a dimer chain with alternating hop-
pings γ(0)q,a = 2γ0 cos[πq/(2Ny + 1)] and γ(0)q,b = γ0, with
q = 1, . . . , Ny the mode number [see Fig. 1(b)]. In this sense,
one can identify each eigenmode q as an independent Su-
Schrieffer-Heeger (SSH) model,48 for which the topological
properties are well-known.49–51 Furthermore, the SSH model
for time-dependent hoppings was also investigated in the con-
text of Floquet topological states, both theoretically52–55 and
experimentally.56

When including the e-ph interaction, we can extend this
mode decomposition in the Fock space, such that for each
eigenmode we obtain a series of dimer chains (or replicas of
the non-interacting case), each one belonging to a different
number n of phonon excitations, see Fig. 1(c). This is easy to
see regarding the structure of the Fock Hamiltonian in Eq. (4),

where H0 and H1 commute with each other for this particu-
lar ribbon geometry and phonon mode. So, for a given mode
q, the intrachain hoppings alternate between γ(0)q,a and γ(0)q,b, as
in the non-interacting case. The phonon energy n~ω in the n-
replica enters as a site energy along the whole chain, accord-
ing to the second term in the r.h.s. of Eq. (4); and the inter-
chain hoppings connecting the n− 1 and n replicas are given
by γ(n)q,a =

√
nγx cos[πq/(2Ny + 1)] and γ(n)q,b = −

√
nγx.

The degree of complexity imposed by the interaction
clearly difficults the possibility of having analytic solutions
for the system. However, the assumed weak coupling between
the replicas (γx � γ0) allows us to estimate the effects of the
vibration on the electronic band structure by using perturba-
tion theory around half the phonon energy. Other quantities
like the local density of states (LDoS), eigenenergy spectrum
and wavefunction amplitudes will be addressed numerically
through standard techniques.

To begin with, we neglect the coupling γx between the dif-
ferent phonon replicas, such that the (q, n)-dispersion relation
at zeroth order can be written as:

ε
(n)
q,±(k) = n~ω ±

√
γ
(0)
q,a

2
+ γ

(0)
q,b

2
+ 2γ

(0)
q,aγ

(0)
q,b cos ka. (6)

This equation represents the band dispersion one would obtain
for a dimer chain with unit cell length a = 3a0/2, but shifted
in an integer number of ~ω, which accounts for the phonons
energy. Among the infinite number of replicas, we will take
as reference the lowest energy bands belonging to the zero-
phonon subspace. This is justified for optical phonons with
energies largely exceeding the thermal energy at room temper-
ature (the stretching mode in graphene has a phonon energy
of about 200 meV, this is about 8 times the thermal energy at
300K). Hence, the phonon population is zero for practical pur-
poses. According to Eq. (6), the number of replicas crossing
each other will depend on the relation between the phonon en-
ergy ~ω and the bandwidth associated with each replica, given
by 6γ0 for Ny > 1.

For ~ω � γ0, the distance between bands belonging to dif-
ferent replicas is much larger than their widths and, therefore,
they do not cross each other. In this limit, the perturbation
on the zero-phonon replica due to replicas with a higher num-
ber of phonons becomes negligible: The electron lying in a
lattice without phonons can never reach enough energy as to
spontaneously emit a phonon.

The symmetry between the conduction (+) and valence (−)
bands with respect to n~ω for n = 0 and n = 1 ensures
that the band crossing takes place at half the phonon energy,
ε = ~ω/2. This fact, together with the maximum allowed
energy for the zero-phonon band, imposes the condition ~ω <
6γ0 for the first band crossing between two different phonon
replicas. In general, for smaller values of ω, the zero-phonon
replica will cross with the n phonon replica once the condition
n~ω < 6γ0 is fulfilled.

The eigenmode decomposition allows us to simplify the
analysis around the band crossing processes. As in this partic-
ular geometry they are decoupled, the only relevant crossings
are those with the same value of q. We can think, then, in the
crossing between n = 0 and n = 1 bands belonging to the
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Figure 2. Bandgap estimation according to Eq. (8) as a function of
the eigenmode number in the limit Ny → ∞, for several values of
the phonon frequency, and γx = 0.1γ0. The n = 0 and n = 1
phonon bands are shown as shaded regions in black and red, respec-
tively. The dashed blue lines delimit the gapped regions.

eigenmode q. To have such a crossing, it is necessary that the
n = 0 conduction band and the n = 1 valence band overlap,
which imposes the following range:

|γ0 − γ(0)q,a | <
~ω
2
< γ0 + γ(0)q,a . (7)

If such inequality can not be met, then the bands do not
cross each other, and the zero-phonon replica gets virtually
unperturbed. Conversely, if such inequality is fulfilled, the
bands will cross at the k-points determined by the condition
ε
(0)
q,+(k) = ε

(1)
q,−(k). This equation has two solutions, ±k∗q ,

due to the symmetric dispersion of the bands in Eq. (6) around
k = 0. When we include the e-ph interaction through γx, the
crossing between the bands gets avoided, yielding a gap in-
duced by the vibration. For these k∗q the group velocity goes
to zero, meaning that a new backscattering process was intro-
duced. From the point of view of the n = 0 replica, an elec-
tron traveling in a static ribbon57 with energy ε(0)q,+(k∗q ) may
suffer a reflection, together with the emission of a phonon of
energy ~ω. Alternatively, from the point of view of the n = 1
replica, an electron traveling in a vibrating ribbon, such that
the composite e-ph system has energy ε(1)q,−(k∗q ), may also be
reflected, after absorption of the phonon excitation present in
the lattice.

Supposing the limit case Ny → ∞, we can take the cosine
argument in γ(0)q,a as a continuous variable x = qπ/(2Ny + 1)
in the range 0 < x < π/2. Under the perturbative regime, we
estimate the bandgap size from a reduced Hamiltonian which
only includes those bands which are expected to cross (see

App. A). The size of the gap, as a function of x, writes:

∆(x) =
3γx
η

√(
η2+ − cos2 x

) (
cos2 x− η2−

)
, (8)

where η = ~ω/4γ0 and η± = η ± 1/2. In Fig. 2 we
show this vibration induced bandgap for several values of the
phonon frequency in the limit Ny → ∞. To some extent,
one can regard this limit as taking the nanoribbon into a two-
dimensional graphene layer. Here, the set of eigenmodes be-
comes dense, meaning that there is always a specific x∗-value
in which the vibration induced gap necessarily closes. This
is a consequence of the preserved TRS by the phonon mode.
Going back to the finite Ny system, the set of x-values is no
longer dense, and the overall gap will be given by the q-mode
closest to x∗. This somewhat relaxes the need to break TRS
as to open a gap in quasi one-dimensional systems.

We notice that Eq. (8) has physical meaning as long as the
argument of the square root is positive. This sets the con-
dition for those eigenmodes in which there is a band cross-
ing, and it results to be 0 < x < acos(η−) for η > 1/2
and acos(η+) < x < π − acos(η−) for η < 1/2, in agree-
ment with Eq. (7). On the other hand, the bandgap size de-
pends linearly on γx, and there is also some dependence with
the phonon frequency through the η parameter. Interestingly,
while for semiconducting GNRs the bandgap around the cen-
tral region ε = 0 can only be closed by increasing Ny , the
vibration induced bandgap could be controlled, to some ex-
tent, through the modulation of the e-ph coupling.27 We can,
in turn, determine the maximum value of the gap as a function
of ~ω. This yields two regimes: (i) for η <

√
3/2, a frequency

independent regime with maximum gap ∆max = 3γx, and (ii)
for η >

√
3/2, a frequency dependent regime where the max-

imum gap decreases and it closes in the limit ~ω = 6γ0.

B. Spectral properties and characterization of the edge states

Throughout the following analysis we will consider a high-
frequency regime by choosing ~ω = 5γ0.58 For this value, the
conduction band belonging to the zero-phonon replica only
cross with the valence band of the one-phonon replica, since
the condition n~ω < 6γ0 can only be fullfilled by n = 1. Al-
though the chosen ~ω largely exceeds the typical phonon en-
ergy of the optical mode, this high-frequency regime, together
with the weak e-ph coupling assumption (γx � γ0), allows us
to truncate the infinite Fock space in the first two phonon repli-
cas, thereby simplifying the discussion of the vibration effects
on the electronic properties of the ribbon. In particular, this
ensures both the valence band (ε < 0) and the semiconduct-
ing gap (ε = 0) regions being unaffected by the vibration, at
least in lowest order in the e-ph coupling. This allows us to
establish a clear distinction between the well-known “native”
edge-states59 at ε = 0, and the expected e-ph induced edge-
states, located at ε = ~ω/2. In any case, the same analysis can
be carried out for ~ω ' 200 meV, but keeping in mind that a
competition between the native topology and the e-ph induced
edge states may occur near the charge neutrality point.54
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Figure 3. LDoS plots for an ac-GNR of Ny = 11 carbon atoms
wide (Ly = 25.82 Å) and coupled to a longitudinal optical mode.
(a) LDoS in log scale weighted over the zero-phonon replica (solid
red, shaded area), evaluated at the border of a semi-infinte ac-GNR.
(b) Zero-phonon LDoS in bulk situation, i.e. evaluated at the center
of an infinite ac-GNR. In (a) and (b) the black lines show the non-
interacting case (γx = 0). Panels (c) and (d) show the same densities
(in grayscale) as in panels (a) and (b), respectively, but resolved in
eigenmodes. The vibration parameters are ~ω = 5γ0 and γx =
0.1γ0.

In Fig. 3(a) we show the LDoS weighted over the zero-
phonon replica (red shaded area), evaluated at the lateral bor-
der of a semi-infinite ac-GNR of Ny = 11 carbon atoms wide
(Ly = 25.82 Å). Except for some region around ε = ~ω/2,
the shape of the LDoS is qualitatively the same as that of the
non-interacting case (solid black), with a central peak related
with the native edge states. This is expected as the e-ph inter-
action only becomes effective in the band crossing region at
~ω/2. Here, we observe a similar behavior as in the ε = 0
region, i.e. a depletion in the LDoS with a pronounced peak
rising in its center.

To infer whether the peak at ~ω/2 survives far away from
the border of the ribbon, we show in Fig. 3(b) the zero-phonon
LDoS evaluated at the center of an infinite ac-GNR. The pro-
nounced peaks at ε = 0 and ~ω/2 are no longer visible,
and instead we can observe bandgap openings around these
energies (blue arrows). For ~ω/2 this is the e-ph interac-
tion induced bandgap, which was also predicted in vibrating
CNTs.22,23,41 As it is expressed in Eq. (8), the size of the vibra-
tion induced gap depends on the eigenmode we are looking at,
which is observed in the LDoS maps of Figs. 3(c) and (d). For
the chosen values ~ω = 5γ0 and Ny = 11, the band cross-
ings occur for those eigenmodes fulfilling q < qmax ' 5.29.

The minimum gap occurs for the mode with q closest to qmax,
which in this case is q = 5. Here, the effective interchain
coupling between the phonon replicas [c.f. Eq. (A3)] is the
smallest, and it increases for smaller q modes.

The absence of peaks in the bulk LDoS makes us suspect
that, as in the case of the native edge states at ε = 0, the peak
at ~ω/2 is also related with states localized at the ribbon’s
border. Let us see, now, the behavior of the vibration induced
peak as we move inside the ribbon. In Fig. 4(a) the zero-
phonon LDoS evaluated at half the phonon energy is shown
as a function of the transversal layer number j [vertical lines
of carbon atoms, see Fig. 1(a)]. The LDoS decays exponen-
tially, such that for j ∼ 40 it becomes negligible. The way in
which the peak decays is quite irregular, due to the superpo-
sition of the contributing tranversal modes (see inset plots in
the figure).

To characterize the eigenenergy spectrum and the local-
ized state wavefunctions we now consider a finite ac-GNR of
Nx = 200 carbon atoms long (Lx = 211.58 Å) and Ny = 11

wide (Ly = 25.82 Å). In Fig. 4(b) we show the eigenen-
ergy spectrum resolved in eigenmodes. To visualize such a
spectrum as a perturbation of that in the non-interacting case,
we weight each eigenstate over the n = 0 replica, i.e. the
zero-phonon subspace. Given a k-eigenstate belonging to the
eigenmode q, we can decompose it as the following superpo-
sition among the n replicas according to:

|ψq,k〉 =
∑
n

∑
j

〈ϕ(n)
q,j |ψq,k〉 |ϕ

(n)
q,j 〉 =

∑
n

|ψ(n)
q,k 〉 , (9)

and take its projection over the n = 0 subspace, i.e.

pq,k = | 〈ψ(0)
q,k|ψq,k〉 |

2. (10)

Although the number of replicas is infinite, the fact that we
work in a perturbative regime allows us to truncate the full
Fock space in a few replicas. In our case where ~ω = 5γ0
and γx � γ0, the subspace associated with those replicas
with n > 1 has negligible impact on the n = 0 replica. In
Fig. 4(b), the red dots reveal how the valence band belong-
ing to the n = 1 replica mixes with the conduction band
of the n = 0 replica (black dots) for ε ∼ ~ω/2. Around
this value, we can observe bandgap openings for those modes
with q < qmax, together with the presence of two degenerate
midgap states per eigenmode (blue arrow).

In Fig. 4(c) we show one of the two midgap states for q = 4.
As we move towards the center of the ribbon, the probability
density oscillate according with the weights this particular q-
mode has on the sites composing the transversal layer. As it
happens with the LDoS peak, the wavefunction also shows
an exponential decay along the longitudinal direction, with a
typical ‘inverse gap’ localization length. However, as the rib-
bon in this example has a finite length, the wavefunction has
weight in the two borders. We can think of this state as bond-
ing or antibonding combination of two states, |ψL〉 and |ψR〉,
localized at the left and the right border of the ribbon, respec-
tively. For a ribbon with a large number of transversal layers
(as it happens here), the overlap 〈ψL|ψR〉 can be neglected
and one can consider |ψL〉 and |ψR〉 as linear combinations of
the two degenerate midgap states.
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Figure 4. (a) LDoS evaluated at ε = ~ω/2 as a function of the transversal layer j for a semi-infinite ac-GNR with Ny = 11 carbon atoms
wide and normalized to its maximum value at j = 3. The used phonon energy is ~ω = 5γ0 and the e-ph interaction is γx = 0.1. Inset: Same
LDoS as in (a), for eigenmodes q = 1, 3, and 5 and normalized to their respective maximum values. (b) Eigenenergy spectrum for a finite
ac-GNR of dimensions Nx = 200 (Lx = 211.58 Å) and Ny = 11 (Ly = 25.82 Å). The other parameters coincide with those of panel (a).
We use a color scale to indicate the eigenstates weight with respect to the zero-phonon replica: Full weight (pq,k = 1) is in black, while zero
weight (pq,k = 0) is in red. (c) Probability density |ψj |2 (normalized to its maximum value and weighted over the n = 0 replica) as a function
of the transversal layer j for one of the two eigenenergies at ε = ~ω/2 and eigenmode q = 4 in panel (b).

C. Topological origin of the edge states

As discussed before, when decreasing the phonon energy
from ~ω = 6γ0 on we will observe band crossings between
different phonon replicas which, in turn, generate bandgap
openings as new backscattering processes are introduced.
This can be regarded as a band inversion process: In the cross-
ing region, the valence band from the n = 1 replica happens
to have less energy than that of the conduction band from the
n = 0 replica. This band inversion is characteristic in topo-
logical phase transitions, together with the formation of local-
ized midgap states. This strongly motivates the calculation of
the Zak phase to infer about the topological nature of the vi-
bration induced localized states. Although there is an infinite
number of bands due to the structure of the Fock space, we
can again truncate this by taking only those bands belonging
to the n = 0 and n = 1 replicas. The corresponding topo-
logical invariant can be calculated as the integral of the Berry
connection60

Zα = i

∮
dk 〈uk,α|∂kuk,α〉 , (11)

with |uk,α〉 the Bloch states belonging to the α-band and the
integral taken over the first Brillouin zone. The bulk-boundary
correspondence then allows us to characterize the existence
of topological states with the Zak phase. Summing up Zα
for all the bands with energy below a given gap yields the
cumulative phase (modulo 2π), which indicates the existence
(with cumulative phase π) or absence (zero cumulative phase)
of topological midgap states.

Although the Zak phase can be obtained analytically in the
SSH model51 and graphene nanoribbons,59 we here proceed
with a numerical calculation of the invariant. Computation-
ally speaking, the Zak phase involves the calculation of wave-

function amplitudes with some arbitrary gauge introduced by
the diagonalization algorithm. In consequence, their possi-
ble outcomes, i.e. Zα = 0 or π, do not fully determine
the band topology. However, one can infer its topology from
the variation of Zα with respect to a reference case in which
such a phase is known. In the previous sections, we con-
cluded that for very high phonon energies, given by the con-
dition ~ω > 6γ0, there are no band crossings, and in con-
sequence the zero-phonon replica remains unperturbed. This
high-frequency limit represents our reference case, where the
Zak phase is well known for all band replicas.

We show in Table I the Zak phases corresponding to the
four bands belonging to replicas n = 0 and n = 1 for the
phonon energies ~ω = 5γ0 and ~ω = 3γ0. As can be seen
from the table, in this example the role of the interaction is to
open a gap between bands 2 and 3, and adding a factor π to
the band’s cumulative phase. For ~ω = 5γ0 this implies that
modes with q = 1, . . . , 5 host vibration induced topological
states between bands 2 and 3, while modes with q = 8, . . . , 11
host native topological states in the gap between bands 1 and
2 (related with the zero-phonon replica) and between bands 3
and 4 (related with the n = 1 phonon replica). For ~ω = 3γ0,
the band crossing condition is fulfilled for q = 1, . . . , 9. For
these modes, the Zak phase for the lowest energy band (va-
lence band of the n = 0 replica) is equal to π, which means
that native edge states are present. However, more interest-
ing is the case of the q = 8, 9 modes, where the topological
invariant for the second lowest energy band is equal to zero
(cumulative Zak phase of π), which implies that these modes
host both native and vibrational induced topological states.

We therefore notice that the condition for the formation
of interaction induced topological states is the band cross-
ing, while the native states appear when the intracell hopping
γ
(0)
q,a is smaller than the intercell hopping γ0.51 As we shall
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Figure 5. Zero-phonon LDoS evaluated around the edge of different ribbon geometries including vacancy disorder of 0.5%. The evaluation
region consists of 10 transversal layers of carbon atoms starting from the left edge of the ribbon. Black lines show the case without vacancies
for comparison reasons, blue lines (shaded area) show a single disorder realization, and red lines show an ensamble average over 200 disorder
realizations. The used geometries are (see schemes): (a) armchair-zigzag (Ny = 11 → Ly = 25.82 Å), (b) armchair-Klein (Ny = 11 →
Ly = 25.82 Å), (c) armchair-armchair (Ny = 12 → Ly = 20.91 Å), and (d) zigzag-armchair (Ny = 12 → Ly = 22.01 Å). The insets in
each panel are zoom areas around ε = 0 (bottom) and ε = ~ω/2 (top). We used two phonon replicas and the other parameters are: ~ω = 5γ0,
γx = 0.1γ0.

q
~ω = 5γ0 ~ω = 3γ0

1 2 3 4 1 2 3 4

1 0 π π 0 0 π π 0

2 0 π π 0 0 π π 0

3 0 π π 0 0 π π 0

4 0 π π 0 0 π π 0

5 0 π π 0 0 π π 0

6 0 0 0 0 0 π π 0

7 0 0 0 0 0 π π 0

8 π π π π π 0 0 π

9 π π π π π 0 0 π

10 π π π π π π π π

11 π π π π π π π π

Table I. Zak phases for the four bands belonging to the Ny = 11
eigenmodes in an ac-GNR for the cases ~ω = 5γ0 and ~ω = 3γ0.
In both cases we used γx = 0.1γ0.

see next, this difference in the formation of the native and
interaction-induced topological states brings with it important
consequences when evaluating the robustness of such states
against changes in the ribbon geometry and the introduction
of several types of disorder.

D. Ribbon geometries and robustness against disorder

So far we have been discussing the effects of the e-ph in-
teraction on a particular ribbon geometry where the eigen-
modes remain decoupled even in the presence of the vibra-
tion. It therefore becomes natural to ask whether the topolog-

ical states survive in other geometries and, in turn, if they are
robust against different types of disorder which might couple
these eigenmodes. In this section we provide an answer to
these questions by analysing the LDoS along the ribbon edges
for different geometries and by incorporating either vacancy
or impurity disorder.

In Fig. 5 we show the LDoS evaluated around the edge re-
gion for different GNRs geometries. As in Fig. 3, we plot the
quantity ln(1 + ρ) as to compensate the peaks height from the
rest of the data. In these examples we considered randomly-
generated vacancy disorder of 0.5% over the complete sample.
In all panels, we show the zero-phonon LDoS without disor-
der (solid black), a single disorder realization (shaded blue
area), and an ensamble average over N = 200 realizations
(red line). The insets in each panel show zoom regions around
ε = 0 (bottom inset) and ε = ~ω/2 (top inset) to help visu-
alization, while the schemes describe the type of ribbon ge-
ometry, characterized by longitudinal (cyan) and transversal
(orange) borders. In all cases we used Nx ∼ 1000 to ensure a
ribbon length much larger than the localization lengths of all
edge states.

Comparing the panels in Fig. 5 we first notice that, in ab-
sence of vacancy disorder, the LDoS peak in ε = 0 can be
present or not depending on the ribbon geometry. This is il-
lustrated by the black lines in the figure (see bottom inset in
each panel), where panels (b) and (c) show no peak at this
energy, while in panels (a) and (d) such a peak is certainly
visible. The peak in ε = ~ω/2, on the other hand, is present
in all panels. This important result allows for a clear distinc-
tion between the ε = 0 and the ε = ~ω/2 edge states. While
the native states may appear or not depending on the particular
ribbon geometry, the presence of topological states induced by
the e-ph interaction is ensured by the crossing of conduction
and valence bands belonging to different phonon replicas. For
this reason we believe the native states are rather marginal:
Although they admit a topological characterization through
the Zak phase, their emergence is strictly determined by the
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ribbon’s geometry.
When we include a 0.5% concentration of vacancies along

the full sample, the main structure of the LDoS holds (blue
lines), though it obviously displays a noisy pattern around
the LDoS without disorder (black lines). Such a perturbative
behavior can be tested by taking an ensamble average over
several ribbon samples with the same vacancy concentration.
The red lines show the LDoS averaged over N = 200 real-
izations, and superimpose the LDoS without disorder along
almost the entire spectrum. However, looking closer at ε = 0
in Figs. 5(b) and (c) (see bottom insets) we notice that, in
average, the zero energy peak returns when vacancy disorder
is included. The fact that the average LDoS (red) in Fig. 5(b)
shows a peak at ε = 0 while the trial LDoS for a single realiza-
tion (blue) shows no peak, and that this peak is present in both
cases in Fig. 5(c) indicates that this is an intermittent effect:
In those cases where the LDoS shows no central peak without
disorder, when including disorder this peak may appear for
some vacancy configurations. In fact, these peaks have noth-
ing to do with the native edge states appearing in Figs. 5(a)
and (d), but these are related to localized states that surround
the vacancies in the sample.61 Thus depending on the presence
(or absence) of vacancies nearby the region where the LDoS is
being evaluated one can see (or not) a peak in the LDoS. In the
considered examples of Fig. 5(b) and (c), the region where the
LDoS was evaluated involves ∼100 carbon atoms, and since
the vacancy concentration is 0.5%, one expects ∼0.5 vacan-
cies in this region, so the chances of observing a peak in this
region are one in two. Obviously, since the chances to have
one or more localized states due to the presence of vacancies
within the evaluation region grow with the vacancy concen-
tration, we expect a simple relation between this quantity and
the average height of the central peak. Having understood the
role of disorder in the central peak of Figs. 5(b) and (c), we
now observe that the shape and intensity of the central peak
in Figs. 5(a) and (d) change little when including disorder,
meaning that the native states, if present, are robust against
moderate vacancy disorder. For the e-ph induced topological
states we can arrive to the same conclusion, as the peaks in
~ω/2 are all the same, regardless of the vacancy disorder.

We now investigate the role of impurity disorder on the rib-
bon’s LDoS. This is modeled through a random variation of
the on-site energies within the range [−W,W ]. This means
that the pure electronic Hamiltonian in Eq. (2) is replaced by

Ĥel =
∑
i

εiĉ
†
i ĉi −

∑
〈i,j〉

γ0ĉ
†
i ĉj , (12)

with −W ≤ εi ≤ W the random on-site energy. In Fig. 6 we
show the LDoS around the e-ph band crossing point, centered
at ε = ~ω/2, together with the LDoS around the Dirac point at
ε = 0 (insets). In these examples we evaluate the zero-phonon
replica LDoS over 40 transversal layers of carbon atoms for
both left and right borders, considered as mirror images each
other. This was done for three ribbon geometries (see schemes
in each panel), and we used W = 0.01γ0 (red), 0.02γ0 (blue),
and 0.03γ0 (green). In these examples we calculated the aver-
age LDoS over 250 disorder realizations. Black lines exhibit
the case without disorder (W = 0), while dotted orange lines

(shaded area) illustrate the case of a single disorder realization
for W = 0.03γ0.

For the shown ribbon geometries, we can see that the e-ph
induced LDoS peak at ~ω/2 (dotted orange) now splits out
into several peaks lying within the bandgap region. To under-
stand why this type of disorder produces such an effect, first
notice that the LDoS peak at ~ω/2 without disorder (black
lines) can be decomposed into several peaks, each one belong-
ing to a topological edge state. The position of these peaks
depends on the average of the on-site energies around the re-
gion where the probability density is finite. If we imagine the
impurity disorder [first term in Eq. (12)] as a perturbation, and
ψk(ri) represents the wavefunction amplitude of the (unper-
turbed) e-ph induced topological state k at position ri, then
the energy εk (and thus the peak position in the LDoS) will
depend on the on-site energies as:

εk '
~ω
2

+
∑
i

εi|ψk(ri)|2, (13)

which can be interpreted as the original position (i.e. with-
out disorder), plus the k-state weighted average of the on-site
energies. As for the considered ribbon sizes the topological
edge states have finite weight over a small number of sites,
the last term in the above equation may not vanish in general.
In fact, this quantity tends to increase with the degree of dis-
order W . This is reflected as a broadening of the averaged
LDoS peaks (solid red, blue, and green) when W increases.
Importantly, the area below the LDoS peak remains always
constant, meaning that the number of topological states in the
sample is independent of disorder. Of course, though W does
not change the number of topological states, for larger W val-
ues these states may be located in energy regions outside the
overall gap, thus difficulting a clear separation between local-
ized and extended states.

The same disorder-induced peak broadending can be ob-
served in the central region around ε = 0 (see insets), but it is
important to notice that, as in the vacancy disorder case, the
native states can be present or not depending on the ribbon ge-
ometry. Additionally, due to the zoom factor, one can observe
that the average peaks are not perfectly centered at ε = 0, but
slightly shifted to the left. This is not related to disorder (the
black line peaks are also shifted) but a second order effect in
the coupling between the zero- and one-phonon replica bands.

IV. SUMMARY AND FINAL REMARKS.

In summary, we have shown that novel and robust states
of topological origin form as a consequence of the electron-
phonon interaction in graphene nanoribbons. This study,
based on a specific model for the electron-phonon interaction
given by a stretching mode in graphene nanoribbons, serves
as a proof of concept. The topological states form at the cen-
ter of a bandgap (induced by the same interaction) located at
half the phonon energy above the charge neutrality point. This
was confirmed in several ribbon geometries and for vacancy
and impurity disorder configurations. While both the native
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Figure 6. Impurity disorder effects in the zero-phonon LDoS for three ribbon geometries: (a) armchair-armchair (Ny = 12 → Ly = 20.91 Å),
(b) armchair-zigzag (Ny = 11 → Ly = 25.82 Å), and (c) zigzag-armchair (Ny = 12 → Ly = 22.01 Å). In all panels, we evaluated the
LDoS along 40 transversal layers of carbon atoms from the left border and other 40 lines from the right border. Solid lines show the average
LDoS over 250 disorder realizations, where we used W = 0.01γ0 (red), 0.02γ0 (blue), and 0.03γ0 (green). Black lines correspond to the case
without disorder, while orange dotted lines (shaded) show a single realization for W = 0.03γ0. Main panels sweep the e-ph induced bandgap
region, centered at ε = ~ω/2, while the insets show the Dirac point region, centered at ε = 0. The other parameters coincide with those of
Fig. 5.

and the e-ph induced states were characterized through the
Zak phase, and shown to be robust against disorder, the native
states only appear in some specific ribbon geometries. Con-
versely, for a non-negligible e-ph interaction, the presence of
the vibration induced topological states is guaranteed as long
as the phonon energy does not exceed the typical band width,
i.e. ~ω < 6γ0. Such a condition provides the required band
inversion between the first two phonon replicas.

Interestingly, this physics happens in our case even when
the phonons do not break time-reversal symmetry, similar to
a driven one-dimensional topological insulator.54 In two di-
mensional systems, however, the e-ph induced bandgap fi-
nally closes for some particular mode k (see discussion on
the Ny → ∞ limit around Fig. 2) and one should break TRS
to restore the gap (as it is required for light to induce Floquet
topological states in the same material). In this sense, the re-
cent observation of chiral phonons in two-dimensional materi-
als25 may open a promising way for studying electron-phonon
induced topological phase transitions.
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Appendix A: Vibration induced bandgaps

Let us think of two replicas (zero- and one-phonon) of a
dimer chain for a particular eigenmode q (see Fig. 1). Each
dimer chain develops a valence and a conduction band, and

the energy difference between the two replicas is ~ω. Let us
suppose that ~ω is small enough such that the n = 0 conduc-
tion band and the n = 1 valence band cross. If k denotes the
Bloch quasimomentum, there are two k-values (±k∗) where
the band crossing occurs. If we focus on one of these points,
say k∗, we have two k-states at the same energy, each one
belonging to one of the two replicas. This degeneration gets
removed by the electron-phonon interaction, which in our case
corresponds to the coupling between the replicas, and yields
the bandgap opening. In this appendix we estimate the gap
size produced by the e-ph interaction.

When using the eigenmode decomposition, the hopping
term between sites depends on the mode q we are looking at,
with a factor cos[qπ/(2Ny + 1)], and q = 1, . . . , Ny . We
take the cosine argument as a continuous variable x, within
the range 0 < x < π/2, and we simplify this analysis by
truncating the full Fock space so we only keep the n = 0 and
n = 1 replicas. Considering the bulk situation (i.e. an infite
long dimer chain) we can use Bloch theorem and obtain the
following Hamiltonian:

Hq =


0 v

(0)
q 0 v

(1)
q

v̄
(0)
q 0 v̄

(1)
q 0

0 v
(1)
q ~ω v

(0)
q

v̄
(1)
q 0 v̄

(0)
q ~ω

 , (A1)

where

v(n)q = |v(n)q | exp
[
iϕ(n)
q

]
= −γ(n)q,a − γ

(n)
q,b e

−ika, (A2)

with a = 3a0/2 the unit cell length, and the bar standing
for complex conjugation. Since we are only interested in the
n = 0 conduction and n = 1 valence bands, we can reduce
even more this Hamiltonian. To do so, we first diagonalize
the 2 × 2 block matrices in the diagonal. As they commute
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each other, we can diagonalize the n = 0 block, and obtain
the energies ε = ±|v(0)q |. Similarly, for the n = 1 block we
obtain ε = ~ω ± |v(0)q |. The next step is to write the Bloch
Hamiltonian in this new basis, such that it allows the proper
truncation

H̃q =

(
|v(0)q | −i|v(1)q | sin(∆ϕ)

i|v(1)q | sin(∆ϕ) −|v(0)q |+ ~ω

)
, (A3)

where ∆ϕ = ϕ
(1)
q −ϕ(0)

q . This Hamiltonian has the following
eigenvalues

εq,± =
~ω
2
±

√(
~ω
2
− |v(0)q |

)2

+
(
|v(1)q | sin(∆ϕ)

)2
.

(A4)
With these expressions, we found the new eigenenergies for
k close to the band crossing point. We can, in turn, partic-
ularize to the point in which this band crossing occurs and
obtain an expression for the size of the gap ∆(x). Recalling
that the band crossing takes place at ε = ~ω/2, we take |v(0)q |
equal to this energy, and using the definitions for v(n)q given in

Eq. (A2), we obtain

∆(x) = 2

√
9γ2x cos2 x sin2 ka

1 + 4 cos2 x+ 4 cosx cos ka
. (A5)

By finding the k-value for which |v(0)q | = ~ω/2 is satisfied,
and defining the adimensional parameter η = ~ω/4γ0, we
obtain that the size of the e-ph interaction induced bandgap is
given by

∆(x) =
3γx
η

√(
η2+ − cos2 x

) (
cos2 x− η2−

)
, (A6)

where η± = η ± 1/2. The size of the gap will depend,
therefore, on this parameter η and the particular eigenmode
q (through the x-variable) we are looking at. The square root
argument defines the band crossing regimes, as this quantity
needs to be always positive. This yields the condition

|η−| < cosx < η+, (A7)

which is equivalent to Eq. (7) of the main text.
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